Abnormal Sedimentary Events and Gas Hydrate Dissociation in Dongsha Area of the South China Sea during Last Glacial Period
-
摘要: 对南海东沙海域陆坡区973-3柱状样开展沉积学和年代学、有孔虫同位素和壳体B/Ca比值、碳酸钙和黄铁矿含量的分析, 发现该岩芯浮游有孔虫Globigerinoides ruber和底栖有孔虫Uvigerina peregrina的δ13C在末次冰期同时在多个层位发生负偏, 最大负偏达-2.03‰; 有孔虫δ13C负偏层位环境[CO32-]浓度相对偏低; 负偏层位同时出现大量黄铁矿, 最高含量达17%.在负偏层位以下沉积的碳酸盐溶解作用强烈, CaCO3含量最低, 沉积物颜色偏深.究其成因与水合物分解关系较大.甲烷渗漏事件发生在末次冰期, 说明末次冰期的海平面下降是水合物分解的主要诱因.根据有孔虫δ13C负偏的次数和程度推断至少发生过4次甲烷渗漏, 渗漏的强度基本相当.Abstract: Core 973-3 is located at the potential gas hydrate area on the slope within Dongsha area of the South China Sea, with the water depth of 1026m. According to the sedimentology, chronology, isotope and B/Ca ratio of the foraminiferal tests, carbonate and pyrite content, the light δ13C values of planktonic Globigerinoides ruber and benthic Uvigerina peregrine are found in several core layers with the most negative value of -2.03‰. In the δ13C distinctly depleted layers, the concentration of environmental [CO32-] is relatively low, and the pyrites are abundant up to 17%, which indicates abnormal seepage of methane. Below the δ13C depleted layers, the carbonate intensely dissolves, and its content decreases to the bottom. It suggests that it has probably been caused by the gas hydrate dissociation. The seepage and anaerobic oxidation of methane resulted from the dissociation and release of gas hydrates is the primary reason of the depleted δ13C values of foraminiferal tests, carbonate dissolution and the deposits of enormous pyrites. Methane release events occurred in the last glacial period, which implies that the descending sea level induced the gas hydrate dissociation. According to the δ13C depleted record of foraminiferas, it is concluded that there were at least four times release events of methane, and their intensities were almost at the same level.
-
Key words:
- gas hydrate dissociation /
- depleted δ13C /
- carbonate dissolution /
- last glacial period /
- Dongsha slope /
- marine geology
-
表 1 973-3柱状样AMS14C测年结果
Table 1. AMS14C dating results of 973-3PC
样品深度(cm) 样品性质 δ13C(‰) 14C测试结果(aBP) δ13C同位素分馏校正 14C校正年代(aBP, 1σ) 50~55 G.ruber+G.sacculifer 2.01 3335±45 3781±45 4138±48 100~105 G.ruber+G.sacculifer 1.38 4415±40 4850±40 5600±17 226~231 G.ruber+G.sacculifer 2.28 10270±80 10721±80 12773±63 239~243 G.ruber+G.sacculifer 2.11 12230±60 12678±60 14976±134 274~279 G.ruber+G.sacculifer -1.97 26850±180 27229±180 27229±180 282~285 G.ruber+G.sacculifer 1.66 26370±200 26810±200 26810±200 400~405 G.ruber+G.sacculifer 2.04 38520±310 38967±310 38967±310 500~505 G.ruber+G.sacculifer 0.44 40960±340 41379±340 41379±340 600~605 G.ruber+G.sacculifer -1.30 29520±190 29910±190 29910±190 700~705 G.ruber+G.sacculifer -0.84 42210±360 42608±360 42608±360 -
Bhaumik, A.K., Gupta, A.K., 2007. Evidence of Methane Release from Blake Ridge ODP Hole 997A during the Plio-Pleistocene: Benthic Foraminifer Fauna and Total Organic Carbon. Current Science, 92(2): 192-199. Cao, C., Lei, H.Y., 2012. Respondence between Carbon and Oxygen Isotopic Characteristics of Foraminifera from the Northern South China Sea and Late Quaternary Hydrate Released. Journal of Jilin University (Earth Science Edition), 42(Suppl. 1): 162-171 (in Chinese with English abstract). http://www.researchgate.net/publication/286202683_Respondence_between_carbon_and_oxygen_isotopic_characteristics_of_foraminifera_from_the_northern_South_China_Sea_and_late_Quaternary_hydrate_released Chen, Z., Yan, W., Chen, M.H., et al., 2006. Discovery of Seep Carbonate Nodules as New Evidence for Gas Venting on the Northern Continental Slope of South China Sea. Chinese Science Bulletin, 51(9): 1065-1072 (in Chinese). doi: 10.1007/s11434-006-1065-9 Dickens, G.R., O'Neil, J.R., Rea, D.K., et al., 1995. Dissociation of Oceanic Methane Hydrate as a Cause of the Carbon Isotope Excursion at the End of the Paleocene. Paleoceanography, 10(6): 965-971. doi: 10.1029/95PA02087 Department of Marine Geology, Tongji University, 1989. Introduction to Paleoceanography. Tongji University Press, Shanghai, 163. Han, X.Q., Suess, E., Huang, Y.Y., et al., 2008. Jiulong Methane Reef: Microbial Mediation of Seep Carbonates in the South China Sea. Marine Geology, 249(3-4): 243-256. doi: 10.1016/j.margeo.2007.11.012 Han, X.Q., Suess, E., Liebetrau, V., et al., 2014. Past Methane Release Events and Environmental Conditions at the Upper Continental Slope of the South China Sea: Constraints by Seep Carbonates. Int. J. Earth Sci. (Geol. Rundsch), 103: 1873-1887. doi: 10.1007/s00531-014-1018-5 Hinrichs, K.U., Hmelo, L.R., Sylva, S.P., 2003. Molecular Fossil Record of Elevated Methane Levels in Late Pleistocene Coastal Waters. Science, 299: 1214-1217. doi: 10.1126/science.1079601 Jiang, G. Q, Shi, X.Y., Zhang, S.H., 2006. Methane Seepage Structure, Gas Hydrate Dissociation and Neoproterozoic Postglacial Cap Carbonates. Chinese Science Bulletin, 51(10): 1121-1138 (in Chinese). doi: 10.1360/csb2006-51-10-1121 Keigwin, L.D., 2002. Late Pleistocene-Holocene Paleoceanography and Ventilation of the Gulf of California. Journal of Oceanography, 58(2): 421-432. doi: 10.1023/A:1015830313175 Kennett, J.P., Cannariato, K.G., Hendy, I.L., et al., 2000. Carbon Isotopic Evidence for Methane Hydrate Instability during Quaternary Interstadials. Science, 288(5463): 128-133. doi: 10.1126/science.288.5463.128 Kennett, J.P., Stott, L.D., 1991. Abrupt Deep-Sea Warming, Palaeoceanographic Changes and Benthic Extinctions at the End of the Palaeocene. Nature, 353(6341): 225-229. doi: 10.1038/353225a0 Li, Q., Wang, J.S., Cai, F., et al., 2010. Carbon and Oxygen Stable Isotopes of Benthic Foraminifera as Possible Indicators of Episodic Methane Seeps in Gas Hydrate Geo-System—A Study from IODP Expedition 311. Marine Geology Frontiers, 27(6): 29-36 (in Chinese with English abstract). Lu, H.F., Chen, F., Liu, J., et al., 2010. Mineralogies and Stable Isotopic Compositions of Methane-Derived Carbonates from the Northeastern South China Sea. Marine Geology & Quaternary Geology, 30(2): 51-59. doi: 10.3724/sp.j.1140.2010.02051 Lu, H.F., Liu, J., Chen, F., et al., 2005. Mineralogy and Stable Isotopic Composition of Authigenic Carbonates in Bottom Sediments in the Offshore Area of Southwest Taiwan, South China Sea: Evidence for Gas Hydrates Occurrence. Earth Science Frontiers, 13(3): 268-276 (in Chinese with English abstract). Lu, H.F., Liu, J., Chen, F., et al., 2012. Shallow Sulfate-Methane Interface in Northeastern South China Sea: An Indicator of Strong Methane Seepage on Seafloor. Marine Geology & Quaternary Geology, 32(1): 93-98 (in Chinese with English abstract). doi: 10.3724/sp.j.1140.2012.01093 Lu, M.A., Ma, Z.J., Chen, M.H., et al., 2002. Rapid Carbon-Isotope Negative Excursion Events during the Penultimate Deglaciation in Western Pacific Marginal Sea Areas and Their Origins. Quaternary Sciences, 22(4): 349-358 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200204006.htm Luan, X.W., 2009. Sulfate-Methane Interface: The Upper Boundary of Gas Hydrate Zone. Marine Geology & Quaternary Geology, 29(2): 91-102 (in Chinese with English abstract). doi: 10.3724/sp.j.1140.2009.02091 Prokopenko, A.A., Williams, D.F., 2004. Deglacial Methane Emission Signals in the Carbon Isotopic Record of Lake Baikal. Earth and Planetary Science Letters, 218: 135-147. doi: 10.1016/S0012-821X(03)00637-X Qiao, P.J., Wang, T.T., Jian, Z.M., 2012. Potential of Foraminiferal B/Ca Ratios for Reconstructing Paleo-Seawater pH and CO32- Concentrations. Advances in Earth Science, 27(6): 686-693 (in Chinese with English abstract). Sassen, R., Roberts, H.H., Carney, R., et al., 2004. Free Hydrocarbon Gas, Gas Hydrate, and Authigenic Minerals in Chemosynthetic Communities of the Northern Gulf of Mexico Continental Slope: Relation to Microbial Processes. Chemical Geology, 205(3-4): 195-217. doi: 10.1016/j.chemgeo.2003.12.032 Smith, L.M., Sachs, J.P., Jenning, A.E., et al., 2001. Light δ13C Events during Deglaciation of the East Green Land Continental Shelf Attributed to Methane Release from Gas Hydrates. Geophysical Research Letters, 28(11): 2217-2220. doi: 10.1029/2000GL012627 Suess, E., 2011. Marine Gas Hydrate Research: Changing Views over the Past 25 Years. Proceeding of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, July 17-21. Tong, H.P., Feng. D., Chen. H., et al., 2013. Authigenic Carbonates from Seeps on the Northern Continental Slope of the South China Sea: New Insights into Fluid Sources and Geochronology. Marine and Petroleum Geology, 43: 260-271. doi: 10.1016/j.marpetgeo.2013.01.011 Uchida, M., Shibata, Y., Ohkushi, K., et al., 2004. Episodic Methane Release Events from Last Glacial Marginal Sediments in the Western North Pacific. Geochemistry, Geophysics, Geosystems, 5: Q08005. doi:10.1029 /2004GC000699 Wang, S.H., Yan, W., Chen, Z., et al., 2010. Carbon Isotope Evidence of Gas Hydrate Dissociation in South China Sea. Earth Science—Journal of China University of Geosciences, 35(4): 526-532 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.608 Yu, J.M., Day, J., Greaves, M., et al., 2005. Determination of Multiple Element/Calcium Ratios in Foraminiferal Calcite by Quadrupole ICPMS. Geochemistry, Geophysics, Geosystems, 6: Q08P01. doi:10.1029 /2005GC000964 Zachos, J.C., Rohl, U., Schellenberg, S.A., et al., 2005. Rapid Acidification of the Ocean during the Paleocene-Eocene Thermal Maximum. Science, 308(5728): 1611-1615. doi: 10.1126/science.1109004 Zhang, G.X., Yang, S.X., Zhang, M., et al., 2014. GMG2 Expedition Investigates Rich and Complex Gas Hydrate Environment in the South China Sea. Fire in the Ice, 14(1): 1-5. 曹超, 雷怀彦, 2012. 南海北部有孔虫碳氧同位素特征与晚第四纪水合物分解的响应关系. 吉林大学学报(地球科学版), 42(增刊1): 162-171. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S1021.htm 陈忠, 颜文, 陈木宏, 等, 2006. 南海北部冷泉碳酸盐结核的发现: 海底天然气渗漏活动的新证据. 科学通报, 51(9): 1065-1072. doi: 10.3321/j.issn:0023-074X.2006.09.011 蒋干清, 史晓颖, 张世红, 2006. 甲烷渗漏构造、水合物分解释放与新元古代冰后期盖帽碳酸盐岩. 科学通报, 51(10): 1121-1138. doi: 10.3321/j.issn:0023-074X.2006.10.001 李清, 王家生, 蔡峰, 等, 2010. 天然气水合物系统多幕次甲烷渗漏作用的底栖有孔虫同位素响应——以IODP311航次为例. 海洋地质前沿, 27(6): 29-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201106006.htm 陆红锋, 刘坚, 陈芳, 等, 2005. 南海台西南区碳酸盐岩矿物学和稳定同位素组成特征——天然气水合物存在的主要证据之一. 地学前缘, 13(3): 268-276. doi: 10.3321/j.issn:1005-2321.2005.03.030 陆红锋, 刘坚, 陈芳, 等, 2012. 南海东北部硫酸盐还原-甲烷厌氧氧化界面——海底强烈甲烷渗漏的记录. 海洋地质与第四纪地质, 32(1): 93-98. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201201018.htm 卢苗安, 马宗晋, 陈木宏, 等, 2002. 倒数第二次冰消期西太平洋边缘海地区δ13C值快速负偏事件及其成因. 第四纪研究, 22(4): 349-358. doi: 10.3321/j.issn:1001-7410.2002.04.007 栾锡武, 2009. 天然气水合物的上界面——硫酸还原-甲烷厌氧氧化界面. 海洋地质与第四纪地质, 29(2): 91-102. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200902017.htm 同济大学海洋地质系, 1989. 古海洋学概论. 上海: 同济大学出版社, 163. 乔培军, 王婷婷, 翦知湣, 2012. 利用有孔虫壳体B/Ca比值再造古海水pH值及[CO32-]的潜力. 地球科学进展, 27(6): 686-693. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201206012.htm 王淑红, 颜文, 陈忠, 等, 2010. 南海天然气水合物分解的碳同位素证据. 地球科学——中国地质大学学报, 35(4): 526-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201004006.htm