• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    舒兰韧性剪切带应变分析及石英动态重结晶颗粒分形特征与流变参数估算

    梁琛岳 刘永江 孟婧瑶 温泉波 李伟民 赵英利 米晓楠 张丽

    梁琛岳, 刘永江, 孟婧瑶, 温泉波, 李伟民, 赵英利, 米晓楠, 张丽, 2015. 舒兰韧性剪切带应变分析及石英动态重结晶颗粒分形特征与流变参数估算. 地球科学, 40(1): 115-129. doi: 10.3799/dqkx.2015.008
    引用本文: 梁琛岳, 刘永江, 孟婧瑶, 温泉波, 李伟民, 赵英利, 米晓楠, 张丽, 2015. 舒兰韧性剪切带应变分析及石英动态重结晶颗粒分形特征与流变参数估算. 地球科学, 40(1): 115-129. doi: 10.3799/dqkx.2015.008
    Liang Chenyue, Liu Yongjiang, Meng Jingyao, Wen Quanbo, Li Weimin, Zhao Yingli, Mi Xiaonan, Zhang Li, 2015. Strain and Fractal Analysis of Dynamically Recrystallized Quartz Grains and Rheological Parameter Estimation of Shulan Ductile Shear Zone. Earth Science, 40(1): 115-129. doi: 10.3799/dqkx.2015.008
    Citation: Liang Chenyue, Liu Yongjiang, Meng Jingyao, Wen Quanbo, Li Weimin, Zhao Yingli, Mi Xiaonan, Zhang Li, 2015. Strain and Fractal Analysis of Dynamically Recrystallized Quartz Grains and Rheological Parameter Estimation of Shulan Ductile Shear Zone. Earth Science, 40(1): 115-129. doi: 10.3799/dqkx.2015.008

    舒兰韧性剪切带应变分析及石英动态重结晶颗粒分形特征与流变参数估算

    doi: 10.3799/dqkx.2015.008
    基金项目: 

    国家自然科学重点基金项目 41230206

    吉林省自然科学基金项目 20101560

    国家留学基金建设高水平大学公派研究生项目 201206170025

    详细信息
      作者简介:

      梁琛岳(1986-), 男, 博士, 构造地质学专业.E-mail: liangchenyue039@gmail.com

      通讯作者:

      刘永江, E-mail: yongjiang@jlu.edu.cn

    • 中图分类号: P542

    Strain and Fractal Analysis of Dynamically Recrystallized Quartz Grains and Rheological Parameter Estimation of Shulan Ductile Shear Zone

    • 摘要: 舒兰北东向韧性剪切带位于佳木斯-伊通断裂带(佳-伊断裂带)中南段, 剪切带内糜棱岩具有明显左行走滑特征, 片麻理产状近NNE向.糜棱岩中长石有限应变Flinn图解判别岩石类型为L-S型构造岩, 属拉长型应变.石英C轴EBSD组构分析表明, 石英组构以中低温菱面为主, 滑移系为{0001} < 110>.剪切带内糜棱岩的剪应变为0.44, 不同方法计算所得运动学涡度值均大于0.95, 指示剪切变形以简单剪切为主.综合矿物变形温度计、石英C轴EBSD组构、石英的粒度-频数图及Kruhl温度计综合估计该韧性剪切带变形机制以位错蠕变机制为主, 变质相为低绿片岩相, 发生韧性变形和糜棱岩化温度范围在400~500 ℃之间.糜棱岩内石英动态重结晶新晶粒边界普遍具有锯齿状或港湾状结构, 利用分形方法对其重结晶新晶边界研究表明, 这些晶粒边界具有自相似性, 表现出分形特征, 分形维数值为1.195~1.220.根据石英重结晶粒径估算差应力值为24.35~27.59 MPa, 代表了舒兰韧性剪切带糜棱岩化作用过程的差异应力下限.使用不同实验方法估算、比较和分析了该剪切带古应变速率, 认为该速率应为10-12.00~10-13.18 s-1, 与区域性应变速率10-13.00~10-15.00 s-1对比, 说明舒兰韧性剪切带的应变速率与世界上大多数韧性剪切带中的糜棱岩应变速率一致, 是缓慢变形的结果, 其形成可能与早白垩世伊泽纳崎板块向欧亚大陆俯冲发生转向有关.

       

    • 图  1  舒兰韧性剪切带地质简图及变形组构与采样位置

      a.佳-伊断裂带断隆与断陷相间排列的构造格局;b.研究区及周边地质简图, 据孟婧瑶等,2013修改;n为线理和面理的测量数

      Fig.  1.  Geological map of Shulan ductile shear zone with smple numbers used for this study and stereoplot of foliation planes and stretching lineation

      图  2  舒兰韧性剪切带典型宏观及显微变形特征

      a.发育明显的石英条带,弱S-C组构,显示ENE左行剪切;b.浅色条带扭折,指示左行剪切特征;c.石英亚颗粒旋转重结晶现象及压力影,明显S-C组构,指示左行剪切特征;d.石英旋转重结晶集合体

      Fig.  2.  Some representative outcrop-scale and microscopic deformation structures of mylonitic rocks from Shulan ductile shear zone

      图  3  Flinn有限应变判别

      Fig.  3.  Flinn finite strain discrimination diagram

      图  4  舒兰韧性剪切带糜棱岩中石英C轴组构

      采用等面积网下半球投影; N为测量的颗粒数,XYZ分别代表应变椭球的最长轴、中间轴和最短轴,X/Y面为糜棱面理面; β用于计算运动学涡度,详细见下文

      Fig.  4.  C-axis fabric stereograms of quartz in mylonites from Shulan ductile shear zone

      图  5  石英动态重结晶颗粒的粒径-周长双对数图解

      N为测量颗粒数

      Fig.  5.  lg-lg plot of perimeter-diameter of dynamically recrystallized quartz grains

      图  6  舒兰韧性剪切带糜棱岩中石英粒度-频数图

      图中BLG代表低温膨突式动态重结晶(280~400 ℃);SGR代表中温亚颗粒旋转式动态重结晶(400~500 ℃);GBM代表高温颗粒边界迁移式动态重结晶(500~700 ℃)

      Fig.  6.  The relation between the particle sizes of recrystallized quartzes grain size versus frequency and deformation mechanisms in Shulan ductile shear zone

      图  7  分形维数与变形温度关系

      Fig.  7.  Relationship between fractal dimension and deformation temperature

      图  8  石英动态重结晶类型的温度-应变速率关系

      Fig.  8.  Strain-rate versus temperature diagram with the microstructural correlations of dynamically recrystallized quartz grain

      表  1  舒兰韧性剪切带有限应变测量数据

      Table  1.   Data of finite-strain measurement from Shulan ductile shear zone

      样品号 长短轴法 Fry法 心对心法
      Y/Z X/Z X/Y K Y/Z X/Z X/Y K Y/Z X/Z X/Y K
      799SQ-1 1.11 2.06 1.86 5.93 1.16 2.14 1.84 4.13 1.45 3.00 2.07 1.96
      799SQ-2 1.16 1.78 1.53 2.89 1.10 1.92 1.75 5.84 1.60 2.91 1.82 1.27
      800SQ-1 1.10 1.87 1.70 5.57 1.15 2.20 1.91 4.64 1.54 2.88 1.87 1.45
      801SQ-2 1.21 2.21 1.83 3.16 1.12 2.02 1.80 5.20 1.35 3.40 2.52 3.08
      下载: 导出CSV

      表  2  舒兰韧性剪切带的剪应变及运动学涡度

      Table  2.   Shear strain and kinematic vorticity of mylonites from Shulan ductile shear zone

      样品号 石英条带斜交面理法 石英C轴组构法
      剪切角θ(°) 剪切应变γ 涡度Wk Rs β(°) Wk
      799SQ-1 38 0.50 0.970 2.14 31 0.993
      799SQ-2 39 0.43 0.978 1.92 39 0.994
      800SQ-1 38 0.50 0.970 2.20 42 0.965
      801SQ-2 40 0.35 0.985 2.02 34 0.999
      平均值 - 0.44 0.976 - - 0.988
      下载: 导出CSV

      表  3  石英动态重结晶颗粒边界的分形特征

      Table  3.   Fractal characteristics of dynamically recrystallized quartz grain boundary in mylonites

      样品号 测量数 粒径分布(μm) 平均粒径(μm) 周长分布(μm) 平均周长(μm) 分形维数D 相关系数
      799SQ-1 60 20.52~123.10 57.90 90.91~836.36 352.73 1.214 0.932
      799SQ-2 61 32.44~137.63 65.01 163.64~853.36 357.68 1.195 0.942
      800SQ-1 58 13.28~141.78 64.02 93.16~747.37 329.67 1.220 0.935
      801SQ-2 56 9.39~150.39 55.55 112.63~826.32 342.87 1.208 0.939
      下载: 导出CSV

      表  4  石英重结晶颗粒粒径压力计参数

      Table  4.   Parameters of paleopiezometers based on recrystallized quartz grain sizes

      b(μmMPa-R) R 参考文献
      1.45×104 -1.47 Twiss, 1977, 1980
      4.07×103 -1.40 Mercier et al., 1977
      4.9×102 -0.59 Koch, 1983
      3 631 -1.26 Stipp et al., 2003
      下载: 导出CSV

      表  5  古差异应力值(MPa)

      Table  5.   Estimation of paleo-stress by different methods

      样品号 平均粒径(μm) Twiss(1980, 1977) Mercier (1977) Koch (1983) Stipp et al., 2003
      799SQ-1 57.90 42.83 20.86 37.33 26.70
      799SQ-2 65.01 39.59 19.20 30.68 24.35
      800SQ-1 64.02 40.00 19.41 31.48 24.65
      801SQ-2 55.55 44.06 21.48 40.05 27.59
      下载: 导出CSV

      表  6  石英岩高温流变学实验参数

      Table  6.   Experimentally determined parameters for power law creep constitutive equations for the quartzites

      A(MPa-1s-1) Q(Jmol-1) n H2O 参考文献
      1.10×10-7 134 000 2.7 Koch, 1983
      5.05×10-6 145 000 2.6 湿 Koch et al., 1989
      1.58×10-5 134 000 2.6 0.4% Kronenberg and Tullis, 1984
      6.50×10-8 135 000 2.6 - Paterson and Luan, 1990
      4.40×10-2 230 946.2 2.6 湿 Parrish, 1976
      6.309 57×10-12 13 400 4.0 - Hirth, 2010
      下载: 导出CSV

      表  7  不同方法估算的差异应力和应变速率

      Table  7.   Estimation of strain rate by different methods

      样品号 σ*(MPa) 温度(℃) ε=nd-mexp[-Q/RT] D=φlgε+ρ/T+1.08
      Koch, 1983 Koch et al., 1989 Kronenberg and Tullis, 1984 Paterson and Luan, 1990 Parrish, 1976 Hirth, 2010 分形维数 Takahashi et al., 1998
      799SQ-1 26.70 400 10-13.49 10-13.82 10-11.48 10-13.23 10-15.54 10-15.95 1.214 10-8.79
      500 10-12.15 10-12.37 10-10.13 10-11.87 10-13.23 10-14.60 10-7.47
      799SQ-2 24.35 400 10-13.60 10-13.93 10-11.58 10-13.35 10-15.65 10-16.11 1.195 10-9.00
      500 10-12.26 10-12.48 10-10.24 10-12.00 10-13.33 10-14.76 10-7.68
      800SQ-1 24.65 400 10-13.58 10-13.91 10-11.57 10-13.33 10-15.63 10-16.09 1.220 10-8.73
      500 10-12.24 10-12.46 10-10.22 10-11.98 10-13.32 10-14.74 10-7.41
      801SQ-2 27.59 400 10-13.45 10-13.79 10-11.44 10-13.18 10-15.51 10-15.90 1.208 10-8.86
      500 10-12.11 10-12.33 10-10.10 10-11.83 10-13.19 10-14.55 10-7.54
      注:*据Stipp et al., 2003.
      下载: 导出CSV
    • Bahattacharya, A.R., Weber, K., 2004. Fabric Development during Shear Deformation in the Main Central Thrust Zone, NW Himalaya, India. Tectonophysics, 387(1-4): 23-46. doi: 10.1016/j.tecto.2004.04.026
      Boutonnet, E., Leloup, P.H., Sassier, C., et al., 2013. Ductile Strain Rate Measurements Document Long-Term Strain Localization in the Continental Crust. Geology, 41(8): 819-822. doi: 10.1130/G33723.1
      Brodie, K.H., 1980. Variations in Mineral Chemistry across a Shear Zone. Journal of Structural Geology, 2(1-2): 265-272. doi: 10.1016/0191-8141(80)90059-0
      Brodie, K.H., Rutter, E.H., 1985. On the Relationship between Deformation and Metamorphism, with Special Reference to the Behavior of Basic Rocks. Metamorphic Reactions, 4: 138-179. doi: 10.1007/978-1-4612-5066-1_6
      Chen, P.J., 1988. Age and Pattern of Huge Parallel Move of the Tancheng-Lujiang Fault Zone. Chinese Science Bulletin, 4: 289-293 (in Chinese).
      Cheng, Y.H., Teng, X.J., Li, Y.F., et al., 2014. Chronology Constraint and Tectonic Evolution of Hanwula Early Cretaceous Ductile Shear Belt in Dong Ujimqin, Inner Mongolia. Earth Science—Journal of China University of Geosciences, 39(4): 375-386 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.036
      Dou, L.R., Song, J.G., Wang, Y., 1996. Chronology of the Formation of the Northern Tan-lu Fault Zone and Its Implications. Geological Review, 42(6): 508-512 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026535632
      Hacker, B., Yin, A., Christie, J., et al., 1990. Differential Stress, Strain Rate, and Temperatures of Mylonitization in the Ruby Mountains, Nevada: Implications for the Rate and Duration of Uplift. Journal of Geophysical Research, 95(B6): 8569-8580. doi: 10.1029/JB095iB06p08569
      Han, G., Q., Liu, Y., J., Neubauer, F., et al., 2012. Characteristics, Timing, and Offsets of the Middle-Southern Segment of the Western Boundary Strike-Slip Fault of the Songliao Basin in Northeast China. Journal of Jilin University (Earth Science Edition), 39(3): 397-405 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-JDXG201203013.htm
      Hirth, G., Teyssier, C., Dunlap, W.J., 2010. An Evaluation of Quartzite Flow Laws Based on Comparisons between Experimentally and Naturally Deformed Rocks. International Journal of Earth Sciences(Geol Rundsch), 90: 77-87. doi: 10.1007/s005310000152
      Hirth, G., Tullis, J., 1992. Dislocation Creep Regimes in Quartz Aggregates. Journal of Structural Geology, 14(2): 145-159. doi: 10.1016/0191-8141(92)90053-Y
      Hirth, G., Tullis, J., 1994. The Brittle-Plastic Transition in Experimentally Deformed Quartz Aggregates. Journal of Geophysical Research, 99(B6): 11731-11747. doi: 10.1029/93JB02873
      Hu, L., 1998. An Outline of Microstructure Geology. Geological Publishing House, Beijing (in Chinese).
      Huang, J.J., 1994. On Some Viewpoints on Studies of Mylonite and Their Applications. Geology of Chemical Minerals, 16(2): 117-122 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HGKC402.007.htm
      Koch, P.S., 1983. Rheology and Microstructures of Experimentally Deformed Quartz Aggregates. University of California, CA, Los Angeles.
      Koch, P.S., Christie, J.M., Ord, A., et al., 1989. Effect of Water on the Rheology of Experimentally Deformed Quartzite. Journal of Geophysical Research: Solid Earth, 94(B10): 13975-13996. doi: 10.1029/JB094iB10p13975
      Kronenberg, A.K., Tullis, J., 1984. Flow Strengths of Quartz Aggregates: Grains Size and Pressure Effects due to Hydrolytic Weakening. Journal of Geophysical Research, 89(B6): 4281-4297. doi: 10.1029/JB089iB06p04281
      Kruhl, J.H., Nega, M., 1996. The Fractal Shape of Sutured Quartz Grain Boundaries: Application as a Geothermometer. International Journal of Earth Sciences, 85(1): 38-43. doi: 10.1007/BF00192058
      Kruhl, J.H., Nega, M., Milla, H.E., 1995. The Fractal Shape of Grain Boundary Sutures: Reality, Model and Application as a Geo-Thermometer. Conference Fractal and Dynamic Systems in Geosciences, 85(1): 38-43. doi: 10.1007/BF00192058
      Li, D.L., Wang, E.L., 2001. Structural Geology. Jilin University Press, Chuangchun (in Chinese).
      Li, Z.S., Tian, X.L., Zhang, W.J., et al., 2013. Fractal Analysis of East-West Ductile Shear Zone in Guachehe Town Area, Tongcheng, Anhui and Its Applicability of Strain-Rate Estimation. Science & Technology Review, 31(20): 15-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KJDB201320016.htm
      Liang, C.Y., Liu, Y.J., Li, W., et al., 2011. Characteristics of Extensional Structure of Keluo Complex in Nenjiang Area, Heilongjiang, China. Geological Bulletin of China, 30(2-3): 291-299 (in Chinese with English abstract). http://www.cqvip.com/QK/95894A/20112/37549572.html
      Liu, J.L., Cao, S.Y., Zou, Y.X., et al., 2008. EBSD Analysis of Rock Fabrics and Its Application. Geological Bulletin of China, 27(10): 1638-1645 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/zgqydz200810005
      Liu, R.X., 1988. Microstructural Geology. Peking University Press, Beijing (in Chinese).
      Mamtani, M., 2010. Strain-Rate Estimation Using Fractal Analysis of Quartz Grains in Naturally Deformed Rocks. Journal of the Geological Society of India, 75(1): 202-209. doi: 10.1007/s12594-010-0008-x
      Maruyama, S., Isozaki, Y., Kimura, G., et al., 1997. Paleogeographic Maps of the Japanese Islands: Plate Tectonic Synthesis from 750 Ma to the Present. Island Arc. , 6(1): 121-142. doi: 10.1111/j.1440-1738.1997.tb00043.x
      Maruyama, S., Seno, T., 1986. Orogeny and Relative Plate Motions: Example of the Japanese Islands. Tectonophysics, 127(3-4): 305-329. doi: 10.1016/0040-1951(86)90067-3
      Means, W.D., Hobbs, B.E., Lister, G.S., et al., 1980. Vorticity and Non-Coaxialicy in Progressive Deformation. Journal of Structural Geology, 2(3): 371-378. doi: 10.1016/0191-8141(80)90024-3
      Meng, J.Y., Liu, Y.J., Liang, C.Y., et al., 2013. Characteristics of Ductile Deformation of Jiamusi-Yitong Fault. Global Geology, 32(4): 800-807 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SJDZ201304019&dbcode=CJFD&year=2013&dflag=pdfdown
      Mercier, J.C.C., Anderson, D.A., Carter, N.L., 1977. Stress in the Lithosphere: Inferences from Steady State Flow of Rocks. Pure and Applied Geophysics, 115(1-2): 199-226. doi: 10.1007/BF01637104
      Okudaira, T., Takeshita, T., Hara, I., et al., 1995. A New Estimate of the Conditons for Transtions from Basal <a>to Prism <c> Slip in Naturally Deformed Quartz. Tectonophysics, 250(1/3): 31-46. doi: 10.1016/0040-1951(95)00039-4
      Parrish, D.K., Krivz, A.L., Carter, N.L., 1976. Finite-Element Folds of Similar Geometry. Tectonophysics, 32(3-4): 183-207. doi: 10.1016/0040-1951(76)90062-7
      Passchier, C.W., 1988. The Use of Mohr Circles to Describe Non-Coaxial Progressive Deformation. Tectonophysics, 149(3-4): 323-338. doi: 10.1016/0040-1951(88)90181-3
      Passchier, C.W., Trouw, R.A.J., 2005. Micro-Tectonics. Springer-Verlag, Heidelberg, Berlin.
      Paterson, M.S., Luan, F.C., 1990. Quartzite Rheology under Geological Conditions. Geological Society, London, Special Publications, 54(1): 299-307. doi: 10.1144/GSL.SP.1990.054.01.26
      Pfiffner, O.A., Ramsay, J.G., 1982. Constraints on Geological Strain Rates: Arguments from Finite Strain States of Naturally Deformed Rocks. Journal of Geophysical Research, 87(B1): 311-321. doi: 10.1029/JB087iB01p00311
      Poirier, J.P., 1985. Creep of Cystals. Camridge Unversity Press, New York.
      Ramsay, J.G., 1980. Shear Zone Geometry: A Review. Journal of Structural Geology, 2(1-2): 83-89. doi: 10.1016/0191-8141(80)90038-3
      Ramsay, J.G., Graham, R.H., 1970. Strain Variation in Shear Belts. Canadian Journal of Earth Science, 7: 786-813. doi: 10.1139/e70-078
      Rutter, E.H., Brodie, K.H., 2004a. Experimental Grain-Size Sensitive Flow of Hot-Pressed Brazilian Quartz Aggregates. Journal of Structural Geology, 26: 2011-2023. doi: 10.1016/j.jsg.2004.04.006
      Rutter, E.H., Brodie, K.H., 2004b. Experimental Intracrystalline Plastic Flow in Hot-Pressed Synthetic Quartzite Prepared from Brazilan Quartz Crystals. Journal of Structural Geology, 26: 259-270. doi: 10.1016/S0191-8141(03)00096-8
      Shi, W.J., Wei, J.H., Tan, J., et al., 2014, Late Early Cretaceous Gold Mineralization in Tan-Lu Fault Zone: Evidence from Rb-Sr Isotopic Dating of Pyrite from Longquanzhan Gold Deposit. Earth Science—Journal of China University of Geosciences, 39(3): 325-340 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.031
      Stipp, M., Stünitz, H., Heilbronner, R., et al., 2002. The Eastern Tonale Fault Zone: A "Natural Laboratory" for Crystal Plastic Deformation of Quartz over a Temperature Range from 250 to 700 ℃. Journal of Structural Geology, 24(12): 1861-1884. doi: 10.1016/S0191-8141(02)00035-4
      Stipp, M., Tullis, J., 2003. The Recrystallized Grain Size Piezometer for Quartz. Geophysical Research Letters, 30(21): 2088. doi: 10.1029/2003GL018444
      Stipp, M., Tullis, J., Scherwath, M., et al., 2010. A New Perspective on Paleo-Piezometry: Dynamically Recrystallized Grain Size Distributions in Dicate Mechanism Changes. Geology, 38(8): 759-762. doi: 10.1130/G31162.1
      Stöckhert, B., Brix, M.R., Kleinschrodt, R., et al., 1999. Thermochronometry and Microstructures of Quartz—A Comparison with Experimental Flow Laws and Predictions on the Temperature of the Brittle-Plastic-Transition. Journal of Structural Geology, 21(3): 351-369. doi: 10.1016/S0191-8141(98)00114-X
      Sun, X.M., Liu, Y.J., Sun, Q.C., et al., 2008. 40Ar/39Ar Geochronology Evidence of Strike-Slip Movement in Dunhua-Mishan Fault Zone. Journal of Jilin University (Earth Science Edition), 38(6): 965-972 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/cckjdxxb200806009
      Takahashi, M., Nagahama, H., Masuda, T., et al., 1998. Fractal Analysis of Experimentally, Dynamically Recrystallized Quartz Grains and Its Possible Application as a Strain Rate Meter. Journal of Structural Geology, 20(2-3): 269-275. doi: 10.1016/S0191-8141(97)00072-2
      Takeshita, T., 1996. Estimate of Physical Conditions for Deformation C-Axis Transitions in Naturally Deformed Quartzite. The Journal of the Geological Society of Japan, 102(3): 211-222. doi: 10.5575/geosoc.102.211
      Tikoff, B., Fossen, H., 1995. The Limitations of Three-Dimensional Kinematic Vorticity Analysis. Journal of Structural Geology, 17(12): 1771-1784. doi: 10.1016/0191-8141(95)00069-P
      Twiss, R.J., 1977. Theory and Applicability of a Recrystallized Grain Size Paleopiezometer. Pure and Applied Geophysics, 115(1-2): 227-244. doi: 10.1007/BF01637105
      Twiss, R.J., 1980. Static Theory of Size Variation with Stress for Subgrains and Dynamically Recrystallized Grains//Magnitude of Deviatoric Stresses in the Earth's Crust and Upper Mantle: Proceedings of Conference IX: Convened under Auspices of National Earthquake Hazards Reduction Program. Menlo Park, CA: US Geological Survey, 80(625): 665-683.
      Wan, T.F., Zhu, H., 1996. The Maximum Sinistral Strike-Slip and Its Forming Age of Tancheng-Lujiang Fault Zone. Geological Journal of China Universities, 2(1): 14-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX601.001.htm
      Wan, T.F., Zhu, H., Zhao, L., et al., 1996. Formation and Evolution of the Tancheng-Lujiang Fault Zone: A Review. Geoscience, 10(2): 159-168 (in Chinese with English abstract).
      Wang, X.S., Zheng, Y.D., Yang, C.H., et al., 2001. Determination of the Deformation Temperature and Strain Rate by the Fractal Shape of Dynamically Recrystallized Quartz Grains. Acta Petrologica et Mineralogica, 20(1): 36-41 (in Chinese with English abstract). http://www.researchgate.net/publication/285907317_Determination_of_the_deformation_temperature_and_strain_rate_by_the_fractal_shape_of_dynamically_recrystallized_quartz_grains
      Wang, Y.B., Liang, M.H., Huo, Q.Z., et al., 2004. The Study of the Limit Deformation Measurement with Deformation Feldspar in Granite Areas. Northwestern Geology, 37(1): 19-24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI200402004.htm
      Wallis, S.R., 1992. Vorticity Analysis in Metachert from the Sambagawa Belt, SW Japan. Journal of Structural Geology, 14(3): 271-280. doi: 10.1016/0191-8141(92)-8141(92)90085-B
      Wallis, S.R., 1995. Vorticity Analysis and Recognition of Ductile Extension in the Sanbagawa Belt, SW Japan. Journal of Structural Geology, 17(8): 1077-1093. doi: 10.1016/0191-8141(95)00005-x
      Wernicke, B., 1981. Low-Angle Normal Fault in the Basin and Range Province: Nappe Tectonics in an Extending Orogen. Nature, 291: 645-648. doi: 10.1038/291645a0
      Wu, X.Q., Liu, D.L., Li, Z.S., et al., 2006. A New Fractal Method for the Determination of Deformation Temperatures and Strain Rates—A Case Study of the Fuchashan Tectonite in the Tanlu Fault. Geology in China, 33(1): 153-159 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geology-in-china_thesis/0201252108369.html
      Xia, H.R., Liu, J.L., 2011. The Crystallographic Preferred Orientation of Quartz and Its Applications. Geological Bulletin of China, 30(1): 58-70 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201101007.htm
      Xu, H.J., Jin, S.Y., Zheng, B.R., 2007. New Technique of Petrofabric: Electron Backscatter Diffraction (EBSD). Geoscience, 21(2): 213-225 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ200702006.htm
      Xu, J.W., Ma, G.F., 1992. Review of Ten Years (1981-1991) of Research on the Tancheng-Lujiang Fault Zone. Geological Review, 38(4): 316-324 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199204003.htm
      Xu, Z.Q., Wang, Q., Liang, F.H., et al., 2009. Electron Backscatter Diffraction (EBSD) Technique and Its Application to Study of Continental Dynamic. Acta Petrologica Sinica, 25(7): 1721-1736 (in Chinese with English abstract). http://www.oalib.com/paper/1472350
      Yang, B.J., Zhang, M.S., Wang, P.J., 2003. Geological and Geophysical Interpretations of Chinese Oil-Gas Fields (Volume 1). Science Press, Beijing (in Chinese).
      Yang, T.N., Xu, H.S., 2008. Mechanisms of Dynamic Recrystallization: Recognition from Natural Tectonites. Geological Bullet in China, 27(9): 1459-1467 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200809010.htm
      Yang, X.Y., 2005. On the Studies of Ductile Shear Zone: Their Geological Significance. Advances in Earth Science, 20(7): 765-771 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200507010.htm
      Zhang, B., Zhang, J.J., Guo, L., et al., 2005. Analysis of Structural Features and Deformation of the Mylonite Zone in the Detachment Fault System of the Yalaxiangbo Metamorphic Complex Core, Northern Himalayan Dome Belt. Progress in Natural Science, 15(3): 692-699 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=20502436
      Zhang, B., Zhang, J.J., Guo, L., 2006. Fractal Analysis of Dynamically Recrystallized Quartz Grains and Estmation of Mainly Rheological Parmeters of the Ranba Ductile Shear Zone, Northern Himalayan Dome Belt. Chinese Jounal of Geology, 41(1): 158-169 (in Chinese with English abstract). http://www.researchgate.net/publication/289223585_Fractal_analysis_of_dynamically_recrystallized_quartz_grains_and_estimation_of_mainly_rheological_parameters_of_the_Ranba_ductile_shear_zone_northern_Himalayan_dome_belt
      Zhang, B.L., Liu, R.X., Xiang, H.F., et al., 2008. Features of Mylonite at Central Southern Section of the Red River Fault Zone and Estimation of Its Primary Rheological Parameters. Seismology and Geology, 30(2): 473-483 (in Chinese with English abstract). http://www.researchgate.net/publication/289223493_Features_of_mylonite_at_central_southern_section_of_the_Red_River_Fault_zone_and_estimation_of_its_primary_rheological_parameters
      Zheng, Y.D., Chang, Z.Z., 1985. Finite Strain Measurement and Ductile Shear Zones. Geological Publishing House, Beijing (in Chinese).
      Zheng, Y.D., Wang, T., 2005. Kinematics and Dynamics of the Mesozoic Orogeny and Late-Orogenic Extensional Collapse in the Sino-Mongolian Border Areas. Science in China(Series D), 48(7): 849-862. doi: 10.1360/03yd0552
      Zhu, G., Liu, G.S., Dunlap, W.J., et al., 2004. 40Ar/39Ar Geochronological Constraints on Syn-Orogenic Strike-Slip Movement of Tan-Lu Fault Zone. Chinese Science Bulletin, 49(5): 499-508.
      Zhu, G., Xu, Y.D., Liu, G.S., et al., 2006. Structural and Deformational Characteristics of Strike-Slippings along the Middle-Southern Sector of the Tan-Lu Faut Zone. Chinese Journal of Geology, 41(2): 226-241, 255 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dzkx200602006
      陈丕基, 1988. 郯庐断裂巨大平移的时代与格局. 科学通报, 33(4): 289-293. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198804013.htm
      程银行, 滕学建, 李艳锋, 等, 2014. 东乌旗罕乌拉韧性剪切带的构造属性及其年代约束. 地球科学——中国地质大学学报, 39 (4): 375-386. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201404001.htm
      窦立荣, 宋建国, 王瑜, 1996. 郯庐断裂带北段形成的年代学及其意义. 地质评论, 42(6): 508-512. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199606003.htm
      韩国卿, 刘永江, 温泉波, 等, 2009. 嫩江-八里罕断裂带岭下韧性剪切带变形特征. 吉林大学学报(地球科学版), 39(3): 397-405. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200903007.htm
      胡玲, 1998. 显微构造地质学概论. 北京: 地质出版社.
      黄建军, 1994. 糜棱岩研究的若干理论与应用初评. 化工地质, 16(2): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC402.007.htm
      李德伦, 王恩林, 2001. 构造地质学. 长春: 吉林大学出版社.
      李振生, 田晓莉, 张文俊, 等, 2013. 安徽桐城挂车河镇地区东西向韧性剪切带分形特征及其估算应变速率适用性分析. 科技导报, 31(20): 15-19. doi: 10.3981/j.issn.1000-7857.2013.20.001
      梁琛岳, 刘永江, 李伟, 等, 2011. 黑龙江省嫩江地区科洛杂岩伸展构造特征. 地质通报, 30(2-3): 291-299.
      刘俊来, 曹淑云, 邹运鑫, 等, 2008. 岩石电子背散射衍射(EBSD) 组构分析及应用. 地质通报, 27 (10) : 1638-1645. doi: 10.3969/j.issn.1671-2552.2008.10.005
      刘瑞珣, 1988. 显微构造地质学. 北京: 北京大学出版社.
      孟婧瑶, 刘永江, 梁琛岳, 等, 2013. 佳-伊断裂带韧性变形特征. 世界地质, 32(4): 800-807. doi: 10.3969/j.issn.1004-5589.2013.04.018
      石文杰, 魏俊浩, 谭俊, 等, 2014. 郯庐断裂带晚白垩世金成矿作用: 来自龙泉站金矿床黄铁矿Rb-Sr年代学证据. 地球科学——中国地质大学学报, 39 (3): 325-340. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201403009.htm
      孙晓猛, 刘永江, 孙庆春, 等, 2008. 敦密断裂带走滑运动的40Ar/39Ar年代学证据. 吉林大学学报(地球科学版), 38(6): 965-972. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200806009.htm
      万天丰, 朱鸿, 1996. 郯庐断裂带的最大左旋走滑断距及其形成时期. 高校地质学报, 2(1): 14-27.
      万天丰, 朱鸿, 赵磊, 等, 1996. 郯庐断裂带的形成与演化: 综述. 现代地质, 10(2): 159-168. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ602.002.htm
      王新社, 郑亚东, 杨崇辉, 等, 2001. 用动态重结晶石英颗粒的分形确定变形温度及应变速率. 岩石矿物学杂志, 20(1): 36-41. doi: 10.3969/j.issn.1000-6524.2001.01.005
      王云斌, 梁明宏, 霍勤知, 等, 2004. 利用变形花岗岩体中的长石矿物进行有限应变测量初探. 西北地质, 37(1) : 19-24. doi: 10.3969/j.issn.1009-6248.2004.01.004
      吴小奇, 刘德良, 李振生, 等, 2006. 确定变形温度和应变速率分形法的探讨—以郯庐断裂浮槎山构造岩为例. 中国地质, 33(1): 153-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200601016.htm
      夏浩然, 刘俊来, 2011. 石英结晶学优选与应用. 地质通报, 30(1): 58-70. doi: 10.3969/j.issn.1671-2552.2011.01.006
      徐海军, 金淑燕, 郑伯让, 2007. 岩石组构学研究的最新技术—电子背散射衍射(EBSD). 现代地质, 21(2): 213- 225. doi: 10.3969/j.issn.1000-8527.2007.02.005
      徐嘉炜, 马国锋, 1992. 郯庐断裂带研究的十年回顾. 地质评论, 38(4): 316-324. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199204003.htm
      许志琴, 王勤, 梁凤华, 等, 2009. 电子背散射衍射(EBSD)技术在大陆动力学研究中的应用. 岩石学报, 25(7): 1721-1736. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200907016.htm
      杨宝俊, 张梅生, 王璞君, 2003. 中国油气区地质—地球物理解析(上卷). 北京: 科学出版社.
      杨天南, 徐宏顺, 2008. 通过构造岩鉴别岩石动态重结晶的机制. 地质通报, 27(9): 1459-1467. doi: 10.3969/j.issn.1671-2552.2008.09.008
      杨晓勇, 2005. 论韧性剪切带研究及其地质意义. 地球科学进展, 20(7): 765-771. doi: 10.3321/j.issn:1001-8166.2005.07.010
      张秉良, 刘瑞珣, 向宏发, 等, 2008. 红河断裂带中南段糜棱岩分形特征及主要流变参数的估算. 地震地质, 30(2): 473-483. doi: 10.3969/j.issn.0253-4967.2008.02.012
      张波, 张进江, 郭磊, 2006. 北喜马拉雅穹隆带然巴韧性剪切带石英动态重结晶颗粒的分维几何分析与主要流变参数的估算. 地质科学, 41(1): 158-169. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200601014.htm
      张波, 张进江, 郭磊, 等, 2005. 北喜马拉雅穹隆带雅拉香波变质核杂岩拆离断层系中糜棱岩带构造特征及变形分析. 自然科学进展, 15(3): 692-699. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200506010.htm
      郑亚东, 常志忠, 1985. 岩石有限应变测量及韧性剪切带. 北京: 地质出版社.
      郑亚东, 王涛, 2005. 中蒙边界区中生代推覆构造与伸展垮塌作用的运动学和动力学分析. 中国科学(D辑), 35(4): 291-303. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200504000.htm
      朱光, 刘国生, Dunlap, W.J., 等, 2004. 郯庐断裂带同造山走滑运动的40Ar/39Ar年代学证据. 科学通报, 49(2): 190-198. doi: 10.3321/j.issn:0023-074X.2004.02.015
      朱光, 徐佑德, 刘国生, 等, 2006. 郯庐断裂带中-南段走滑构造特征与变形规律. 地质科学, 41(2): 226-241, 255. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200602006.htm
    • 加载中
    图(8) / 表(7)
    计量
    • 文章访问数:  3925
    • HTML全文浏览量:  716
    • PDF下载量:  464
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-05-01
    • 刊出日期:  2015-01-15

    目录

      /

      返回文章
      返回