Alteration-Mineralization and Element Migration Features of Nihe Iron Deposit in Lujiang, Anhui Province
-
摘要: 传统方法不能明确揭示泥河铁矿床多阶段热液叠加蚀变过程中元素迁移的继承性特征.运用等浓度图法(the isocon diagram),根据该区晚阶段蚀变都是叠加在稍早阶段蚀变之上的实际情况,采用早期蚀变岩石为原岩与稍晚期蚀变岩石的不活动元素拟合最佳等浓度方程,定量揭示主量元素在热液蚀变过程的迁移规律.研究表明,泥河铁矿床阳离子的沉淀顺序大致为:Na→Ca、Mg、Fe、P→Ca、Fe→Al、Si.从早到晚,元素的带入和带出是连续互补的,蚀变矿化作用是一个连续的过程.钠长石的大量出现是Na质沉淀的标志,代表铁矿化的开始;膏辉岩化是Ca、Mg、Fe质沉淀的表现形式,为磁铁矿体的近矿和容矿蚀变;次生石英岩化、高岭石化是早期迁移出的Al、Si质沉淀的结果,是磁铁矿化远程指示性蚀变.Abstract: The inheritance of elements migration can't be definitely revealed by traditional methods from Nihe iron ore deposit, which has a multi-stage hydrothermal superimposed alteration process. The quantitative features of the main and trace element migration in the process of hydrothermal alteration is presented in the paper by exploring its prospecting significance by adopting the early alteration rock for original rock and then fitting the best concentration equation between slightly late alteration rock with immobile elements by isocon diagram method. It is found that the cations precipitation sequence is roughly from Na to Ca, Mg, Fe, P to Ca, Fe and to Al, Si in Nihe iron deposit. As elements into and out of the system are continuous complementary for both early to late alterations, the alteration and mineralization are considered as a continuous process. The extensive albitization is a sign of Na qualitative precipitation, marking the beginning of iron ore mineralization. Anhydrite-diopside mineralization is the result of Ca, Mg and Fe qualitative precipitation which is the ore-closing and ore-hosting alteration. Secondary quartzite and kaolinization is the Al, Si qualitative precipitation migrated from early alteration, which is the long-distance indicative alteration of magnetite.
-
Key words:
- element migration /
- alteration mineralization zone /
- iron deposits /
- geochemistry
-
图 1 庐枞盆地地质矿产略图(据周涛发等,2010)
Fig. 1. Sketch map of geological and mineral resources in Lu-Zong volcanic basin
图 2 泥河铁矿Ⅰ纵勘探线剖面及蚀变分带示意
据车英丹等,2014修改.Ⅰ.下部浅色蚀变带;Ⅱ.深色蚀变带;Ⅲ.叠加蚀变带;Ⅲ1.黄铁矿化亚带;Ⅲ2.硬石膏矿化亚带;Ⅳ.上部浅色蚀变带;Ⅳ1.次生石英岩化亚带;Ⅳ2.高岭石-云母化亚带
Fig. 2. The Ⅰ longitudinal prospecting line section and alteration zoning map of Nihe iron deposit
图 3 泥河铁矿床典型蚀变-矿化手标本
a.新鲜辉石闪长玢岩;b.碱性长石岩化带:斜长石钠长石化蚀变岩石;c.深色蚀变带为矿化膏辉岩;d.深色蚀变带中等浸染状磁铁矿化;e.磁铁矿胶结早期形成的透辉石、磷灰石等矿物颗粒;f.膏榴岩;g.含浅色硬石膏-黄铁矿石;h.黄铁矿-硬石膏带,硬石膏与黄铁矿呈似条带状;i.次生石英岩.矿物名称缩写:Ab.钠长石;Anh.硬石膏;Ap.磷灰石;Bi.黑云母;Chl.绿泥石;Cp.黄铜矿;Di.透辉石;Ep.绿帘石;Grt.石榴子石;Hem.赤铁矿;Kln.高岭石;Mt.磁铁矿;Pl.斜长石;Po.磁黄铁矿;Py.黄铁矿;Q.石英
Fig. 3. Typical hand specimen of alteration and mineralization in Nihe iron deposit
图 4 泥河铁矿床典型蚀变-矿化显微镜下照片
a.新鲜辉石闪长玢岩中的斜长石,正交偏光;b.碱性长石岩化带:钠长石化净边结构,正交偏光;c.膏辉岩-磁铁矿化带:磁铁矿沿透辉石颗粒裂隙及边缘分布;d.膏辉岩化带:第2世代钠长石沿透辉石颗粒裂隙交代;e.膏辉岩-磁铁矿化带:膏辉岩弱绿泥石化、碳酸盐化水解,正交偏光;f.磁铁矿胶结早期形成的透辉石、磷灰石等矿物颗粒;g.磁铁矿化带:它形磁铁矿颗粒胶结稍早形成的自形透辉石颗粒;h.硬石膏-黄铁矿化带,硬石膏化、透辉石绿泥石化假象;i.叠加蚀变带:赤铁矿、黄铁矿交代溶蚀早期磁铁矿;j.黄铁矿-硬石膏带,黄铁矿矿颗粒分布于硬石膏颗粒间隙中,单偏光;k.次生石英岩化带,石英颗粒重结晶,正交偏光;l.高岭石化带,强高岭石化,正交偏光.矿物名称缩写同图 3
Fig. 4. Typical micrograph of alteration and mineralization in Nihe iron deposit
图 5 安徽庐江泥河铁矿床次火山岩中不同矿化蚀变带的等浓度图及其相应组分的亏损与富集柱状图
为了直观表现等浓度图,笔者将原始数值进行了0.5、10、100倍的缩放
Fig. 5. Isocon diagram of the different alteration styles identified in sub-volcanic rock in Nihe iron deposit and histograms showing gains and losses of selected elements during hydrothermal alteration as calculated from isocon diagram method
表 1 安徽庐江泥河铁矿床蚀变-矿化分带特征
Table 1. Alteration and mineralization zoning from Nihe iron deposit in Lujiang, Anhui
蚀变分带 矿化分带 蚀变亚带 矿物共生组合 产出部位 标高范围* 上部浅色蚀变带 硅化-泥化带 高岭石-云母化带 高岭石-云母-石英(石膏)-碳酸盐 闪长玢岩上部砖桥旋回火山岩中 -198~-578 m 次生石英岩化带 胶状赤铁矿-浅色硬石膏-石英 -300 m以下 叠加蚀变带 硬石膏-黄铁矿化带 硬石膏矿化带 石英-黄铁矿-浅色硬石膏 闪长玢岩上部砖桥旋回火山岩中 -700 m以下 黄铁矿化带 浅色硬石膏-(菱铁矿)-赤铁矿-黄铁矿,局部发育磁黄铁矿、黄铜矿等 闪长玢岩体与砖桥旋回火山岩外接触带 -532~-971 m 深色蚀变带 磁铁矿化带 硬石膏-辉石(石榴子石)-磁铁矿带 紫色硬石膏-透辉石(石榴子石)-磷灰石-磁铁矿 闪长玢岩体与砖桥旋回火山岩内接触带 -579 m以下 下部浅色蚀变带 碱性长石岩化带 辉石-钾长石-钠长石-磷灰石-紫色硬石膏 矿体下部闪长玢岩中 -900 m以下 注:*标高范围数值参考赵文广等(2011). 表 2 安徽庐江泥河铁矿床各蚀变矿化带主量元素分析值(%)
Table 2. The main elements analysis value of each altered and mineralization belt from Nihe iron deposit in Lujiang, Anhui Province
蚀变带 新鲜岩石 下部浅色蚀变带 深色蚀变带 深色蚀变带 叠加蚀变带 砖桥组火山岩 岩性 辉石粗安玢岩 碱性长石化 膏辉岩化 浸染状磁铁矿体膏辉岩 硬石膏-黄铁矿化 粗安岩、含砾凝灰粉砂岩 编号 ZK0101-10 NH-129 NH-132 XT-2 XT-3 XT-1 XT-5 XT-4 XT-6 XT-7 XT-8 XT-14 XT-16 XT-17 XT-26 ZQ-4 ZK0101-5 SiO2 55.90 58.00 55.90 46.70 45.30 40.30 45.30 46.40 38.40 30.20 23.20 24.30 31.00 52.60 60.80 56.00 55.40 Al2O3 16.05 17.45 16.85 12.30 13.05 13.20 9.41 5.33 10.05 7.32 0.81 9.62 7.19 16.80 12.45 16.50 17.70 Fe2O3 6.24 5.71 9.14 4.97 4.50 4.93 5.66 8.63 18.70 28.8 40.50 20.1 23.60 7.71 5.01 8.15 6.14 CaO 2.67 3.03 1.20 12.90 15.45 11.80 18.00 17.85 14.55 12.10 13.80 11.50 13.15 5.11 5.10 2.45 4.76 MgO 1.95 0.78 0.90 4.39 4.95 3.96 6.81 8.03 5.17 3.57 6.27 4.55 3.43 3.07 1.56 2.84 1.48 Na2O 2.85 4.98 2.37 5.45 4.82 5.14 3.60 3.19 2.41 2.84 0.90 1.03 1.98 3.84 1.55 4.39 4.40 K2O 5.42 2.86 6.94 1.17 0.74 1.09 0.72 0.33 1.58 0.81 0.22 2.82 0.73 5.01 3.93 4.39 5.22 Cr2O3 - - - 0.01 0.02 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 <0.01 0.01 <0.01 <0.01 TiO2 0.78 0.81 0.79 0.67 0.82 0.86 0.83 1.09 0.49 0.32 0.30 0.15 0.28 0.82 0.62 0.80 0.77 MnO 0.13 0.08 0.06 0.14 0.13 0.23 0.20 0.19 0.24 0.22 0.31 0.50 0.21 0.12 0.10 0.33 0.23 P2O5 0.39 0.49 0.40 0.05 0.07 0.11 0.12 0.07 0.07 2.51 0.30 0.13 1.31 0.46 0.16 0.44 0.44 SrO 0.06 0.05 0.05 0.10 0.13 0.08 0.07 0.05 0.07 0.04 0.05 0.03 0.05 0.07 0.04 0.04 0.15 BaO 0.06 0.04 0.11 0.02 0.01 0.02 0.03 0.01 0.03 0.02 <0.01 0.01 0.03 0.04 0.07 0.10 0.07 LOI - - - 3.37 3.80 9.12 3.26 3.02 4.26 5.09 3.21 12.70 7.74 4.78 7.94 - - Total 92.50 94.28 94.71 92.24 93.79 90.85 94.03 94.21 96.03 93.85 89.88 87.45 90.71 100.43 99.34 钻孔 ZK0101 ZK0520 ZK0502 ZK0506 ZK0114 ZK0201 ZK0201 ZK0205 ZK0201 ZK0201 ZK0701 ZK0201 ZK0201 ZK0509 ZK0201 地表 ZK0101 数据来源 本次研究 本次研究 本次研究 本次研究 本次研究 本次研究 蚀变带 上部浅色蚀变带 上部浅色蚀变带 次生石英岩化带 高岭石-云母化带 岩性 黄铁矿-硬石膏化粗安岩 含硬石膏矿体粗安岩 含高岭石化次生石英岩 含硬石膏高岭石化粗安岩 编号 ZK2201-821 ZK2201-868 ZK1001-836 ZK1001-593 XT-30 XT-29 ZK1001-740 XT-20 XT-21 XT-23 XT-24 XT-19 ZK2201-657 ZK1001-544 SiO2 49.04 61.25 47.03 42.01 0.68 0.21 0.08 82.70 91.70 96.80 96.30 26.70 48.99 52.00 Al2O3 14.05 12.81 2.88 13.73 0.53 0.23 0.05 2.49 4.24 0.33 1.13 19.50 16.53 21.50 Fe2O3 3.85 1.18 3.05 6.44 12.10 0.61 1.10 0.82 0.69 0.51 0.58 3.35 10.96 7.45 CaO 7.39 6.95 18.07 10.68 32.70 40.50 39.06 2.16 0.11 0.05 0.05 14.10 1.96 0.91 MgO 0.35 0.08 0.09 0.30 0.04 <0.01 0.07 0.05 0.08 0.02 0.03 0.51 1.30 0.98 Na2O 0.15 0.08 0.05 0.07 0.11 0.09 0.02 0.57 0.37 0.26 0.26 0.89 1.50 0.15 K2O 5.96 0.44 0.51 2.01 0.06 0.05 0.01 0.09 1.20 0.04 0.18 5.43 5.18 9.06 Cr2O3 <0.01 <0.01 <0.01 <0.01 0.01 0.01 0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 TiO2 0.60 0.35 0.07 0.59 0.02 0.02 <0.01 0.70 1.05 0.90 1.18 0.39 0.80 1.18 MnO 0.01 <0.01 0.01 0.01 <0.01 <0.01 0.02 <0.01 0.01 0.01 0.01 0.04 0.51 0.08 P2O5 0.22 0.12 0.07 0.28 0.03 0.02 0.03 0.05 0.04 <0.01 <0.01 0.34 0.38 0.57 SrO 0.15 0.18 0.21 0.12 0.25 0.27 0.51 0.05 0.06 <0.01 0.01 0.20 0.03 0.06 BaO 0.16 0.25 0.59 0.01 0.05 0.06 0.65 0.15 <0.01 0.05 0.27 0.36 0.08 0.04 LOI 10.20 7.84 3.26 11.25 13.35 0.83 1.15 2.34 1.33 0.50 0.43 10.90 10.10 5.77 Total 92.12 91.53 75.88 87.49 59.93 42.90 42.75 92.17 100.88 99.48 100.43 82.71 98.32 99.74 钻孔 ZK2201 ZK2201 ZK1001 ZK1001 ZK1001 ZK1001 ZK1001 ZK1001 ZK0201 ZK0201 ZK0509 ZK0201 ZK2201 ZK1001 数据来源 马良,2011 本次研究 马良,2011 本次研究 本次研究 马良,2011 注:表中Fe2O3为全铁含量. 表 3 安徽庐江泥河铁矿床各蚀变矿化带主量元素质量迁移(ΔCx/CxO)计算结果
Table 3. Calculated result of elements migration in each altered and mineralization belt from Nihe iron deposit
元素 碱性长石化均值 膏辉岩化均值 磁铁矿化均值 黄铁矿化均值 黄铁矿-硬石膏化带均值 硬石膏矿体均值 次生石英岩均值 高岭石化均值 SiO2 -0.01 0.07 -0.25 -0.07 -0.13 -0.99 0.46 -0.23 Al2O3 -0.03 -0.41 -0.08 0.80 -0.30 -0.97 -0.88 0.29 Fe2O3 -0.13 0.53 3.62 1.85 -0.44 0.40 -0.91 0.18 CaO 6.38 0.38 -0.15 -0.34 1.62 2.84 -0.87 0.44 MgO 3.64 0.73 -0.24 -0.41 -0.90 -0.78 -0.98 -0.51 Na2O 0.92 -0.32 -0.32 -0.20 -0.97 -0.07 -0.90 -0.74 K2O -0.75 -0.46 0.86 5.45 -0.51 -0.98 -0.92 0.52 TiO2 0.25 0.26 -0.57 -0.48 -0.45 -0.95 0.20 0.13 MnO 1.35 0.21 0.48 0.68 -0.95 -0.08 -0.96 -0.00 P2O5 -0.77 0.28 10.36 6.91 -0.50 -0.82 -0.93 0.29 SrO 1.46 -0.40 -0.00 -0.01 1.16 1.30 -0.61 0.32 BaO -0.70 0.24 0.41 0.58 2.09 0.11 0.34 1.04 LOI - -0.40 0.50 2.18 0.02 -0.31 -0.87 0.17 注:表中Fe2O3为全铁含量. -
Benavides, J., Kyser, T.K., Clark, A.H., et al., 2008. Exploration Guidelines for Copper-Rich Iron Oxide-Copper-Gold Deposits in the Mantoverde Area, Northern Chile: The Integration of Host-Rock Molar Element Ratios and Oxygen Isotope Compositions. Geochemistry-Exploration Environment Analysis, 8(3-4): 343-367. doi: 10.1144/1467-7873/07-165 Chang, Y.F., Liu, X.P., Wu, Y.C., 1991. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River. Geological Publishing House, Beijing, 71-76 (in Chinese). Crerar, D.A., Susak, N.J., Borcsik, M., et al., 1978. Solubility of the Buffer Assemblage Pyrite-Pyrrhotite-Magnetite in NaCl Solutions from 200 to 350 ℃. Geochimica et Cosmochimica Acta, 42(9): 1427-1437. doi: 10.1016/0016-7037(78)90048-0 Che, Y.D., 2014. A Study on the Characteristics of Leucocratic Alteration Zone of Nihe Iron Deposit, Lujiang, Anhui (Dissertation). Hefei University of Technology, Hefei (in Chinese with English abstract). Chou, I.M., Eugster, H.P., 1977. Solubility of Magnitie in Supercritical Chloride Solutions. Amer. Jour. Sci., 277: 1296-1314. doi: 10.2475/ajs.277.10.1296 Dong, S.W., Xiang, H.S., Gao, R., et al., 2010. Deep Structure and Ore Formation within Lujiang-Zongyang Volcanic Ore Concentrated Area in Middle to Lower Reaches of Yangtze River. Acta Petrologica Sinica, 26(9): 2529-2542 (in Chinese with English abstract). http://www.researchgate.net/publication/279569852_Deep_structure_and_ore_formation_within_Lujiang-Zongyang_volcanic_ore_concentrated_area_in_Middle_to_Lower_Reaches_of_Yangtze_River Dong, S.W., Zhang, Y.Q., Long, C.X., et al., 2007. Jurassic Tectonic Revolution in China and New Interpretation of the Yanshan Movement. Acta Geologica Sinica, 81(11): 1449-1461 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=DZXW200802013 Eilu, P., Mikucki, E.J., Groves, D.L., 1997. Wallrock Alteration and Primary Geochemical Dispersion in Lode-Gold Exploration: Notes from Short Course. Fourth Biennial Meeting of the Society for Geology Applied to Mineral Deposits, Turku, 11(13): 65. Eugster, H.P., Chou, I.M., 1979. A Model for the Deposition of Cornwall Type Magnetite Deposit. Economic Geology, 74(4): 763-774. doi: 10.2113/gsecongeo.74.4.763 Fan, Y., Liu, Y.N., Zhou, T.F., et al., 2014. Geochronology of the Nihe Deposit and in the Lu-Zong Basin and Its Metallogenic Significances. Acta Petrologica Sinica, 30(5): 1369-1381 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252017343.html Fan, Y., Zhou, T.F., Hao, L., et al., 2012. Ore-Forming Fluid Characteristic of Nihe Iron Deposit in Lu-Zong Basin, Anhui Province and Its Significance to Ore Genesis. Acta Petrologica Sinica, 28(10): 3113-3124 (in Chinese with English abstract). http://www.oalib.com/paper/1474489 Fan, Y., Zhou, T.F., Yuan, F., et al., 2008. LA-ICP-MS Zircon U-Pb Ages of the A-Type Granites in the Lu-Zong (Lujiang-Zongyang) Area and Their Geological Significances. Acta Petrologica Sinica, 24(8): 1715-1724 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200808005.htm Fan, Y., Zhou, T.F., Yuan, F., et al., 2010. High Sulfidation Epithermal Hydrothemal System in Lu-Zong Volcanic Basin: Evidence from Geological Characteristics and Sulfur Isotope Data of Fanshan Alunite Deposit. Acta Petrologica Sinica, 26(12): 3657-3666 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201012018.htm Gao, R., Lu, Z.W., Liu, J.K., et al., 2010. A Result of Interpreting from Deep Seismic Reflection Profile: Revealing Fine Structure of the Crust and Tracing Deep Process of the Mineralization in Luzong Deposit Area. Acta Petrologica Sinica, 26(9): 2543-2552 (in Chinese with English abstract). http://www.oalib.com/paper/1473801 Gifkins, C., Herrmann, W., Large, R., 2005. Altered Volcanic Rocks—A Guide to Description and Interpretation. Centre Ore Depos. Res., Univ. Tasmania, Hobart. Grant, J.A., 1986. The Isocon Diagram; A Simple Solution to Gresens' Equation for Metasomatic Alteration. Economic Geology, 81(8): 1976-1982. doi: 10.2113/gsecongeo.81.8.1976 Grant, J.A., 2005. Isocon Analysis: A Brief Review of the Method and Applications. Physics and Chemistry of the Earth, 30(17-18): 997-1004. doi: 10.1016/j.pce.2004.11.003 Gresens, R.L., 1967. Composition-Volume Relationships of Metasomatism. Chemical Geology, 2: 47-65. doi: 10.1016/0009-2541(67)90004-6 Hao, L., 2011. Study on the Ore-Forming Fluid of Nihe Iron Deposit in Lujiang County, Anhui Province (Dissertation). Hefei Uinversity of Technology, Hefei (in Chinese with English abstract). Hezarkhani, A., 2010. Geochemical Element Mobility during Alteration/Mineralization in the Sungun Porphyry Copper Deposit, Azerbaijan-Iran. International Geology Review, 53(8): 980-1002. doi: 10.1080/00206811003683192?tab=permissions&scroll=top Holser, W.T., Schineer, L.J., 1961. Hydrothermal Magnetite. Bull. Geol. Soe. Am., 72: 369-386. doi: 10.1130/0016-7606(1961)72[369:HM]2.0.CO;2 Hou, T., 2014. Super-Efficient Enrichment Mechanism of Iron in the Intermediate-Basic Magmatic System—Case Studies on Typical Iron Deposits (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). Hu, S.X., Ye, Y., Fang, C.Q., 2004. Petrology of Metasomatically Altered Rocks and Its Significance in Prospecting. Geological Publishing House, Beijing (in Chinese). Huang, Q.T., 1989. Iron Ore Deposit of Luohe in Lujiang, Anhui Province. Geological Publishing House, Beijing (in Chinese). Hynes, A., 1980. Carbonatization and Mobility of Ti, Y, and Zr in a Scot Formation Metabasalts, SE Quebec. Contributions to Mineralogy and Petrology, 75(1): 79-87. doi: 10.1007/BF00371891 Institute of Geochemistry, Chinese Academy of Sciences, 1987. Metallogenic Mechanism for the Porphyrite Iron Deposits of Ningwu. Science Press, Beijing (in Chinese). Jiang, N., Sun, S., Chu, X., et al., 2003. Mobilization and Enrichment of High-Field Strength Elements during Late- and Post-Magmatic Processes in the Shuiquangou Syenitic Complex, Northern China. Chemical Geology, 200(1-2): 117-128. doi: 10.1016/S0009-2541(03)00162-1 Jiang, Y.H., 2010. Metallogenic Regularity and Prospecting of Fe-Cu Deposit in Lujiang-Zongyang Area of Anhui. Global Geology, 29(3): 372-382 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJDZ201003004.htm Karakaya, M.C., Karakaya, N., Kuoeli, S., et al., 2012. Mineralogy and Geochemical Behavior of Trace Elements of Hydrothermal Alteration Types in the Volcanogenic Massive Sulfide Deposits, NE Turkey. Ore Geology Reviews, 48: 197-224. doi: 10.1016/j.oregeorev.2012.03.007 Kuang, H.Y., 2012. Study on Deep Prospecting by Electromagnetic Prospecting and Gravity and Magnetic 3D Inversion of Nihe Iron Deposit, Anhui Province (Dissertation). East China Institute of Technology, Nanchang (in Chinese with English abstract). Küpeli, S., 2010. Trace and Rare-Earth Element Behaviors during Alteration and Mineralization in the Attepe Iron Deposits (Feke-Adana, Southern Turkey). Journal of Geochemical Exploration, 105(3): 51-74. doi: 10.1016/j.gexplo.2010.04.001 Large, R.R., Gemmell, J.B., Paulick H., 2001. The Alteration Box Plot—A Simple Approach to Understanding the Relationship between Alteration Mineralogy and Lithogeochemistry Associated with Volcanic-Hosted Massive Sulphide Deposits. Economic Geology, 96: 957-971. http://www.researchgate.net/publication/276949542_The_Alteration_Box_Plot_A_Simple_Approach_to_Understanding_the_Relationship_between_Alteration_Mineralogy_and_Lithogeochemistry_Associated_with_Volcanic-Hosted_Massive_Sulfide_Deposits Liang, X.J., 2000. Experimental Studies on the Mechanism of the Formation of Skarns and Skarn Ore Deposits in China. Academy Press, Beijing (in Chinese). Liu, W.H., Zhang, J., Sun, T., et al., 2014. Application of Apatite U-Pb and Fission-Track Double Dating to Determine the Preservation Potential of Magnetite-Apatite Deposits in the Luzong and Ningwu Volcanic Basins, Eastern China. Journal of Geochemical Exploration, 138: 22-32. doi: 10.1016/j.gexplo.2013.12.006 Liu, Y.J., Cao, L.M., 1987. Introduction to Element Geochemistry. Geological Publishing House, Beijing 113-137 (in Chinese). Lü, Q.T., Han, L.G., Yan, J.Y., et al., 2010. Seismic Imaging of Volcanic Hydrothermal Iron-Sulfur Deposits and Its Hosting Structure in Luzong Ore District. Acta Petrologica Sinica, 26(9): 2598-2612 (in Chinese with English abstract). http://www.researchgate.net/publication/281378774_Seismic_imaging_of_volcanic_hydrothermal_iron-sulfur_deposits_and_its_hosting_structure_in_Luzong_ore_district Lü, Q.T., Hou, Z.Q., Yang, Z.S., et al., 2004. Upplating Process and Dynamics Evolution Mode in the Middle and Lower Reaches of Yangtze River: Constrain of Physical Geography Information. Science in China (Series D), 34(9): 783-794 (in Chinese). Lü, Q.T., Liu. Z.D., Tang. J.T., et al., 2014. Upper Crustal Structure and Deformation of Lu-Zong Ore District: Constraints from Integrated Geophysical Data. Acta Geologica Sinica, 88(4): 447-465 (in Chinese with English abstract). Lü, Q.T., Yan, J.Y., Shi, D.N., et al., 2013. Reflection Seismic Imaging of the Lujiang-Zongyang Volcanic Basin, Yangtze Metallogenic Belt: An Insight into the Crustal Structure and Geodynamics of an Ore District. Tectonophysics, 606: 60-77. doi: 10.1016/j.tecto.2013.04.006 Ma, L., 2011. Study on the Characteristics of Wall-Rock Alteration of the Nihe Iron Deposit in Lujiang, Anhui Province, China (Dissertation). Hefei University of Technology, Hefei (in Chinese with English abstract). Ma, L.C., 2009. The Deep Tectonics and Metallogenesis in Lu-Zong Volcanic Basin, Anhui, China (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). Martin, A.F., Prwinskv, A.J., 1969. Experimental Data Bearing on the Movement of Iron in an Aqueous Vapor. Economic Geology, 64(7): 798-803. doi: 10.2113/gsecongeo.64.7.798 Mao, J.W., Duan, C., Liu, J.L., et al., 2012. Metallogeny and Corresponding Mineral Deposit Model of the Cretaceous Terrestrial Volcanic-Intrusive Rocks-Related Polymetallic Iron Deposits in Middle-Lower Yangtze River Valley. Acta Petrologica Sinica, 28(1): 1-14 (in Chinese with English abstract). http://www.oalib.com/paper/1474798 Mirvakili, A., Rahimpour, M.R., Jahanmiri, A., 2012. Experimental Study of Iron-Control Agents Selection for High Temperature Sour Gas and Oil Wells Acidizing Process. Chemical Engineering Research & Design, 90(11): 1823-1833. http://www.sciencedirect.com/science/article/pii/S026387621200127X Parsapoor, A., Khalili, M., Mackizadeh, M.A., 2009. The Behaviour of Trace and Rare Earth Elements (REE) during Hydrothermal Alteration in the Rangan Area (Central Iran). Journal of Asian Earth Sciences, 34(2): 123-134. doi: 10.1016/j.jseaes.2008.04.005 Pirajno, F., 2009. Hydrothermal Processes and Mineral Systems. Springer. Qian, B., 2011. Geological and Geochemical Characteristics of Nihe Iron Deposit in Lu-Zong, Anhui, China (Dissertation). Hefei University of Technology, Hefei (in Chinese with English abstract). Qin, Y.J., Zeng, J.N., Zeng, Y., et al., 2010. Zircon LA-ICP-MS U-Pb Dating of Ore-Bearing Pyroxene-Trachyandesite Porphyry and Its Geological Significance in Luohe-Nihe Iron Ore Field in Luzong Basin, Southern Anhui, China. Geological Bulletin of China, 29(6): 851-862 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201006008.htm Ren, Q.J., Liu, X.S., Xu, Z.W., et al., 1991. Mesozoic Volcano-Tectonic Depression and Its Mineralizing Process in Lujiang-Zongyang Area, Anhui Province. Geological Publishing House, Beijing (in Chinese with English abstract). Salvi, S., Williams-Jones, A.E., 1996. The Role of Hydrothermal Processes in Concentrating High-Field Strength Elements in the Strange Lake Peralkaline Complex, Northeastern Canada. Geochimica et Cosmochimica Acta, 60(11): 1917-1932. doi: 10.1016/0016-7037(96)00071-3 Shen, B.F., Lu, S.N., Yu, E.Z., et al., 1977. The Characteristics of Sodium Metasomatism in Magnetite Deposits of a Certain Region and Its Prospecting Significance. Scientia Geologica Sinica, (3): 263-274 (in Chinese with English abstract). http://www.researchgate.net/publication/284072804_The_characteristic_of_sodium_metasomatism_in_magnetite_deposits_of_a_certain_region_and_its_prospecting_significance Sillitoe, R.H., 1995. Exploration of Porphyry Copper Lithocaps. In: Mauk, J.L., St. George, J.D., eds., Proceedings PACRIM Congress. Australasina Institute of Mining and Metallurgy Publication Series, 95(9): 527-532. Tang, J.F., Lu, S.M., Li, J.S., et al., 2010. The Basement Structural Deformation, Evolution and Its Control Action on Deposit Distribution in Luzong Volcanic Basin and Its Adjacent Area in Anhui Province, China. Acta Petrologica Sinica, 26(9): 2587-2597 (in Chinese with English abstract). http://www.oalib.com/paper/1473923 Van, D.M., Weinberg, R.F., Tomkins, A.G., 2010. REE-Y, Ti, and P Remobilization in Magmatic Rocks by Hydrothermal Alteration during Cu-Au Deposit Formation. Economic Geology, 105(4): 763-776. doi: 10.2113/gsecongeo.105.4.763 Wang, C., 2012. Study on the Numerical Simulation of the Ore-Forming Fluid System of Nihe Iron Deposit in Lujiang, Anhui Province, China (Dissertation). Hefei University of Technology, Hefei (in Chinese with English abstract). Wang, C.Y., Li, X.F., Xiao, R., et al., 2012. Elements Mobilization of Mineralized Porphyry Rocks during Hydrothermal Alteration at Zhushahong Porphyry Copper Deposit, Dexing District, South China. Acta Petrologica Sinica, 28(12): 3869-3886 (in Chinese with English abstract). http://www.researchgate.net/publication/284503741_Elements_mobilization_of_mineralized_porphyry_rocks_during_hydrothermal_alteration_at_Zhushahong_porphyry_copper_deposit_Dexing_district_South_China Wang, Y.R., Fan, W.L., Yu, Y.M., 1981. Geochemical Mechanism of Alkali Metasomatism and the Formation of Iron Deposits. Geochimica, 10(1): 95-103 (in Chinese with English abstract). Winchester, J.A., Floyd, P.A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2 Wu, L.B., Chen, F., Liu, B.Q., et al., 2011. Geological Characteristics and Metallogenic Model of Luohe-Type Iron Deposit in Lujiang County, Anhui Province. Journal of Hefei University of Technology, 34(6): 899-904 (in Chinese with English abstract). doi: 10.3969/j.issn.1003-5060.2011.06.024 Wu, M.A., Wang, Q.S., Zheng, G.W., et al., 2011. Discovery of the Nihe Iron Deposit in Lujiang, Anhui, and Its Exploration Significance. Acta Geologica Sinica, 85(5): 802-809 (in Chinese with English abstract). http://www.researchgate.net/publication/284572572_Discovery_of_the_Nihe_iron_deposit_in_Lujiang_Anhui_and_its_exploration_significance Xia, Q.L., Cheng, Q.M., Lu, J.P., et al., 2011. Application of Portable XRF Technology to Identification of Mineralization and Alteration along Drill in the Nihe Iron Deposit, Anhui, East China. Earth Science—Journal of China University of Geosciences, 36(2): 336-340 (in Chinese with English abstract). doi: 10.3799/dqkx.2011.035 Xie, Z., Li, Q.Z., Chen, J.F., et al., 2007. The Geochemical Characteristics of the Early-Cretaceous Volcanics in Luzong Region and Their Source Significances. Geological Journal of China Universities, 13(2): 235-249 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200702007.htm Yuan. F., Zhou, T.F., Fan, Y., et al., 2008. Source, Evolution and Tectonic Setting of Mesozoic Volcanic Rocks in Luzong Basin, Anhui Province. Acta Petrologica Sinica, 24(8): 1691-1702 (in Chinese with English abstract). http://www.oalib.com/paper/1472907 Yuan, F., Zhou, T.F., Liu, J., et al., 2011. Petrogenesis of Volcanic and Intrusive Rocks of the Zhuanqiao Stage, Luzong Basin, Yangtze Metallogenic Belt, East China: Implications for Ore Deposition. International Geology Review, 53(5): 526-541. doi: 10.1080/00206814.2010.496246 Zeng, J.N., Qin, Y.J., Guo, K.Y., et al., 2010. Zircon U-Pb Dating of Ore-Bearing Magmatic Rocks and Its Constraint on the Formation Time of the Ore Deposits in Luzong Basin, Anhui Province. Acta Geologica Sinica, 84(4): 466-478 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201004002.htm Zeng, Y.S., 2003. Experimental Geochemistry (Second Edition). Peking University Press, Beijing (in Chinese). Zhai, Y.S., Yao, S.Z., Lin, X.D., et al., 1992. Regularities of Metallogenesis for Copper (Gold) Deposits in the Middle and Lower Reaches of Yangtze River Area. Geological Publishing House, Beijing (in Chinese). Zhang, L.J., 2011. Polymetallic Mineralisation and Associated Magmatic and Volcanic Activity in the Luzong Basin, Anhui Province, Eastern China (Dissertation). Hefei University of Technology, Hefei (in Chinese with English abstract). Zhang, M.M., Li, X.H., Zhou, T.F., et al., 2013. Reserves Dynamic Estimation of the Nihe Deposit Based on Three-Dimensional Mineralized Domain Model. Geological Review, 59(1): 122-128 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201301017.htm Zhang, R. H, ,Hu, S.M., Wang, J., et al., 2002. Water-Rock Interaction Study for Typical Volcanic Areas in the Middle-Lower Yangtze River Valley. China Land Press, Beijing (in Chinese). Zhang, R.H., Zhang, X.T., Hu, S.M., 2010. Deep Rocks and Ore-Forming Processes in Luzong Volcanic Basin. Acta Petrologica Sinica, 26(9): 2665-2680 (in Chinese with English abstract). http://www.cnki.com.cn/article/cjfdtotal-ysxb201009014.htm Zhao, W.G. ., Wu, M.A., Zhang, Y.Y., et al., 2011. Geological Characteristics and Genesis of the Nihe- Fe-S Deposit, Lujiang County, Anhui Province. Acta Geologica Sinica, 85(5): 789-801 (in Chinese with English abstract). http://www.researchgate.net/publication/284632358_Geological_characteristics_and_genesis_of_the_Nihe_Fe-S_deposit_Lujiang_County_Anhui_Province Zhou, T.F., Fan, Y., Yuan, F., et al., 2008. Chronology and Its Meaning of Volcanic Rocks in Lu-Zong (Lujiang-Zongyang) Basin, Anhui Province. Science in China (Series D), 38(11): 1342-1353 (in Chinese). Zhou, T.F., Fan, Y., Yuan, F., et al., 2008. Geochronology of the Volcanic Rocks in the Lu-Zong (Lujiang-Zongyang) Basin and Its Significance. Science in China (Series D), 51(10): 1470-1482. doi: 10.1007/s11430-008-0111-7 Zhou, T.F., Fan, Y., Yuan, F., et al., 2010. Temporal-Spatial Framework of Magmatic Intrusions in Luzong Volcanic Basin in East China and Their Constrain to Mineralizations. Acta Petrologica Sinica, 26(9): 2694-2714 (in Chinese with English abstract). http://www.researchgate.net/publication/282372483_Temporal-spatial_framework_of_magmatic_intrusions_in_Luzong_volcanic_basin_in_East_China_and_their_constrain_to_mineralization Zhou, T.F., Fan, Y., Yuan, F., et al., 2011. Petrogenesis and Metallogeny Study of the Volcanic Basins in the Middle and Lower Yangtze Metallogenic Belt. Acta Geologica Sinica, 85(5): 712-730 (in Chinese with English abstract). doi:CNKI:11-1951 /P.20110511.2140.00 Zou, H.B., Zindler, A., Xu, X.S., et al. 2000. Major, Trace Element, and Nd, Sr and Pb Isotope Studies of Cenozoic Basalts in SE China: Mantle Sources, Regional Variations, and Tectonic Significance. Chemical Geology, 171(1-2): 33-47. doi: 10.1016/S0009-2541(00)00243-6 常印佛, 刘湘培, 吴言昌, 1991. 长江中下游铜铁成矿带. 北京: 地质出版社, 71-76. 车英丹, 2014. 安徽庐江泥河铁矿浅色蚀变带地质特征研究(硕士学位论文). 合肥: 合肥工业大学. 董树文, 项怀顺, 高锐, 等, 2010. 长江中下游庐江-枞阳火山岩矿集区深部结构与成矿作用. 岩石学报, 26(9): 2529-2542. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201009003.htm 董树文, 张岳桥, 龙长兴, 等, 2007. 中国侏罗纪构造变革与燕山运动新诠释. 地质学报, 81(11): 1449-1461. doi: 10.3321/j.issn:0001-5717.2007.11.001 范裕, 周涛发, 袁峰, 等, 2008. 安徽庐江-枞阳地区A型花岗岩的LA-ICP-MS定年及其地质意义. 岩石学报, 24(08): 1715-1724. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808005.htm 范裕, 刘一男, 周涛发, 等, 2014. 安徽庐枞盆地泥河铁矿床年代学研究及其意义. 岩石学报, 30(05): 1369-1381. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201405013.htm 范裕, 周涛发, 郝麟, 等, 2012. 安徽庐枞盆地泥河铁矿床成矿流体特征及其对矿床成因的指示. 岩石学报, 28(10): 3113-3124. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201210008.htm 范裕, 周涛发, 袁峰, 等, 2010. 庐枞盆地高硫化型浅成低温热液成矿系统: 来自矾山明矾石矿床地质特征和硫同位素地球化学的证据. 岩石学报, 26(12): 3657-3666. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201012018.htm 高锐, 卢占武, 刘金凯, 等, 2010. 庐-枞金属矿集区深地震反射剖面解释结果——揭露地壳精细结构, 追踪成矿深部过程. 岩石学报, 26(9): 2543-2552. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201009004.htm 郝麟, 2011. 安徽省庐江泥河铁矿床成矿流体研究(硕士学位论文). 合肥: 合肥工业大学. 侯通, 2014. 中基性岩浆系统中铁的超常富集机理: 以典型铁矿为例(博士学位论文). 北京: 中国地质大学. 胡受奚, 叶瑛, 方长泉, 2004. 交代蚀变岩岩石学及其找矿意义. 北京: 地质出版社. 黄清涛, 1989. 安徽庐江罗河铁矿. 北京: 地质出版社. 中国科学院地球化学研究所, 1987. 宁芜型铁矿床形成机理. 北京: 科学出版社. 江永宏, 2010. 安徽庐枞地区铁-铜矿成矿规律与找矿. 世界地质, 29(3): 372-382. doi: 10.3969/j.issn.1004-5589.2010.03.003 匡海阳, 2012. 安徽泥河铁矿深部找矿综合地质地球物理研究(硕士学位论文). 南昌: 东华理工大学. 梁祥济, 2000. 中国矽卡岩和矽卡岩矿床形成机理的实验研究. 北京: 学苑出版社. 刘英俊, 曹励明, 1987. 元素地球化学导论. 北京: 地质出版社, 113-137. 吕庆田, 韩立国, 严加永, 等, 2010. 庐枞矿集区火山气液型铁、硫矿床及控矿构造的反射地震成像. 岩石学报, 34(9): 2598-2612. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201009009.htm 吕庆田, 侯增谦, 杨竹森, 等, 2004. 长江中下游地区的底侵作用及动力学演化模式: 来自地球物理资料的约束. 中国科学(D辑), 34(9): 783-794. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200409000.htm 吕庆田, 刘振东, 汤井田, 等, 2014. 庐枞矿集区上地壳结构与变形: 综合地球物理探测结果. 地质学报, 88(4): 447-465. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201404002.htm 马良, 2011. 安徽庐江泥河铁矿床围岩蚀变特征研究(硕士学位论文). 合肥: 合肥工业大学. 马立成, 2009. 庐-枞火山岩盆地深部构造作用与成矿(博士学位论文). 北京: 中国地质科学院. 毛景文, 段超, 刘佳林, 等, 2012. 陆相火山-侵入岩有关的铁多金属矿成矿作用及矿床模型——以长江中下游为例. 岩石学报, 28(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201201003.htm 钱兵, 2011. 安徽庐枞盆地泥河铁矿床地质地球化学特征研究(硕士学位论文). 合肥: 合肥工业大学. 覃永军, 曾键年, 曾勇, 等, 2010. 安徽南部庐枞盆地罗河-泥河铁矿田含矿辉石粗安玢岩锆石LA-ICP-MS U-Pb定年及其地质意义. 地质通报, 29(6): 851-862. doi: 10.3969/j.issn.1671-2552.2010.06.007 任启江, 刘孝善, 徐兆文, 等, 1991. 安徽庐枞中生代火山构造洼地及其成矿作用. 北京: 地质出版社. 沈保丰, 陆松年, 于恩泽, 等, 1977. 某区磁铁矿床中钠质交代作用的特征及其找矿意义. 地质科学, 3: 263-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX197703005.htm 汤家富, 陆三明, 李建设, 等, 2010. 安徽庐枞火山岩盆地与邻区基底构造变形、形成演化及其对矿床分布的控制. 岩石学报, 26(9): 2587-2597. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201009008.htm 王崇, 2012. 安徽庐江泥河铁矿床成矿流体系统数值模拟研究(硕士学位论文). 合肥: 合肥工业大学. 王翠云, 李晓峰, 肖荣, 等, 2012. 德兴朱砂红斑岩铜矿热液蚀变作用及元素地球化学迁移规律. 岩石学报, 28(12): 3869-3886. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212007.htm 王玉荣, 樊文苓, 郁云妹, 1981. 碱交代与铁矿形成的地球化学机理探讨. 地球化学, 10(1): 95-103. doi: 10.3321/j.issn:0379-1726.1981.01.012 吴礼彬, 陈芳, 柳丙全, 等, 2011. 安徽省庐江县罗河式铁矿床地质特征与成矿模式. 合肥工业大学学报(自然科学版), 34(6): 899-904. https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201106025.htm 吴明安, 汪青松, 郑光文, 等, 2011. 安徽庐江泥河铁矿的发现及意义. 地质学报, 85(5): 802-809. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201105016.htm 夏庆霖, 成秋明, 陆建培, 等, 2011. 便携式X射线荧光光谱技术在泥河铁矿岩心矿化蚀变信息识别中的应用. 地球科学——中国地质大学学报, 36(2): 336-340. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201102020.htm 谢智, 李全忠, 陈江峰, 等, 2007. 庐枞早白垩世火山岩的地球化学特征及其源区意义. 高校地质学报, 13(2): 235-249. doi: 10.3969/j.issn.1006-7493.2007.02.008 袁峰, 周涛发, 范裕, 等, 2008. 庐枞盆地中生代火山岩的起源、演化及形成背景. 岩石学报, 24(8): 1691-1702. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808003.htm 曾键年, 覃永军, 郭坤一, 等, 2010. 安徽庐枞盆地含矿岩浆岩锆石U-Pb年龄及其对成矿时限的约束. 地质学报, 84(4): 466-478. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201004002.htm 曾贻善, 2003. 实验地球化学(第二版). 北京: 北京大学出版社. 翟裕生, 姚书振, 林新多, 等, 1992. 长江中下游地区铁铜(金)成矿规律. 北京: 地质出版社. 张乐骏, 2011. 安徽庐枞盆地成岩成矿作用研究(硕士学位论文). 合肥: 合肥工业大学. 张明明, 李晓晖, 周涛发, 等, 2013. 基于三维矿化域模型的泥河铁矿床动态储量估算. 地质论评, 59(1): 122-128. doi: 10.3969/j.issn.0371-5736.2013.01.013 张荣华, 胡书敏, 王军, 等, 2002. 长江中下游典型火山岩区水-岩相互作用. 北京: 中国人地出版社. 张荣华, 张雪彤, 胡书敏, 2010. 庐枞火山盆地深部岩石与成矿过程. 岩石学报, 26(9): 2665-2680. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201009014.htm 赵文广, 吴明安, 张宜勇, 等, 2011. 安徽省庐江县泥河铁硫矿床地质特征及成因初步分析. 地质学报, 85(5): 789-801. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201105015.htm 周涛发, 范裕, 袁峰, 等, 2008. 安徽庐枞(庐江-枞阳)盆地火山岩的年代学及其意义. 中国科学(D辑), 38(11): 1342-1353. doi: 10.3321/j.issn:1006-9267.2008.11.002 周涛发, 范裕, 袁峰, 等, 2010. 庐枞盆地侵入岩的时空格架及其对成矿的制约. 岩石学报, 26(9): 2694-2714. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201009016.htm 周涛发, 范裕, 袁峰, 等, 2011. 长江中下游成矿带火山岩盆地的成岩成矿作用. 地质学报, 85(5): 712-730. doi: 10.3969/j.issn.1004-9665.2011.05.011