Geological and Geochemical Features of Delisitannan Basalts and Their Petrogenesis in Buqingshan Tectonic Mélange Belt, Southern Margin of East Kunlun Orogen
-
摘要: 东昆仑南缘布青山构造混杂带发育有较多OIB型玄武岩, 这类玄武岩成因与地幔柱密切相关.与灰岩密切伴生的具有MOR型特征的基性火山岩亦是东昆仑南缘古特提斯洋盆一类重要的海山玄武岩.为了查明布青山构造混杂带中不同类型洋岛或海山玄武岩的岩石成因, 对得力斯坦南玄武岩进行了详细的地质、地球化学和岩石成因研究.布青山地区得力斯坦南出露的玄武岩岩石类型复杂多样, 主要由枕状玄武岩、气孔-杏仁状玄武岩、角砾状玄武岩和块状玄武岩组成.主量元素地球化学特征表明, 该套玄武岩属于深海拉斑玄武岩和洋脊拉斑玄武岩系列.得力斯坦南玄武岩∑REE介于34.51×10-6~61.60×10-6, LREE/HREE介于0.89~1.37, (La/Yb)N介于0.30~0.56, δEu介于0.90~1.18.球粒陨石标准化稀土元素配分图呈现轻稀土元素亏损的左倾型, 与NMORB型玄武岩稀土元素配分曲线基本相同.得力斯坦南玄武岩Zr、Hf、Nb和Ta含量均相当于NMORB的相应元素的丰度值.Zr/Nb值介于24.59~57.69, Nb/La值介于0.45~0.94, Hf/Ta值介于18.29~31.94.在原始地幔标准化微量元素蛛网图上, 曲线右侧高场强元素基本未分异(Nb、Ta、Zr、Hf等), 并贴近于NMORB标准线, 具有与NMORB玄武岩相似而明显不同于EMORB和OIB型玄武岩的特征.微量元素判别表明其形成于洋中脊或由于洋脊扩张向两侧后移的洋中脊构造环境, 结合其上覆盖有深水硅泥岩及浅水厚层状碳酸盐岩的地质事实, 认为其在地形地貌上属于古海山.岩石成因研究表明该套玄武岩起源于亏损地幔(DM), 并估算其为地幔二辉橄榄岩发生约10%部分熔融的产物.Abstract: OIB-type basalts outcropped in the Buqingshan tectonic mélange belt, southern margin of East Kunlun, are closely related to mantle plume petrogeneticly. The MOR-type basalts are also another types of seamount basalts developed in the Paleotethys ocean. The Delisitannan basalts in Buqinshan area are located in the southern margin of the East Kunlun region. Field investigations show that the basalts are composed of pillow basalts, fumarolic-amygdaloidal basalts, breccia basalts and massive basalts, which are covered by lamellar fuchsia silicon mudstone. Geochemical data show that the basalts are subdivided into abyssal tholeiite and oceanic ridge tholeiite series. The contents of REE range from 34.51×10-6-61.60×10-6, LREE/HREE=0.89-1.37, (La/Yb)N=0.30-0.56. The chondrite-normalized REE pattern shows left-dipped incline and weak negative Eu abnormity (δEu=0.90-1.18), which is identical to NMORB REE distribution pattern. The Delisitannan basalts are aschistic in HSFE (Nb, Ta, Zr, Hf), and Zr/Nb ratios range from 24.59-57.69, Nb/La ratios range from 0.45-0.94, Hf/Ta ratio ranges from 18.29-31.94, which are all similar to those of NMORB basalts, and are obviously different from EMORB and OIB basalts. All of the trace element characteristics indicate that the basalts formed in an NMORB tectonic environment. The petrogenesis study shows that the rocks originated from depleted mantle, and are the product of 10% partial melting of mantle lherzolite roughly.
-
Key words:
- East Kunlun /
- basalt /
- Buqingshan /
- paleotethyan ocean /
- geochemistry /
- petrology
-
图 1 中央造山系构造格架(a)和东昆仑-祁连地区地质构造(b)以及布青山构造混杂带地质简图(c)
COB.中央造山系;EKOB.东昆仑造山带;WKOB.西昆仑造山带;QDB.柴达木盆地;TRMB.塔里木盆地;ALTF.阿尔金左行走滑断层.1.第四系;2.下三叠统洪水川组;3.中下二叠统马尔争组;4.上二叠统格曲组;5.上石炭统浩特洛洼组;6.上石炭统-下二叠统树维门科组;7.中元古界苦海岩群;8.晚三叠世花岗闪长岩;9.石炭纪玄武岩与辉长岩;10.寒武纪玄武岩与辉长岩;11.石炭纪蛇纹岩;12.寒武纪橄辉岩;13.流纹斑岩;14.洋岛或海山玄武岩;15.厚层块状碳酸盐岩;16.地质界线;17.角度不整合界线;18.主干断层或一般断层;19.逆冲推覆构造;20.地层产状(°);21.实测剖面位置;22.水系
Fig. 1. The tectonic framework of central orogenic belt (a), the tectonic background of Qilian-East Kunlun area (b) and the simplified geological map of Buqingshan tectonic mélange belt (c)
图 7 玄武岩原始地幔标准化微量元素蛛网图
原始地幔数值据Sun and McDonough(1989)
Fig. 7. Primitive mantle-normalized trace elements spidergram for the basalts
图 8 玄武岩(Nb/Th)N-(Th/La)N(a)、Ti/1000-V(b)、Ti-Zr(c)和Zr-Zr/Y(d)关系
图 8a中NMORB标准化据Sun and McDonough(1989)
Fig. 8. Plots of (Nb/Th)N-(Th/La)N (a), Ti/1000-V (b), Ti-Zr (c) and Zr-Zr/Y(d) for the basalts
表 1 得力斯坦南玄武岩主量元素(%)、稀土元素和微量元素(10-6)测试结果
Table 1. Results of major elements(%), trace elements and rare earth elements (10-6) from the Delisitannan basalts
样品号 11204/01 11204/02 11204/03 11204/04 11204/05 11204/06 11204/07 SiO2 47.28 46.71 48.01 48.08 49.50 46.44 40.54 TiO2 1.21 1.21 1.29 1.17 1.36 1.41 1.28 Al2O3 14.19 13.02 14.66 14.22 14.48 15.37 13.88 Fe2O3 5.00 3.46 3.32 3.07 1.51 6.46 7.24 FeO 6.08 7.65 8.08 7.50 9.22 3.99 3.13 MnO 0.17 0.18 0.19 0.20 0.22 0.17 0.37 MgO 6.77 11.06 9.60 9.43 10.35 8.68 2.16 CaO 9.85 6.30 7.50 8.92 5.40 7.35 13.87 Na2O 4.52 2.21 3.73 3.25 4.34 2.47 6.00 K2O 0.42 0.03 0.13 0.31 0.05 2.49 0.24 P2O5 0.11 0.10 0.10 0.09 0.10 0.11 0.12 Mg# 66 72 68 69 67 79 55 La 2.91 2.85 2.30 2.10 2.52 3.22 2.52 Ce 8.79 8.47 7.43 6.69 7.7 9.9 7.15 Pr 1.61 1.53 1.32 1.19 1.44 1.72 1.45 Nd 9.31 9.20 8.17 7.18 8.55 10.00 9.00 Sm 3.30 3.21 3.00 2.84 3.30 3.66 3.49 Eu 1.260 1.090 1.040 0.913 1.230 1.370 1.320 Gd 4.04 4.08 3.78 3.40 4.20 4.51 4.34 Tb 0.924 0.896 0.879 0.808 0.972 1.000 0.980 Dy 5.96 5.76 5.42 5.07 6.05 6.49 6.60 Ho 1.33 1.28 1.18 1.14 1.35 1.43 1.38 Er 3.88 3.65 3.61 3.39 4.01 4.22 4.23 Tm 0.622 0.582 0.574 0.537 0.664 0.681 0.644 Yb 3.91 3.74 3.66 3.55 4.23 4.45 4.20 Lu 0.598 0.520 0.557 0.549 0.635 0.664 0.599 δEu 1.05 0.92 0.94 0.90 1.01 1.03 1.04 (La/Yb)N 0.50 0.51 0.42 0.40 0.40 0.49 0.40 ∑LREE 28.31 27.58 24.74 22.21 26.42 31.16 26.75 ∑HREE 18.28 17.35 16.82 15.94 18.92 19.97 19.67 LREE/HREE 0.16 0.16 0.16 0.15 0.16 0.15 0.15 Sc 34.1 36.4 37.9 37.9 38.5 41.7 33.2 V 295 279 303 286 318 341 178 Cr 270 257 247 242 307 298 176 Co 48.1 53.2 47.6 45.1 47.2 62.2 35.6 Ni 111.0 116.0 89.7 94.6 104.0 135.0 74.2 Rb 10.600 0.653 1.510 4.040 0.492 53.300 4.060 Sr 111.0 117.0 56.3 60.7 54.8 180.0 85.3 Y 34.7 34.0 31.5 30.8 36.0 37.7 39.3 Nb 2.15 1.98 1.55 1.43 1.82 2.68 1.59 Cs 1.110 0.798 0.857 0.825 0.852 5.660 0.590 Ba 22.8 11.8 14.7 18.4 10.7 67.1 25.7 Ta 0.123 0.120 0.104 0.089 0.100 0.143 0.104 Th 0.268 0.221 0.136 0.130 0.161 0.248 0.137 U 0.057 0.153 0.051 0.016 0.043 0.047 0.373 Zr 74.5 66.6 59.4 67.3 84.9 91.7 74.3 Hf 2.25 2.07 1.85 1.97 2.54 2.51 2.32 Zr/Nb 34.65 33.64 38.32 47.06 46.65 34.22 46.73 Nb/La 0.74 0.69 0.67 0.68 0.72 0.83 0.63 Hf/Ta 18.29 17.25 17.79 22.13 25.40 17.55 22.31 Nb/Y 0.06 0.06 0.05 0.05 0.05 0.07 0.04 Zr/Y 2.15 1.96 1.89 2.19 2.36 2.43 1.89 Nb/Yb 0.55 0.53 0.42 0.40 0.43 0.60 0.38 Ta/Yb 0.03 0.03 0.03 0.03 0.02 0.03 0.02 样品号 11204/08 11204/09 11204/12 11204/15 11204/16 11204/18 11204/20 SiO2 47.71 47.29 42.22 46.05 48.36 48.73 47.34 TiO2 1.39 1.36 1.30 1.15 1.35 1.20 1.13 Al2O3 17.48 14.44 15.23 16.20 16.76 16.53 16.01 Fe2O3 6.13 4.17 6.56 6.17 7.47 9.03 7.70 FeO 6.13 8.04 5.37 4.92 2.45 2.19 2.55 MnO 0.42 0.18 0.19 0.19 0.19 0.16 0.16 MgO 2.60 10.15 6.74 7.72 7.96 6.28 6.86 CaO 5.27 6.80 13.69 10.18 4.53 4.90 9.60 Na2O 6.16 0.42 2.49 3.35 5.85 6.03 4.12 K2O 0.79 0.38 0.03 0.14 0.07 0.29 0.09 P2O5 0.14 0.11 0.10 0.09 0.09 0.09 0.08 Mg# 43 69 69 74 85 84 83 La 3.08 3.29 3.31 2.52 1.44 2.57 2.09 Ce 7.08 10.30 10.10 7.97 5.72 7.51 6.88 Pr 1.70 1.73 1.77 1.46 1.00 1.42 1.22 Nd 11.00 9.96 10.30 8.66 6.18 8.26 7.45 Sm 4.51 3.61 3.62 3.30 2.46 2.96 2.86 Eu 1.680 1.390 1.360 1.240 0.884 1.240 1.090 Gd 5.91 4.58 4.17 3.80 3.00 3.49 3.44 Tb 1.470 0.983 0.999 0.890 0.723 0.842 0.826 Dy 9.90 6.15 6.22 5.85 4.81 5.45 5.46 Ho 2.06 1.28 1.34 1.29 1.06 1.18 1.14 Er 5.87 3.84 4.04 3.90 3.05 3.59 3.45 Tm 0.914 0.613 0.632 0.593 0.487 0.558 0.569 Yb 5.62 3.99 4.19 3.82 3.23 3.54 3.68 Lu 0.801 0.594 0.627 0.593 0.467 0.525 0.543 δEu 0.99 1.04 1.07 1.07 0.99 1.18 1.06 (La/Yb)N 0.37 0.56 0.53 0.44 0.30 0.49 0.38 ∑LREE 31.88 31.57 31.32 26.43 19.24 24.88 22.94 ∑HREE 27.63 18.49 19.12 18.00 14.82 16.86 16.73 LREE/HREE 0.16 0.15 0.15 0.16 0.15 0.16 0.15 Sc 38.4 39.5 36.8 40.5 39.8 36.8 35.7 V 280 290 322 325 316 303 303 Cr 219 276 254 299 333 299 289 Co 47.0 54.5 50.8 47.7 50.0 47.0 46.5 Ni 96.1 134.0 107.0 86.1 79.7 87.7 73.0 Rb 14.800 8.510 0.610 3.220 1.000 5.480 2.110 Sr 55.9 76.0 130.0 154.0 127.0 147.0 142.0 Y 52.1 34.4 35.6 33.2 24.8 30.3 29.4 Nb 2.22 2.29 1.75 1.14 1.36 1.20 1.08 Cs 1.690 1.450 0.283 0.385 0.318 0.649 0.858 Ba 36.7 67.6 27.6 23.7 63.6 59.1 47.3 Ta 0.127 0.135 0.104 0.077 0.077 0.069 0.062 Th 0.202 0.194 0.184 0.157 0.104 0.223 0.106 U 0.793 0.053 0.125 0.071 0.258 0.192 0.063 Zr 79.7 56.3 76.2 65.3 70.4 59.3 62.3 Hf 2.38 2.02 2.21 2.07 2.12 1.77 1.98 Zr/Nb 35.90 24.59 43.54 57.28 51.76 49.42 57.69 Nb/La 0.72 0.70 0.53 0.45 0.94 0.47 0.52 Hf/Ta 18.74 14.96 21.25 26.88 27.53 25.65 31.94 Nb/Y 0.04 0.07 0.05 0.03 0.05 0.04 0.04 Zr/Y 1.53 1.64 2.14 1.97 2.84 1.96 2.12 Nb/Yb 0.40 0.57 0.42 0.30 0.42 0.34 0.29 Ta/Yb 0.02 0.03 0.02 0.02 0.02 0.02 0.02 -
Bian, Q.T., Luo, X.Q., Li, H.S., et al., 1999. Discovery of Early Paleozoic and Early Carboniferous-Early Permian Ophiolites in the A'nyemaqen, Qinghai Province, China. Scientia Geologica Sinica, 34(4): 513-524 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZKY199903017.htm Bian, Q.T., Yin, L.M., Sun, S.F., et al., 2001. Discovery of Ordovician Acritarchs in Buqingshan Ophiolite Complex, East Kunlun Mountains and Its Significance. Chinese Science Bulletin, 46(4): 341-345. doi: 10.1007/BF03187200 Bian, Q.T., Li, D.H., Pospelov, I., et al., 2004. Age, Geochemistry and Tectonic Setting of Buqinshan Ophiolites, North Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences, 23: 577-596. doi: 10.1016/j.jseaes.2003.09.003 Boynton, W.V., 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elservier, Amsterdam, 63-114. Chen, F.K., Hegner, E., Todt, W., 2000. Zircon Ages, Nd Isotopic and Chemical Compositions of Orthogneisses from the Black Forest, Germany: Evidence for a Cambrian Magmatic Arc. International Journal of Earth Sciences, 88: 791-802. doi: 10.1007/s005310050306 Chen, F.K., Siebel, W., Satir, M., et al., 2002. Geochronology of the Karadere Basement (NW Turkey) and Implications for the Geological Evolution of the Istanbul Zone. International Journal of Earth Sciences, 91: 469-481. doi: 10.1007/s00531-001-0239-6 Chen, L., Sun, Y., Pei, X.Z., et al., 2004. Comparison of Eastern Paleo-Tethyan Ophiolites and Its Geodynamic Significance—Evidence from A'nyemaqen Ophiolite. Science in China (Series D), 47(4): 378-384. doi: 10.1360/02YD0488 Condie, K.C., 2003. Incompatible Element Ratios in Oceanic Basalts and Komatiites: Tracking Deep Mantle Sources and Continental Growth Rates with Time. Geochemistry, Geophysics, Geosystems, 4(1): 1-28. doi: 10.1029/2002GC000333 Condie, K.C., 2005. High Field Strength Element Ratios in Archean Basalts: A Window to Evolving Sources of Mantle Plumes? Lithos, 79: 491-504. doi: 10.1016/j.lithos.2004.09.014 Dong, Y.P., Zhang, G.W., Franz, N., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41: 213-237. doi: 10.1016/j.jseaes.2011.03.002 Godard, M., Bosch, D., Einaudi, F., 2006. AMORB Source for Low-Ti Magmatism in the Semail Ophiolite. Chemical Geology, 234: 58-78. doi: 10.1016/j.chemgeo.2006.04.005 Guo, A.L., Zhang, G.W., Sun, Y.G., et al., 2007. Geochemistry and Spatial Distribution of OIB and MORB in A'nyemaqen Ophiolite Zone: Evidence of Majixueshan Ancient Ridge—Centered Hotspot. Science in China (Series D), 50(2): 197-208. doi: 10.1007/s11430-007-0197-3 Hu, N., Pei, X.Z., Li, R.B., et al., 2013. Provenance and Tectonic Setting Study of the Maerzheng Formation at the Delistan of Buqingshan Area in the Southern Margin of East Kunlun. Acta Geologica Sinica, 87(11): 1731-1747 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201311008.htm Jiang, G.L., Zhang, S.M., Liu, K.F., et al., 2014. Evolution of Neoproterozoic-Mesozoic Sedimentary Basins in Qilian-Qaidam-East Kunlun. Earth Science—Journal of China University of Geosciences, 39(8): 1000-1016 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.091 Ji, L.X., Ouyang, S., 1996. Spore-Pollen Assemblage from Buqingshan Group in Qinghai and Its Geological Age. Acta Palaeontologica Sinica, 35(1): 1-25 (in Chinese with English abstract). http://europepmc.org/abstract/CBA/287820 Lai, S.C., Qin, J.F., 2010. Ophiolites and Volcanic Rocks in the Mianlue Suture Belt of Qinling. Science Press, Beijing (in Chinese). Lai, S.C., Zhang, G.W., Pei, X.Z., 2002. Geochemistry of the Pipasi Ophiolite in the Mianlue Suture Zone, South Qinling, and Its Tectonic Significance. Geological Bulletin of China, 21(8-9): 465-470(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2002Z2002.htm Li, B. L, Sun, F.Y., Yu, X.F., et al., 2012. U-Pb Dating and Geochemistry of Diorite in the Eastern Section from Eastern Kunlun Middle Uplifted Basement and Granite Belt. Acta Petrologica Sinica, 28(4): 1163-1172 (in Chinese with English abstract). http://www.oalib.com/paper/1476737 Li, C., Zhai, Q.G., Dong, Y.S., et al., 2007. Lungmu Co-Shanghu Plate in the Qinghai-Tibet Plateau and Records of the Evolution of the Paleo-Tethys Ocean in the Qiangtang Area of Tibet, China. Geological Bulletin of China, 26(1): 13-21 (in Chinese with English abstract). http://www.cnki.com.cn/article/cjfdtotal-zqyd200701002.htm Li, R.B., 2012. Research on the Late Paleozoic-Early Mesozoic Orogeny in East Kunlun Orogen (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract). Li, R.B., Pei, X.Z., Li, Z.C., et al., 2012. Geological Characteristics of Late Palaeozoic-Mesozoic Unconformities and Their Response to Some Significant Tectonic Events in Eastern Part of Eastern Kunlun. Earth Science Frontiers, 19(5): 244-254 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxqy201205024 Li, R.B., Pei, X.Z., Li, Z.C., et al., 2013a. Geochemical and Geochronological Characteristics of Kekekete Mafic-Ultramafic Rocks and Its Tectonic Significance, Eastern Section of East Kunlun Orogeny. Acta Geologica Sinica, 87(5): 1319-1333. doi: 10.1111/1755-6724.12131 Li, R.B., Pei, X.Z., Li, Z.C., et al., 2013b. Regional Tectonic Transformation in East Kunlun Orogenic Belt in Early Paleozoic: Constraints from the Geochronology and Geochemistry of Helegangnaren Alkali-Feldspar Granite. Acta Geologica Sinica, 87(2): 333-345. doi: 10.1111/1755-6724.12054 Li, R.B., Pei, X.Z., Li, Z.C., et al., 2014. Geochemical Characteristics of Gerizhuotuo OIB and Its Tectonic Significance in Buqingshan Tectonic Mélange Belt, Southern Margin of East Kunlun Orogen. Earth Science Frontiers, 21(1): 183-195 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201401019.htm Li, W.Y., Li, S.G., Guo, A.L., et al., 2007. Zircon SHRIMP U-Pb Ages and Trace Element Geochemistry of the Kuhai Gabbro and the Dur'ngoi Diorite in the Southern East Kunlun Tectonic Belt, Qinghai, Western China and Their Geological Implications. Science in China (Series D), 50 (Suppl. Ⅱ): 331-338. doi: 10.1007/s11430-007-6003-4 Li, Z.C., Pei, X.Z., Liu, Z.Q., et al., 2013. Geochronology and Geochemistry of the Gerizhuotuo Diorites from the Buqingshan Tectonic Mélange Belt in the Southern Margin of East Kunlun and Their Geologic Implications. Acta Geologica Sinica, 87(8): 1089-1103 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201308006.htm Liu, B., Ma, C.Q., Jiang, H.A., et al., 2013. Early Paleozoic Tectonic Transition from Ocean Subduction to Collisional Orogeny in the Eastern Kunlun Region: Evidence from Huxiaoqin Mafic Rocks. Acta Petrologica Sinica, 29(6): 2093-2106 (in Chinese with English abstract). http://www.cqvip.com/QK/94579X/20136/46670166.html Liu, B., Ma, C.Q., Guo, P., et al., 2013b. Discovery of the Middle Devonian A-Type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications. Earth Science—Journal of China University of Geosciences, 38(5): 947-962 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.093 Liu, Z.Q., Pei, X.Z., Li, R.B., et al., 2011a. LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A'nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication. Acta Geologica Sinica, 85(2): 185-194 (in Chinese with English abstract). Liu, Z.Q., Pei, X.Z., Li, R.B., et al., 2011b. Geological Characteristics of the Buqingshan Tectonic Melange Belt in the Southern Margin of East Kunlun and Its Tectonic Implications. Geological Bulletin of China, 30(8): 1182-1195 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252284525.html Liu, Z.Q., Pei, X.Z., Li, R.B., et al., 2011c. Early Paleozoic Intermediate-Acid Magmatic Activity in Bairiqiete Area along the Buqingshan Tectonic Mélange Belt on the Southern Margin of East Kunlun: Constraints from Zircon U-Pb Dating and Geochemistry. Geology in China, 38(5): 1150-1167 (in Chinese with English abstract). Ma, C.Q., Xiong, F.H., Zhang, J.Y., et al., 2013. The Effects of Subduction Plate of Magmatism in the Stage of Plate Subduction to Post-Tectonic: Evidence of Mafic Dikes of Early Permian-Late Triassic East Kunlun. Acta Geologica Sinica, 87(Suppl. ): 79-81 (in Chinese). Malpas, J., Calon, T.J., MacDonald, R.W.J., 1994. The Shulaps Ophiolite Complex of British Columbia, Canada: A Palaeozoic/Mesozoic Arc-Related Microterrane. In: Nishiyama, T., ed., Proceedings of the 29th Intenational Geological Congress. VSP International Science Publishers, Kyoto, 69-87. Meng, F.C., Zhang, J.X., Cui, M.H., et al., 2013. Discovery of Early Paleozoic Eclogite from the East Kunlun, Western China and Its Tectonic Significance. Gondwana Research, 23: 825-836. doi: 10.1016/j.gr.2012.06.007 Metcalfe, I., 2006. Palaeozoic and Mesozoic Tectonic Evolution and Palaeogeography of East Asian Crustal Fragments: The Korean Peninsula in Context. Gondwana Research, 9: 24-46. doi: 10.1016/j.gr.2005.04.002 Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33. doi:org/ 10.1016/j.jseaes.2012.12.020 Miyake, Y., 1985. Morb-Like Tholeiites Formed within the Miocene Forearc Basin, Southwest Japan. Lithos, 18: 23-34. doi: 10.1016/0024-4937(85)90004-0 Pearce, J.A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R.S., ed., Orogenic Andesites and Related Rocks. John Wiley and Sons, New York, 528-548. Pearce, J.A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100: 14-48. doi: 10.1016/j.lithos.2007.06.016 Pearce, J.A., Norry, M.J., 1979. Petrogenetic Implications of Ti, Zr, Y and Nb Variations in the Volcanic Rocks. Contrib. Mineral. Petrol. , 69: 33-47. doi: 10.1007/BF00375192 Pearce, J.A., Peate, D.W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23: 251-285. doi: 10.1146/annurev.ea.23.050195.001343 Pei, X.Z., 2001. Geological Evolution and Dynamics of the Mianlue-A'nyemaqen Tectonic Zone, Central China (Dissertation). Northwest University, Xi'an (in Chinese with English abstract). Pei, X.Z., Hu, N., Liu, C.J., et al., 2015. Detrital Composition, Geochemical Characteristics and Provenance Analysis for the Maerzheng Formation Sandstone in Gerizhuotuo Area, Southern Margin of East Kunlun Region. Geological Review, 61(2): 303-323(in Chinese with English abstract). http://www.cqvip.com/QK/91067X/201502/664331324.html Shervais, J.W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolite Lavas. Earth and Planetary Science Letters, 59: 101-118. doi: 10.1016/0012-821X(82)90120-0 Stampfli, G.M., Borel, G.D., 2002. A Plate Tectonic Model for the Paleozoic and Mesozoic Constrained by Dynamic Plate Boundaries and Restored Synthetic Oceanic Isochrones. Earth and Planetary Science Letters, 196(1-2): 17-33. doi: 10.1016/S0012-821X(01)00588-X Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the Ocean Basins. Geological Society of London, London, 313-345. Wang, B.Z., Zhang, Z.Y., Zhang, S.Q., et al., 2000. Geological Features of Lower Paleozoic Ophiolite in Kunhai-Saishitang Region, Eastern Section of Eastern Kunlun. Earth Science—Journal of China University of Geosciences, 25(6): 592-598 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200006009.htm Wang, G.C., Zhang, T.P., Liang, B., et al., 1999. Composite Ophiolite Mélange Zone in Central Part of Eastern Section of Eastern Kunlun Orogenic Zone and Geological Significance of "Fault Belt in Central Part of Eastern Section of Eastern Kunlun Orogenic Zone". Earth Science—Journal of China University of Geosciences, 24(2): 129-133 (in Chinese with English abstract). http://www.researchgate.net/publication/285344054_Composite_ophiolite_mlange_belt_in_central_part_of_the_Eastern_Kunlun_orogenic_belt_and_geological_signification_of_the_Eastern_Kunlun_Central_Fault Wang, Y.B., Yang, H., 2004. Middle Permian Palaeobiogeography Study in East Kunlun, A'nyêmaqên and Bayan Har. Science in China(Series D), 47(12): 1120-1126. http://d.wanfangdata.com.cn/Periodical_zgkx-ed200412007.aspx Weaver, B.L., 1991. The Origin of Ocean Island Basalt End-Member Compositions: Trace Element and Isotopic Constraints. Earth Planet. Sci. Lett. , 104: 381-397. doi: 10.1016/0012-821X(91)90217-6 Wilson, B.M., 1989. Igneous Petrogenesis: A Global Tectonic Approach. Chapman and Hall, London. Winchester, J.A., Floyd, P.A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2 Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2012. The Origin of Mafic Microgranular Enclaves and Their Host Granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau: Implications for Magma Mixing during Subduction of Paleo-Tethyan Lithosphere. Mineralogy and Petrology, 104(3-4): 211-224. doi: 10.1007/s00710-011-0187-1 Xu, Z.Q., Yang, J.S., Li, W.C., et al., 2013. Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau. Acta Petrologica Sinica, 29(6): 1847-1860 (in Chinese with English abstract). http://www.researchgate.net/publication/285907060_Pako-Tethys_system_and_accretionary_orogen_in_the_Tibet_Plateau Yan, Z., Bian, Q.T., Korchagin, O.A., et al., 2008. Provenance of Early Triassic Hongshuichuan Formation in the Southern Margin of the East Kunlun Mountains; Constrains from Detrital Framework, Heavy Mineral Analysis and Geochemistry. Acta Petrologica Sinica, 24(5): 1068-1078 (in Chinese with English abstract). http://www.oalib.com/paper/1471328 Yan, Z., Wang, Z.Q., Li, J.L., et al., 2012. Tectonic Settings and Accretionary Orogenesis of the West Qinling Terrane, Northeastern Margin of the Tibet Plateau. Acta Petrologica Sinica, 28(6): 1808-1828 (in Chinese with English abstract). Yang, J.S., Robison, P.T., Jiang, C.F., et al., 1996. Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications. Tectonophysics, 258: 215-231. doi: 10.1016/0040-1951(95)00199-9 Yang, J.S., Shi, R.D., Wu, C.L., et al., 2009. Dur'ngoi Ophiolite in East Kunlun, Northeast Tibetan Plateau: Evidence for Paleo-Tethyan Suture in Northwest China. Journal of Earth Science, 20(2): 303-331. doi: 10.1007/s12583-009-0027-y Yang, J.S., Wang, X.B., Shi, R.D., et al., 2004. The Dur'ngoi Ophiolite in East Kunlun, Northern Qinghai-Tibet Plateau: A Fragment of Paleo-Tethyan Oceanic Crust. Geology in China, 31(3): 225-239 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI200403000.htm Yang, J., Pei, X.Z., Li, R.B., et al., 2014. Geochemical Characteristics and Geological Implications of Haerguole Basalt in Buqingshan Area on the Southern Margin of East Kunlun Mountains. Geology in China, 41(2): 335-350 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201402003.htm Zhang, K.X., Huang, J.C., Yin, H.F., et al., 2000. Application of Radiolarians and Other Fossils in Non-Smith Strata—Exemplified by the A'nyêmaqên Melange Belt in East Kunlun Mts. Science in China(Series D), 43(4): 364-374. doi: 10.1007/BF02959447 Zhang, K.X., Lin, Q.X., Zhu Y.H., et al., 2004. New Paleontological Evidence on Time Determination of the East Part of the Eastern Kunlun Mélange and Its Tectonic Significance. Science in China(Series D), 47(10): 865-873. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020414966604.html Zhang, Z.Y., Yin, H.F., Wang, B.Z., et al., 2004. Presence and Evidence of Kuhai-Saishitang Branching Ocean in Conjuncation between Kunlun-Qinling Mountains. Earth Science—Journal of China University of Geosciences, 29(6): 691-696 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200406008 Zhu, Y.H., Zhang, K.X., Chen, N.S., et al., 1999. Determination of Different Ophiolites Belts of the East Kunlun Orogenic Belt and Its Tectonic Implication. Earth Science—Journal of China University of Geosciences, 24(2): 134-138 (in Chinese with English abstract). 边千韬, 罗小全, 李红生, 等, 1999. 阿尼玛卿山早古生代和早石炭世-早二叠世蛇绿岩的发现. 地质科学, 34(4): 513-524. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199904014.htm 胡楠, 裴先治, 李瑞保, 等, 2013. 东昆仑南缘布青山得力斯坦地区马尔争组物源分析及其构造背景研究. 地质学报, 87(11): 1731-1747. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201311008.htm 姜高磊, 张思敏, 柳坤峰, 等, 2014. 祁连-柴达木-东昆仑新元古-中生代沉积盆地演化. 地球科学——中国地质大学学报, 39(8): 1000-1016. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201408006.htm 冀六祥, 欧阳舒, 1996. 青海中东部布青山群孢粉组合及其时代. 古生物学报, 35(1): 1-25. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX199601000.htm 赖绍聪, 秦江峰, 2010. 秦岭勉略缝合带蛇绿岩与火山岩. 北京: 科学出版社. 赖绍聪, 张国伟, 裴先治, 2002. 南秦岭勉略结合带琵琶寺洋壳蛇绿岩的厘定及其大地构造意义. 地质通报, 21(8-9): 465-470. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2002Z2002.htm 李碧乐, 孙丰月, 于晓飞, 等, 2012. 东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究. 岩石学报, 28(4): 1163-1172. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201204014.htm 李才, 翟庆国, 董永胜, 等, 2007. 青藏高原龙木错-双湖板块缝合带与羌塘古特提斯洋演化记录. 地质通报, 26(1): 13-21. doi: 10.3969/j.issn.1671-2552.2007.01.003 李瑞保, 2012. 东昆仑造山带(东段)晚古生代-早中生代造山作用研究(博士学位论文). 西安: 长安大学. 李瑞保, 裴先治, 李佐臣, 等, 2012. 东昆仑东段晚古生代-中生代若干不整合面特征及其对重大构造事件的响应. 地学前缘, 19(5): 244-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205025.htm 李瑞保, 裴先治, 李佐臣, 等, 2014. 东昆仑南缘布青山构造混杂带哥日卓托洋岛玄武岩地球化学特征及构造意义. 地球前缘, 21(1): 183-195. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201401019.htm 李佐臣, 裴先治, 刘战庆, 等, 2013. 东昆仑南缘布青山构造混杂岩带哥日卓托闪长岩体年代学、地球化学特征及其地质意义. 地质学报, 87(8): 1089-1103. doi: 10.3969/j.issn.0001-5717.2013.08.005 刘彬, 马昌前, 蒋红安, 等, 2013a. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换: 来自胡晓钦镁铁质岩石的证据. 岩石学报, 29(6): 2093-2106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306018.htm 刘彬, 马昌前, 郭盼, 等, 2013b. 东昆仑中泥盆世A型花岗岩的确定及其构造意义. 地球科学——中国地质大学学报, 38(5): 947-962. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201305005.htm 刘战庆, 裴先治, 李瑞保, 等, 2011a. 东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义. 地质学报, 85(2): 185-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201102005.htm 刘战庆, 裴先治, 李瑞保, 等, 2011b. 东昆仑南缘布青山构造混杂岩带的地质特征及大地构造意义. 地质通报, 30(8): 1182-1195. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201108002.htm 刘战庆, 裴先治, 李瑞保, 等, 2011c. 东昆仑南缘布青山构造混杂岩带早古生代白日切特中酸性岩浆活动: 来自锆石U-Pb测年及岩石地球化学证据. 中国地质, 38(5): 1150-1167. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201105004.htm 马昌前, 熊富浩, 张金阳, 等, 2013. 从板块俯冲到造山后阶段俯冲板片对岩浆作用的影响: 东昆仑早二叠世-晚三叠世镁铁质岩墙群的证据. 地质学报, 87(增刊): 79-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE2013S1046.htm 裴先治, 2001. 勉略-阿尼玛卿构造带的形成演化与动力学特征(博士学位论文). 西安: 西北大学. 裴先治, 胡楠, 刘成军, 等, 2015. 东昆仑南缘哥日卓托地区马尔争组砂岩碎屑组成、地球化学特征与物源构造环境分析. 地质论评, 61(2): 307-323. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201502008.htm 王秉璋, 张智勇, 张森琦, 等, 2000. 东昆仑东端苦海-塞什塘地区晚古生代蛇绿岩的特征. 地球科学——中国地质大学学报, 25(6): 592-598. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200006009.htm 王国灿, 张天平, 梁斌, 等, 1999. 东昆仑造山带东段昆中复合蛇绿混杂岩带及"东昆中断裂带"地质涵义. 地球科学——中国地质大学学报, 24(2): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX902.004.htm 许志琴, 杨经绥, 李文昌, 等, 2013. 青藏高原中的古特提斯体制与增生造山作用. 岩石学报, 29(6): 1847-1860. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306002.htm 闫臻, 边千韬, Korchagin, O.A., 等, 2008. 东昆仑南缘早三叠世洪水川组的源区特征: 来自碎屑组成、重矿物和岩石地球化学的证据. 岩石学报, 24(5): 1068-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200805014.htm 闫臻, 王宗起, 李继亮, 等, 2012. 西秦岭楔的构造属性及其增生造山过程. 岩石学报, 28(6): 1808-1828. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206009.htm 杨经绥, 王希斌, 史仁灯, 等, 2004. 青藏高原北部东昆仑南缘德尔尼蛇绿岩: 一个被肢解了的古特提斯洋壳. 中国地质, 31(3): 225-239. doi: 10.3969/j.issn.1000-3657.2004.03.001 杨杰, 裴先治, 李瑞保, 等, 2014. 布青山构造混杂带哈尔郭勒洋岛玄武岩地质、地球化学特征及构造意义. 中国地质, 41(2): 335-350. doi: 10.3969/j.issn.1000-3657.2014.02.003 张智勇, 殷鸿福, 王秉璋, 等, 2004. 昆秦接合部海西期苦海-塞什塘分支洋的存在及证据. 地球科学——中国地质大学学报, 29(6): 691-696. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200406007.htm 朱云海, 张克信, 陈能松, 等, 1999. 东昆仑造山带不同蛇绿岩带的厘定及其构造意义. 地球科学——中国地质大学学报, 24(2): 134-138. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX902.005.htm