• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    藏南安岗地堑的史前大地震遗迹、年龄及其地质意义

    吴中海 叶培盛 王成敏 张克旗 赵华 郑勇刚 尹金辉 李虎侯

    吴中海, 叶培盛, 王成敏, 张克旗, 赵华, 郑勇刚, 尹金辉, 李虎侯, 2015. 藏南安岗地堑的史前大地震遗迹、年龄及其地质意义. 地球科学, 40(10): 1621-1642. doi: 10.3799/dqkx.2015.147
    引用本文: 吴中海, 叶培盛, 王成敏, 张克旗, 赵华, 郑勇刚, 尹金辉, 李虎侯, 2015. 藏南安岗地堑的史前大地震遗迹、年龄及其地质意义. 地球科学, 40(10): 1621-1642. doi: 10.3799/dqkx.2015.147
    Wu Zhonghai, Ye Peisheng, Wang Chengmin, Zhang Keqi, Zhao Hua, Zheng Yonggang, Yin Jinhui, Li Huhou, 2015. The Relics, Ages and Significance of Prehistoric Large Earthquakes in the Angang Graben in South Tibet. Earth Science, 40(10): 1621-1642. doi: 10.3799/dqkx.2015.147
    Citation: Wu Zhonghai, Ye Peisheng, Wang Chengmin, Zhang Keqi, Zhao Hua, Zheng Yonggang, Yin Jinhui, Li Huhou, 2015. The Relics, Ages and Significance of Prehistoric Large Earthquakes in the Angang Graben in South Tibet. Earth Science, 40(10): 1621-1642. doi: 10.3799/dqkx.2015.147

    藏南安岗地堑的史前大地震遗迹、年龄及其地质意义

    doi: 10.3799/dqkx.2015.147
    基金项目: 

    国家自然科学基金项目 41171009

    中国地质调查局项目 1212011120163

    中国地质调查局项目 12120114002101

    基本科研业务费项目成果集成与战略研究(2014-2015) DZLXJK201410

    详细信息
      作者简介:

      吴中海(1974-), 男, 博士, 主要从事活动构造与地震地质研究.E-mail: wzhh4488@sina.com

    • 中图分类号: P315.2

    The Relics, Ages and Significance of Prehistoric Large Earthquakes in the Angang Graben in South Tibet

    • 摘要: 地表调查发现, 沿近南北向亚东-谷露裂谷中段的安岗地堑存在地震大滑坡、多世代断层崖和断层崩积楔等多种类型的史前大地震遗迹.进一步的观测和年代分析表明: 该区的古地震滑坡体至少存在新、老两期, 其中规模最大的"尼续大滑坡体"应该是最新一次大地震所形成.该区T1到T6各阶地的形成时代从新到老分别为7.7~2.1 ka、11.0~10.5 ka、17.6~12.1 ka、25.7~22.9 ka、58.4~70.6 ka和130~150 ka, 它们沿主边界正断层的平均垂直断距依次为2.8 m、6.1~7.9 m、10.3~12.5 m、16.6~19.0 m、28.0 m和76.0 m.其中T1和T2阶地上的断崖剖面揭示, 最近两次大地震发生在距今约5.8±1.0 ka和2.4±0.2 ka.综合分析认为: 安岗地堑的大地震活动具有较明显的丛集性特征, 并且在距今约23~26 ka以来一直处于大地震活跃期, 期间的断层垂直活动速率为0.8~1.3 mm/a, 大地震的原地复发间隔大致为3.3~3.6 ka, 特征地震的矩震级为7.0~7.2, 推算整个尼木地堑群的大震复发间隔最短可能只有约1.0~1.2 ka.研究结果指示, 藏南裂谷的大地震活动性明显比藏北的近南北向正断层更显著.

       

    • 图  1  研究区地质

      a.亚东-谷露裂谷DEM图;b.尼木地堑群中安岗-羊易地堑对的遥感影像;c.尼木-羊易地堑地质剖面

      Fig.  1.  Geology of study area

      图  2  尼木地堑群中安岗地堑的DEM影像及地震构造

      AG.安岗地堑;YG.羊易地堑;1992年Mw6.1地震的极震区范围(谢乐金,1994);1960年以来M≥4.0级浅源仪器记录地震数据来自IRIS(国际地震联合会);震源机制解来自Global CMT Search Results

      Fig.  2.  The DEM image shows sites of investigations, earthquakes distribution and main active fault around Angang graben of Nyemo graben group

      图  3  沿安岗盆地西缘主边界断层发育的一系列指示断裂第四纪和晚第四纪活动的地质-地貌标志

      a.安岗盆地“西断东超”形成的半地堑地貌(镜向北);b.安岗盆地西缘的线性断层三角面地貌(镜向西);c.正断层错动阶地形成的断层崖地貌(镜向北西,图 2位置1);d.正断层错动花岗岩形成的断层错动带(镜向北,图 2位置1);e.正断层错动带中指示断层近垂直运动的擦痕(镜向西);f.盆地西缘主边界正断层错动不同时代阶地形成多世代断层崖(镜向北西,图 2位置5);图 3c3f中的断层垂直断距编号与图 5对应

      Fig.  3.  The photos show a series of geological and geomorphic marks on active normal faulting along the main boundary normal fault of Angang basin

      图  4  多世代断层崖形成过程

      a.初始地貌面被错动之前;b.正断层错动初始地貌面,并被新一期地貌面所切割;c.断层再次活动错动两期不同时代地貌面后,又被新的地貌面所切割;d.断裂第三期活动后,形成错动三期不同时代地貌面、高度不同的多世代断层崖

      Fig.  4.  A sketch shows the forming process of multiple-generation fault scarp

      图  5  安岗地堑西缘正断层上不同高度断层崖的地形剖面及年代学样品的采样剖面

      标注“*”的为水准仪测量结果,其他为皮尺与坡角仪测量结果

      Fig.  5.  The measured topographic profile of fault scarps which ages are from new to old with the increase of scarp height and sampling profile of OSL dating along the western margin normal fault of the Angang graben

      图  6  安岗地堑嗦格岗西(图 2,观察点3),山前正断层垂直错动4级冲积阶地形成的多世代断层崖的遥感图像(a)和照片(b)

      b.山前正断层错动河流阶地形成多世代断层崖和断坎地貌(镜向西);图中的断层崖剖面编号与图 5对应

      Fig.  6.  The remote sensing imageand photo show the multiple-generation fault scarps which are resulted from offset four alluvial terraces along west boundary normal fault at west side of Suogegang of Angang graben

      图  7  安岗地堑中“尼续古地震大滑坡体”的影像特征(a~c)及剖面(d)

      Fig.  7.  The remote image (a) and photos (b, c) show the geomorphologic features and crossing section (d) of "Large Nixu paleoearthquake-induced landslide" located in southwest of Angang graben

      图  8  古地震前后的断层崖斜坡结构变化及断层崩积楔的形成过程

      a.发生最新一次古地震前;b.古地震发生时或其后不久;c.古地震发生较长时间之后

      Fig.  8.  The sketch show the formation process of fault scarp slope and colluvial wedge caused by paleoearthquake resulted from normal faulting

      图  9  安岗地堑嗦格岗西(图 2,观察点3),T1和T2阶地断崖剖面及古地震探槽编录结果

      a.T1断崖及探槽剖面位置;b.T1断崖地形剖面;c.跨T1断崖的探槽剖面;d.T2断崖与探槽剖面位置;e.跨T2断崖的探槽剖面

      Fig.  9.  The map show profiles and sites of exploratory trench crossing fault scarps offset terraces 1 and 2 respectively at west side of Suogegang of Angang graben

      表  1  历史记载以来沿亚东-谷露裂谷发生的M≥6.0地震主要参数

      Table  1.   The main parameters on M≥6.0 earthquakes occurred along Yadong-Gulu rift since 1264

      地震日期 震中位置 震级 可能的控震构造
      北纬/东经 参考地点
      1264 29.70°/90.60° 堆龙德庆县楚布寺 ≥6$^3{/_4}$ 尼木地堑群之羊易地堑
      1411.09.29 29.70°/90.20° 当雄-羊八井 8.0 当雄-羊八井地堑系
      1901.04.21 29.50°/90.10° 尼木北 6$^3{/_4}$ 尼木地堑群之庞刚地堑
      1909.08.04 28.80°/90.50° 浪卡子 6$^3{/_4}$ 热龙地堑
      1921.05之前 29.00°/89.70° 江孜 6$^1{/_4}$ 热龙地堑
      1921.10.15 30.50°/91.50° 当雄东部一带 6$^1{/_4}$ 当雄地堑
      1924.10.09 30.00°/90.00° 尼木县与当雄县交界 6$^1{/_2}$ 格达地堑
      1925.01.12 30.50°/91.50° 当雄东部一带 6$^1{/_2}$ 当雄地堑
      1935.05.21 28.80°/89.50° 江孜西南 6$^1{/_4}$ 涅如地堑或热龙地堑
      1940.09.03 30.70°/91.70° 那曲县谷露东南 6$^1{/_4}$ 谷露地堑
      1940.10.04 30.50°/91.50° 当雄东部一带 6.0 当雄地堑
      1951.11.18 30.90°/91.50° 那曲县谷露西北 6.8 谷露地堑
      1952.08.18 31.00°/91.50° 那曲县谷露 7.5 谷露地堑
      1992.07.30 29.60°/90.25° 尼木县安岗 6.3 尼木地堑群之安岗地堑
      2008.10.06 29.80°/90.30° 当雄县羊易乡 6.6 尼木地堑群之羊易地堑
      注:表中1952年及之前的地震参数引自西藏地震史料汇编(第一卷)(西藏自治区科学技术委员会、档案馆,1982;1992年以来地震参数据中国地震台网.
      下载: 导出CSV

      表  2  安岗地堑晚第四纪阶地与古地震探槽OSL与14C年龄样品及测年结果

      Table  2.   The OSL and 14C dating results of deposits sampling from late quaternary terraces and paleoearthquake exploratory trench along main boundary fault of Angang graben

      野外编号 观察点 采样位置 地貌部位 岩性 U(10-6) Th(10-6) K(%) 等效剂量ED(Gy) 年剂量(Gy/ka) 含水量(%) 年龄(ka)
      北纬 东经
      S234-1 3 29°33.718′ 90°14.156′ 断层上盘侧,T0上部 距顶约40 cm含砾中粗砂 4.03 19.40 2.77 13.75±0.28 6.15 7.39 2.2±0.1
      S234-2 3 29°33.718′ 90°14.156′ 断层上盘T0的下伏T1基座 距顶约120 cm含砾中粗砂 2.09 6.42 2.90 34.56±1.69 4.48 2.00 7.7±0.5
      S234-6 3 29°33.718′ 90°14.156′ 下盘侧,T1上部(探槽层①) 距顶约100 cm含砾中粗砂 2.11 12.00 2.79 19.04±0.72 4.82 5.66 3.9±0.2
      S234-8 3 29°33.718′ 90°14.156′ 上盘侧,T1上部(探槽层①) 距顶约60 cm含砾中粗砂 6.03 41.10 2.73 18.99±1.56 8.92 6.45 2.1±0.1
      S234-9 3 29°33.718′ 90°14.156′ 下盘侧T2上部土壤化层 距顶约80 cm含砾中粗砂 7.55 22.50 2.64 31.53±1.59 7.36 10.39 4.3±0.3
      S234-10 3 29°33.718′ 90°14.156′ 下盘侧T2上部土壤化层 距顶约60 cm含砾中粗砂 6.80 33.70 2.39 22.33±1.28 7.94 10.11 2.8±0.2
      S2274-4 3 29°33′45.2″ 90°14′11.3″ 断层下盘,T2顶部土壤化层 距顶约45 cm灰黄色细砂 5.10 15.10 2.90 17.80 3.86 0.03 4.5±0.5
      S237-10 1 29°29.006′ 90°14.686′ 断层上盘侧,T3上部 距顶45 cm含砾中粗砂 2.94 12.80 2.22 82.19±2.13 4.68 3.81 17.6±0.6
      S234-12 3 29°33.718′ 90°14.156′ 断层下盘侧,T3上部 距顶约20 cm含砾中细砂 5.72 25.60 2.34 110.21±7.98 6.90 7.48 16.0±1.3
      S234-15 3 29°33.718′ 90°14.156′ 断层上盘侧,T3上部 距顶约60 cm砾石层顶中细砂 3.74 16.10 2.67 95.01±5.31 5.63 6.97 16.9±1.1
      S2273-2 4 29°34′15.9″ 90°14′16.3″ 断层下盘侧,T3近顶部 距顶约50 cm灰色含碳细砂 3.40 14.50 2.10 36.50 2.97 0.03 12.1±1.6
      S2273-4 4 29°34′15.9″ 90°14′16.3″ 断层上盘侧,T3近顶部 距顶部约35 cm灰黄色细砂 3.10 12.40 0.90 25.80 2.06 0.05 12.7±1.9
      S2272-1 5 29°35′21.7″ 90°14′20.1″ 断层下盘侧T3上部 距顶约80 cm含粘土粉细砂 7.70 22.60 1.40 48.20 3.52 0.15 13.7±1.5
      S2272-3 5 29°35′21.7″ 90°14′20.1″ 断层上盘侧T3上部 距顶约80 cm含砾中粗砂 3.60 12.10 2.10 37.20 2.88 0.03 12.7±1.1
      S2274-6 3 29°33′45.2″ 90°14′11.3″ 断层上盘T3顶部土壤化层 距顶约40 cm灰黄色细砂 3.70 12.20 2.80 16.00 3.34 0.02 4.9±0.5
      S234-11 3 29°33.718′ 90°14.156′ 下盘侧T3的下伏T4基座 距顶约45 cm含砾中粗砂 4.40 11.10 2.63 138.52±7.78 5.40 4.73 25.7±1.8
      S234-13 3 29°33.718′ 90°14.156′ 断层下盘侧,T4上部 距顶约75 cm含砾中细砂 4.20 19.90 2.23 126.76±9.07 5.52 12.69 22.9±1.9
      S2274-1 3 29°33′45.2″ 90°14′11.3″ 断层下盘,T4上部土壤化层 距顶约55 cm中粗砂 4.70 15.30 2.10 49.20 3.37 0.02 14.7±1.1
      S237-1 1 29°29.006′ 90°14.686′ 断层下盘侧,T5上部 距顶约2 m含砾中粗砂 8.17 23.80 2.18 424.57±11.43 7.26 9.14 58.4±2.7
      S237-2 1 29°29.006′ 90°14.686′ 断层下盘侧,T5上部 距顶约240 cm中细砂 7.61 15.70 2.30 469.21±16.00 6.65 3.48 70.6±3.7
      S234-3 3 29°33.829′ 90°14.279′ 断层上盘侧,T5上部 距顶约120 cm含砾中粗砂 3.98 16.00 2.31 374.13±12.84 5.43 4.03 68.9±3.6
      S234-4 3 29°33.829′ 90°14.279′ 断层上盘侧,T5上部 距顶约40 cm含砾中粗砂 3.10 13.00 2.26 301.66±23.13 4.80 4.09 62.8±5.4
      S2272-6 5 29°35′21.7″ 90°14′20.1″ 断层上盘T6上部土壤化层 距顶约85 cm灰黄色细砂 5.50 14.90 1.50 132.00 2.89 0.11 45.4±4.2
      SA-1 3 29°33.718′ 90°14.156′ T2断崖探槽剖面层① 灰黄色含砾砂土 5.55 28.40 2.91 82.80±0.44 7.53 2.77 11.0±0.4
      SA-2 3 29°33.718′ 90°14.156′ T2断崖探槽剖面层② 含砾中粗砂 9.46 16.00 2.92 80.76±4.38 7.65 9.47 10.5±0.7
      SA-5 3 29°33.718′ 90°14.156′ T2断崖探槽剖面层⑤ 灰白色含砾中粗砂 5.85 24.40 2.95 49.83±1.79 7.47 5.21 6.7±0.4
      SA-6 3 29°33.718′ 90°14.156′ T2断崖探槽剖面层⑥ 灰黄色中粗砂 10.20 19.00 2.75 27.18±1.11 8.11 6.62 3.4±0.2
      SA-7 3 29°33.718′ 90°14.156′ T2断崖探槽剖面层⑥ 灰黄色含砾中粗砂 10.60 24.40 2.72 13.55±0.44 8.95 2.83 2.6±0.1
      SA-8 3 29°33.718′ 90°14.156′ T2断崖探槽剖面层⑧ 灰黄色含砾中粗砂 5.97 25.10 2.51 8.57±0.70 7.08 6.42 1.2±0.0
      SA-9 3 29°33.718′ 90°14.156′ T2断崖探槽剖面层⑧ 灰黄色含砾中粗砂 18.30 93.00 2.90 13.74±0.50 18.12 6.80 0.8±0.0
      SB-1 3 29°33.718′ 90°14.156′ T1断崖探槽剖面层① 灰黄色含砾中粗砂 6.50 41.50 2.84 39.60±1.14 9.02 9.13 4.4±0.2
      SB-2 3 29°33.718′ 90°14.156′ T1断崖探槽剖面层① 含砾中细砂 3.32 12.30 3.11 16.25±0.86 5.48 8.15 3.0±0.2
      SB-3 3 29°33.718′ 90°14.156′ T1断崖探槽剖面层② 含砾中细砂 3.00 13.00 2.78 6.35±0.65 5.10 9.80 1.2±0.1
      14C年龄样品及测年结果
      野外编号 观察点 北纬 东经 地貌部位 岩性 备注 年龄
      S234-16 3 29°33.718′ 90°14.156′ 断层上盘侧,T3顶部土壤化层 距顶约35 cm灰黑色含碳质砂土 3 525±75 a B.P.
      SA-3 3 29°33.718′ 90°14.156′ T2断崖探槽剖面层③、⑤之间 碳屑 6 050±75 a B.P.
      SA-3 3 29°33.718′ 90°14.156′ T2断崖探槽剖面层③、⑤之间 碳屑 树轮校正年龄 6 895±103 a B.P.
      SA-4 3 29°33.718′ 90°14.156′ T2断崖探槽剖面层③、⑤之间 碳屑 树轮校正年龄 4 775±10 a B.P.
      SA-4 3 29°33.718′ 90°14.156′ T2断崖探槽剖面层③、⑤之间 碳屑 4 030±75 a B.P.
      注:观察点及编号与图 2对应.
      下载: 导出CSV
    • Armijo, R., Tapponnier, P., Mercier, J.L., et al., 1986. Quaternary Extension in Southern Tibet: Field Observations and Tectonic Implications. Journal of Geophysical Research, 91(B14): 13803-13872. doi: 10.1029/jb091ib14p13803
      Blisniuk, P.M., Sharp, W.D., 2003. Rates of Late Quaternary Normal Faulting in Central Tibet from U-Series Dating of Pedogenic Carbonate in Displaced Fluvial Gravel Deposits. Earth and Planetary Science Letters, 215(1-2): 169-186. doi: 10.1016/s0012-821x(03)00374-1
      Caputo, R., Helly, B., 2008. The Use of Distinct Disciplines to Investigate Past Earthquakes. Tectonophysics, 453(1-4): 7-19. doi: 10.1016/j.tecto.2007.05.007
      Caputo, R., Pavlides, S.B., 2008. Earthquake Geology: Methods and Applications. Tectonophysics, 453(1-4): 1-6. doi: 10.1016/j.tecto.2008.01.007
      Cheng, S.P., Yang, G.Z., Yang, Z, 1994. The Latest Pleistocene Faulting along the Canfangying Segment of the Fault Zone along the Northern Margin of Yanqing Basin. Seismology and Geology, 16(4): 346-354 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ404.008.htm
      Cowie, P.A., Roberts, G.P., 2001. Constraining Slip Rates and Spacings for Active Normal Faults. Journal of Structural Geology, 23(12): 1901-1915. doi: 10.1016/s0191-8141(01)00036-0
      Deng, Q.D., Liao, Y.H., 1996. Paleoseismology along the Range-Front Fault of Helan Mountains, North Central China. Journal of Geophysical Research, 101(B3): 5873. doi: 10.1029/95jb01814
      Deng, Q.D., Zhang, P.Z., 2000. Colluvial Wedges Associated with Pre-Historical Reverse Faulting Paleoearthquakes. Chinese Science Bulletin, 45(17): 1598-1604. doi: 10.1007/bf02886221
      Deng, Q.D., Liu, B.C., Zhang, P.Z., et al., 1992. Research of Active Fault in Evaluating Engineering Safety and Assessing Amount of Displacement. In: The Editorial Committee of "Research on Active Fault", ed., Research on Active Fault (2): Theory and Application. Seismological Press, Beijing, 236-246 (in Chinese with English abstract).
      Deng, Q.D., Wang, Y.P., Liao, Y.H., et al., 1984. Colluvial Wedges and Holocene Activity along the Range-Front Fault of Helan Shan. Chinese Science Bulletin, 29(9): 557-560(in Chinese). doi: 10.1360/csb1984-29-9-557
      Deng, Q.D., Yonekura, N., Xu, X.W., et al., 1994. Study on the Late Quaternary Kinematics of the Northern Piedmont Fault of the Liuleng Mountain. Seismology and Geology, 16(4): 339-343(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ404.006.htm
      Friedrich, A. M, Gans, C., Furlong, K., et al. 2006. Significance of Temporal and Spatial Variations of Geological Fault Slip Rates for Models of Lithospheric Deformation. Geophysical Research Abstracts, 8: 10965.
      Friedrich, A.M., 2003. Comparison of Geodetic and Geologic Data from the Wasatch Region, Utah, and Implications for the Spectral Character of Earth Deformation at Periods of 10 to 10 Million Years. Journal of Geophysical Research, 108(B4): 257. doi: 10.1029/2001jb000682
      Han, T.L., 1987. The active tectonics in Xizang (Tibet). In: Chinese Academy of Geological Sciences, ed., People's Republic of China, Ministry of Geology and Mineral Resources, Geological Memoirs Series 5 (Number 4): Tectonic evolution of the lithosphere of the Himalayas. Geological Publishing House, Beijing (in Chinese).
      Huang, P.H., 1982. Research on Active Tectonics. In: Huang, P.H., Jin, F.Y., Ding, B.T., et al., eds., The Basis of Earthquake Geology. Seismological Press, Beijing, 145-176 (in Chinese).
      Jiang, Y., Wu, Z.H., Li, J.C., et al., 2014b. The Characteristics of Landslides Triggered by the Yushu Ms7.1 Earthquake and Its Seismogeology Implication. Acta Geologica Sinica, 88(6): 1157-1176(in Chinese with English abstract).
      Jiang, Y., Wu, Z.H., Liu, Y.H., et al., 2014a. The Characteristics of Paleo-Earthquake Landslides along Yushu Fault Zone and Their Ages. Geological Bulletin of China, 32(4): 503-516(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201404007.htm
      Jiang, Z.X., 1991. The Exploration, Arrangement and Main Gains of Tibet Earthquake Historical Data. In: Guo, Z.J., ed., Chinese Historical Earthquake Research Letters(2). Seismological Press, Beijing, 36-38(in Chinese).
      Jibson, R.W., 2009. Chapter 8 Using Landslides for Paleoseismic Analysis. International Geophysics, (9): 565-601. doi: 10.1016/s0074-6142(09)95008-2
      Kelson, K.I., Simpson, G.D., Lettis, W.R., et al., 1996. Holocene Slip Rate and Earthquake Recurrence of the Northern Calaveras Fault at Leyden Creek, Northern California. Journal of Geophysical Research, 101(B3): 5961. doi: 10.1029/95jb02244
      Li, P., Liu, X.S., Wu, D.Z., 1982. On the Paleo-Earthquake and the Identification of Paleo-Earthquake. Earthquake, (5): 34-38(in Chinese).
      Liu, G.X., Yu, S.E., Zhang, S.M., et al., 1991. The North Wutaishan Piedmont Active Fault Zone in Shanxi. In: The Editorial Committee of "Research on Active Fault", ed., Research on Active Fault (1). Seismological Press, Beijing, 118-130(in Chinese with English abstract).
      Marco, S., Stein, M., Agnon, A., et al., 1996. Long-Term Earthquake Clustering: A 50 000-Year Paleoseismic Record in the Dead Sea Graben. Journal of Geophysical Research, 101(B3): 6179. doi: 10.1029/95jb01587
      McCalpin, J.P., Khromovskikh, V.S., 1995. Holocene Paleoseismicity of the Tunka Fault, Baikal Rift, Russia. Tectonics, 14(3): 594-605. doi: 10.1029/95tc00837
      McCalpin, J.P., 2009. Paleoseismology (2nd ed. ). Academic Press, San Diego. 848.
      Meghraoui, M., 2001. Active Normal Faulting in the Upper Rhine Graben and Paleoseismic Identification of the 1356 Basel Earthquake. Science, 293(5537): 2070-2073. doi: 10.1126/science.1010618
      Molnar, P., Chen, W.P., 1983. Focal Depths and Fault Plane Solutions of Earthquakes under the Tibetan Plateau. Journal of Geophysical Research, 88(B2): 1180. doi: 10.1029/jb088ib02p01180
      Molnar, P., Tapponnier, P., 1978. Active Tectonics of Tibet. Journal of Geophysical Research, 83(B11): 5361. doi: 10.1029/jb083ib11p05361
      Ni, J., York, J.E., 1978. Late Cenozoic Tectonics of the Tibetan Plateau. Journal of Geophysical Research, 83(B11): 5377-5384. doi: 10.1029/JB083iB11p05377
      Papanikolaou, I.D., Roberts, G.P., 2007. Geometry, Kinematics and Deformation Rates along the Active Normal Fault System in the Southern Apennines: Implications for Fault Growth. Journal of Structural Geology, 29(1): 166-188. doi: 10.1016/j.jsg.2006.07.009
      Papanikolaou, I.D., Roberts, G.P., Michetti, A.M., 2005. Fault Scarps and Deformation Rates in Lazio-Abruzzo, Central Italy: Comparison between Geological Fault Slip-Rate and GPS Data. Tectonophysics, 408(1-4): 147-176. doi: 10.1016/j.tecto.2005.05.043
      Ran, Y.K., Deng, Q.D., 1999. History, Status and Trend about the Research of Paleoseismology. Chinese Science Bulletin, 44(10): 880-889. doi: 10.1007/bf02885057
      Ran, Y.K., Fang, Z.J., Duan, R.T., et al., 1998. Model for Paleoearthquake Recurrence along Baying Segment of the North Margin Fault of Fanshan Basin in Hebei Province. Earthquake Research in China, 14(1): 47-58(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZDZW199601008.htm
      Ran, Y.K., Fang, Z.J., Li, Z.Y., et al., 1991. Characteristics of Active Faults around Huailai-Zhuolu Basin. In: The Editorial Committee of "Research on Active Fault", ed., Research on Active Fault (1). Seismological Press, Beijing, 140-155(in Chinese with English abstract).
      Ran, Y.K., Fang, Z.J., Wang, J.B., et al., 1992a. Late Quaternary Behavior and Characteristics of the Boundary Fault of Huailai-Zhuolu Basin, between Shenzhuang and Haojiapo. In: The Editorial Committee of "Research on Active Fault", ed., Research on Active Fault (2): Theory and Application. Seismological Press, Beijing, 152-162 (in Chinese with English abstract).
      Ran, Y.K., Fang, Z.J., Li, Z.Y., et al., 1992b. Paleoseismicity and Segmentation along the Active Fault at the North Boundary of Huailai-Zhuolu Basin, Hebei Province. Earthquake Research in China, 8(3): 74-85(in Chinese with English abstract).
      Ran, Y.K., You, H.C., Wang, J.B., et al., 1988. The Earthquake Fault of the Late Quaternary on Eastern Piedmont of Cangshan Mountain and the Ages of Paleoearthquakes Occurring in Dali City, Yunnan Province. Seismology and Geology, 10(2): 74(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ198802011.htm
      Ran, Y.K., Zhang, P.Z., Chen, L.C., 2003. Research on the Completeness of Paleoseismic Activity History since Late Quaternary along the Daqingshan Piedmont Fault in Hetao Depression Zone, North China. Earth Science Frontiers, 10(Suppl. ): 207-216(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY2003S1028.htm
      Ran, Y.K., Zhang, P.Z., Hu, B., et al., 2002. Paleoseismic Activity on the Hohhot Segment of Daqingshan Piedmont Fault in the Late Quaternary History. Earthquake Research in China, 18(1): 15-27(in Chinese with English abstract). http://www.researchgate.net/publication/285751235_Paleoseismic_activity_on_the_Hohhot_segment_of_Daqingshan_piedmont_fault_in_the_late_Quaternary_history
      Ritz, J.F., Brown, E.T., Bourlès, D.L., et al., 1995. Slip Rates along Active Faults Estimated with Cosmic-Ray-Exposure Dates: Application to the Bogd Fault, Gobi-Altaï, Mongolia. Geology, 23(11): 1019. doi:10.1130/0091-7613(1995)023<1019:sraafe>2.3.co;2
      Rothery, D.A., Drury, S.A., 1984. The Neotectonics of the Tibetan Plateau. Tectonics, 3(1): 19-26. doi: 10.1029/tc003i001p00019
      San'kov, V., Déverchère, J., Gaudemer, Y., et al., 2000. Geometry and Rate of Faulting in the North Baikal Rift, Siberia. Tectonics, 19(4): 707-722. doi: 10.1029/2000tc900012
      Schwartz, D.P., Coppersmith, K.J., 1984. Fault Behavior and Characteristic Earthquakes: Examples from the Wasatch and San Andreas Fault Zones. Journal of Geophysical Research, 89(B7): 5681. doi: 10.1029/jb089ib07p05681
      Sieh, K., 1996. The Repetition of Large-Earthquake Ruptures. Proceedings of the National Academy of Sciences, 93(9): 3764-3771. doi: 10.1073/pnas.93.9.3764
      Stewart, I.S., Hancock, P.L., 1990. What is A Fault Scarp. Episodes, 13(4): 256-263. doi: 10.18814/epiiugs/1990/v13i4/005
      Swan, F.H., Schwartz, D.P., Cluff, L.S., 1980. Recurrence of Moderate to Large Magnitude Earthquakes Produced by Surface Faulting on the Wasatch Fault Zone, Utah. Bulletin of the Seismological Society of America, 70(5): 1431-1462. http://www.researchgate.net/publication/285455232_Recurrence_of_moderate_to_large_magnitude_earthquakes_produced_by_surface_faulting_on_the_Wasatch_fault_zone_Utah
      Tapponnier, P., Molnar, P., 1977. Active Faulting and Tectonics in China. Journal of Geophysical Research, 82(20): 2905-2930. doi: 10.1029/JB082i020p02905
      Tapponnier, P., Ryerson, F.J., van der Woerd, J.V.D., et al., 2001. Long-Term Slip Rates and Characteristic Slip: Keys to Active Fault Behaviour and Earthquake Hazard. Comptes Rendus de L'Académie des Sciences-Series IIA-Earth and Planetary Science, 333(9): 483-494. doi: 10.1016/s1251-8050(01)01668-8
      The Science and Technology Committee and the Archives of Xizang Autonomous Region, 1982. A Compilation on Historical Earthquakes Data in Tibet (the First Volume). People's Publishing House, Xizang, 1-583(in Chinese).
      Wallace, R.E., 1977. Profiles and Ages of Young Fault Scarps, North-Central Nevada. Geological Society of America Bulletin, 88(9): 1267. doi:10.1130/0016-7606(1977)88<1267:paaoyf>2.0.co;2
      Wallace, R.E., 1987. Grouping and Migration of Surface Faulting and Variation in Slip Rates on Faults in the Great Basin Province. Bull. Seism. Soc. Am. , (77): 868-876. http://ci.nii.ac.jp/naid/10003144180
      Wang, Y.P., 1998. Principal features of the active tectonics in Qinghai-Xizang plateau. In: The Editorial Committee of "Research on Active Fault", ed., Research on Active Fault (6): Theory and Application. Seismological Press, Beijing, 135-144 (in Chinese with English abstract).
      Wells, D.L., Coppersmith, K.J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and surface Displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=84/4/974
      Wesnousky, S.G., 2005. Active Faulting in the Walker Lane. Tectonics, 24(3): TC3009. . doi: 10.1029/2004tc001645
      Wu, Z.H., Ye, P.S., Barosh, P.J., et al., 2011. The October 6, 2008 Mw 6.3 Magnitude Damxung Earthquake, Yadong-Gulu Rift, Tibet, and Implications for Present-Day Crustal Deformation within Tibet. Journal of Asian Earth Sciences, 40(4): 943-957. doi: 10.1016/j.jseaes.2010.05.003
      Wu, Z.H., Ye, P.S., Wu, Z.H., 2009a. The Seismic Intensity, Seismogenic Tectonics and Mechanism of the Ms6.6 Damxung Earthquake Happened on October 6, 2008 in Southern Tibet, China. Geological Bulletin of China, 28(6): 713-725(in Chinese with English abstract). http://www.researchgate.net/publication/289319828_The_seismic_intensity_seismogenic_tectonics_and_mechanism_of_the_Ms66_Damxung_earthquake_happened_on_October_6_2008_in_southern_Tibet_China
      Wu, Z.H., Ye, P.S., Wang, C.M., et al., 2009b. The Most Recent Surface Normal Faulting and Its Age along the Northern Margin of Tsona-Amdo Graben in Central Tibet. Quaternary Sciences, 29(3): 608-615(in Chinese with English abstract). doi: 10.3969/j.issn.1001-7410.2009.03.021
      Wu, Z.H., Zhao, X.T., Wu, Z.H., et al., 2005. Active faults and their kinematic feature at the Amdo-Tsona Graben, Central Xizang. Quaternary Sciences, 25(4): 490-502(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200504013.htm
      Wu, Z.M., Cao, Z.Q. Shentu, B.M., et al., 1990. Preliminary Research on the Nianqingtanggula Mountain Southeastern Pediment Fault. Journal of Seismological Research, 13(1): 40-50 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ199001004.htm
      Wu, Z.M., Cao, Z.Q. Shentu, B.M., et al., 1992. Active Faults in the Central Tibet. Seismological Press, Beijing, 115-178(in Chinese with English abstract).
      Xie, L.J., 1994. The Nyemo and Lhazê Earthquakes in 1992 and 1993. Cartographic Publishing House, Chengdu, 1-152(in Chinese).
      Xu, X.W., Yonekura, N., Suzuki, Y., et al., 1996. Geomorphic Study on Late Quaternary Irregular Faulting along the Northern Piedmont of Liulengshan Range, Shanxi Province, China. Seismology and Geology, 18(2): 169-181(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ602.009.htm
      Zhang, A.L., Chong, J., Mi, F.S., et al., 1990. Study on the Activity and Paleo-Earthquakes in the Fault Zone along the Northern Margin of Qinling in Late Quaternary. In: The Editorial Committee of "Research on Active Fault", ed., Research on Active Fault (1). Seismological Press, Beijing, 105-117 (in Chinese with English abstract).
      Zhang, P.Z., 2005. Paleoearthquake Rupture Behavior and Recurrence of Great Earthquakes along the Haiyuan Fault, Northwestern China. Science in China (Series D), 48(3): 364. doi: 10.1360/02yd0464
      程绍平, 杨桂枝, 杨喆, 1994. 延庆盆地北缘断裂带蚕房营段晚更新世晚期断层作用. 地震地质, 16(4): 346-354. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ404.008.htm
      邓起东, 刘百篪, 张培震, 等, 1992. 活动断层工程安全评价和位错量的定量评估. 见: 《活动断裂研究》编委会编, 活动断裂研究(2). 北京: 地震出版社, 236-246.
      邓起东, 米仓伸之, 徐锡伟, 等, 1994. 山西高原六棱山北麓断裂晚第四纪运动学特征初步研究. 地震地质, 16(4): 339-343. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ404.006.htm
      邓起东, 汪一鹏, 廖玉华, 等, 1984. 断层崖崩积楔及贺兰山山前断裂全新世活动历史. 科学通报, 29(9): 557-560. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198409013.htm
      韩同林, 1987. 喜马拉雅岩石圈构造演化: 西藏活动构造. 见: 中国地质科学院主编, 中华人民共和国地质矿产部专报(五)构造地质地质力学第4号. 北京: 地质出版社.
      黄培华, 1982. 活动构造研究. 见: 黄培华, 金风英, 丁宝田, 等, 地震地质学基础. 北京: 地震出版社, 145-176.
      蒋瑶, 吴中海, 刘艳辉, 等, 2014a. 青海玉树活动断裂带的多期古地震滑坡及其年龄. 地质通报, 32(4): 503-516. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201404007.htm
      蒋瑶, 吴中海, 李家存, 等, 2014b. 2010年玉树7.1级地震诱发滑坡特征及其地震地质意义. 地质学报, 88(6): 1157-1176. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201406016.htm
      江在雄, 1991. 西藏地震史料的发掘整理及主要收获. 见: 郭增建, 中国历史地震研究文集(2), 北京: 地震出版社, 36-38.
      李坪, 刘行松, 吴迪忠, 1982. 谈谈古地震和古地震的识别. 地震, (5): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN198205011.htm
      刘光勋, 于慎谔, 张世民, 等, 1991. 山西五台山北麓活动断裂带. 见: 《活动断裂研究》编委会, 活动断裂研究(1), 北京: 地震出版社, 118-130.
      冉勇康, 尤惠川, 王景钵, 等, 1988. 云南大理苍山东麓晚第四纪地震断层及古地震年代. 地震地质, 10(2): 74. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198802011.htm
      冉勇康, 方仲景, 李志义, 等, 1991. 怀来-涿鹿盆地周缘的活动断裂及其基本特征. 见: 《活动断裂研究》编委会编, 活动断裂研究(1), 北京: 地震出版社, 140-155.
      冉勇康, 方仲景, 王景钵, 等, 1992a. 怀涿盆地北缘断裂沈庄-郝家坡区间晚第四纪的断层活动习性. 见: 《活动断裂研究》编委会编, 活动断裂研究(2), 北京: 地震出版社, 152-162.
      冉勇康, 方仲景, 李志义, 等, 1992b. 河北怀来-琢鹿盆地北缘活断层的古地震事件与断层分段. 中国地震, 8(3): 74-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD199203010.htm
      冉勇康, 方仲景, 段瑞涛, 等, 1998. 河北矾山盆地北缘断层八营段的古地震重复模型. 中国地震, 14(1): 47-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD801.005.htm
      冉勇康, 张培震, 胡博, 等, 2002. 大青山山前断裂呼和浩特段晚第四纪古地震活动历史. 中国地震, 18(1): 15-27. doi: 10.3969/j.issn.1001-4683.2002.01.002
      冉勇康, 张培震, 陈立春, 2003. 河套断陷带大青山山前断裂晚第四纪古地震完整性研究. 地学前缘, 10(特刊): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2003S1028.htm
      汪一鹏. 1998. 青藏高原活动构造基本特征. 见: 《活动断裂研究》编委会编, 活动断裂研究(6). 北京: 北京地震出版社, 135-144.
      吴章明, 曹忠权, 申屠炳明, 等, 1990. 念青唐古拉山南东麓断层的初步研究. 地震研究, 13(1): 40-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ199001004.htm
      吴章明, 曹忠权, 申屠炳明, 等, 1992. 西藏中部活动断裂. 北京: 地震出版社, 115-178.
      吴中海, 赵希涛, 吴珍汉, 等, 2005. 西藏安多-错那湖地堑的第四纪地质、断裂活动及其运动学特征分析. 第四纪研究, 25(4): 490-502. doi: 10.3321/j.issn:1001-7410.2005.04.013
      吴中海, 叶培盛, 吴珍汉, 2009a. 2008年10月6日西藏当雄Ms6.6级强震的地震烈度、控震构造和发震机理. 地质通报, 28(6): 713-725. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200906004.htm
      吴中海, 叶培盛, 王成敏, 等, 2009b. 西藏安多最新史前大地震的地质证据及其年龄. 第四纪研究, 29(3): 608-615. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200903022.htm
      谢乐金, 1994.1992年-1993年尼木地震和拉孜地震. 成都: 地图出版社.
      徐锡伟, 米仓伸之, 铃木康弘, 等, 1996. 山西六棱山北麓晚第四纪不规则断裂作用的地貌学研究. 地震地质, 18(2): 169-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ602.009.htm
      西藏自治区科学技术委员会、档案馆, 编译, 1982. 西藏地震史料汇编(第一卷). 西藏: 人民出版社, 1-583.
      张安良, 种瑾, 米丰收, 等, 1990. 秦岭北缘断裂带晚第四纪活动特征及其古地震研究. 见: 《活动断裂研究》编委会编, 活动断裂研究(1), 北京: 地震出版社, 105-117.
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  3911
    • HTML全文浏览量:  521
    • PDF下载量:  286
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-10-06
    • 刊出日期:  2015-10-15

    目录

      /

      返回文章
      返回