Paleoclimate Instruction of Sediment Grain Size and Deuterium-Oxygen Isotope in Saline Stratum of Hengshui
-
摘要: 衡水地区的咸水层特征一直备受关注.为了探讨咸水层分布区的沉积环境与咸水形成期的古气候特征,利用钻孔(深度130 m)采集了衡水地区咸水层沉积物,进行了沉积物粒度和粘性土孔隙水氘氧同位素测试.沉积物粒度标准偏差显示,剖面上由深至浅,沉积时期水动力呈由弱到强再到弱的变化趋势,其中水动力强段为90~65 m,为厚层砂砾层.孔隙水TDS和δ18O特征显示在6 m以上受到大气降水和人类活动的影响,并且主要是以淡水灌溉影响为主.剖面上粘性土孔隙水的δ18O在130~90 m平均值为-11.5‰,65~29 m平均值为-12.1‰,23~0 m为-10.6‰,而下部淡水含水层地下水δ18O为-9.8‰,上部咸水含水层地下水δ18O为-8.2‰,粘性土孔隙水δ18O明显偏负于含水层的地下水,反映保存记录了古气候信息.130~90 m,δ18O先增大后减小反映温度先升高后降低;65~29 m,δ18O反映温度偏低的气候特征;23~0 m,δ18O相对比较稳定,总体偏正,反映了全新世为一个相对较为稳定但较高的温度.Abstract: The characteristics of saline stratum in Hengshui have always been concerned. In order to discuss the paleoenvironment and the paleoclimate in Hengshui area, grain size and pore water stable isotope (δD, δ18O) of clay collected from Hengshui saline stratum(thickness of 130 m) by drilling were analyzed. The standard deviation of sediment grain size shows that the hydrodynamic strength changed from weak to strong and then to weak, there is a deep gravel layer in 90-65 m, which reflects a strong hydrodynamic strength and a humid clime. The TDS and δ18O reflect the affect of atmospheric precipitation and human irrigation above 6 m, specially for the human irrigation. The mean value of δ18O at depth of 130-90 m is -11.5‰, and it is -12.1‰ and -10.6‰ at depth of 65-29 m and 23-0 m. The δ18O of aquifer at 90-65 m is -9.8‰, and -8.2‰ of 29-23 m. The δ18O of clay pore water is negative compared with the aquifer groundwater, reflecting that the clay pore water saves paleoenvironment information. The δ18O at depth of 65-29 m firstly increases and than decreases reflecting the temperature firstly increases and than decreases; the δ18O at depth of 65-29 m reflects a low temperature; the δ18O at depth of 23-0 m is relatively stable, but is positive overall, indicating a warm climate in Holocene.
-
Key words:
- Hengshui /
- sediment grain size /
- clay pore water /
- deuterium-oxygen isotopes /
- paleoclimate
-
表 1 粘性土孔隙水δ18O、δD
Table 1. δ18O and δD of clay pore water
深度(m) δD‰ δ18O‰ 0.5 -66.8 -8.9 0.8 -68.3 -9.2 1.5 -71.1 -9.4 2.0 -65.7 -8.8 2.5 -78.1 -10.4 3.0 -77.1 -10.3 3.5 -92.4 -12.6 4.0 -70.1 -9.4 4.5 -93.6 -12.5 5.0 -69.8 -9.5 6.0 -85.8 -11.9 7.0 -86.8 -11.6 8.0 -83.3 -11.0 9.0 -93.5 -12.2 10.0 -77.4 -10.5 11.0 -65.9 -8.9 12.0 -93.5 -12.6 13.0 -85.9 -11.7 15.0 -77.3 -10.4 16.0 -71.1 -9.0 19.0 -73.6 -9.9 20.0 -93.6 -12.6 21.0 -82.6 -10.9 22.0 -70.3 -9.7 24.0 -91.5 -12.0 25.0 -89.3 -11.8 27.0 -68.9 -9.1 29.0 -80.8 -10.8 30.0 -101.9 -13.1 31.0 -93.4 -12.2 32.0 -87.9 -11.8 33.0 -76.9 -9.9 34.0 -107.8 -14.6 35.1 -75.7 -9.9 39.0 -97.2 -13.2 40.0 -74.2 -9.8 41.0 -96.7 -13.0 43.0 -90.7 -11.8 44.0 -86.1 -11.7 45.0 -84.7 -11.2 46.0 -90.3 -12.0 47.0 -95.3 -12.6 49.0 -92.1 -12.2 51.0 -79.6 -10.3 52.0 -85.7 -11.1 53.0 -96.4 -12.2 54.0 -102.8 -13.8 55.0 -86.3 -11.3 56.0 -96.0 -12.8 57.0 -96.2 -12.6 58.0 -80.3 -10.8 58.8 -88.3 -11.9 60.0 -100.0 -13.1 61.0 -104.7 -13.8 62.0 -87.1 -12.2 63.0 -90.0 -12.1 64.0 -104.5 -14.0 65.0 -88.1 -12.0 83.0 -92.3 -12.5 91.0 -94.7 -12.8 92.0 -86.7 -11.4 93.0 -91.7 -11.7 94.0 -86.1 -11.3 95.0 -95.9 -12.5 99.0 -84.7 -10.5 100.0 -88.1 -10.7 101.0 -97.6 -12.5 102.0 -90.9 -11.7 103.0 -86.4 -11.0 104.0 -94.1 -12.3 105.0 -86.8 -11.4 106.0 -80.7 -10.6 109.0 -81.0 -10.6 110.0 -87.4 -11.4 111.0 -84.6 -11.2 112.0 -82.0 -10.7 113.0 -88.9 -11.9 114.0 -83.7 -11.0 115.0 -86.3 -11.5 117.2 -82.6 -10.9 118.0 -96.7 -13.3 119.0 -84.5 -11.6 120.0 -83.5 -11.3 123.0 -84.4 -11.5 124.0 -82.5 -11.2 125.0 -87.0 -11.9 129.3 -86.8 -11.7 -
An, Z.S., Wu, X.H., Wang, P.X., et al., 1991a.China's Paleomonsoon in the Recent 130 ka-Ⅱ.Paleomonsoon Change.Scientia Sinica Chemica, (11):1 (in Chinese). An, Z.S., Wu, X.H., Wang, P.X., et al., 1991b.China's Paleomonsoon in the Recent 130 ka-Ⅰ.Paleomonsoon Change.Scientia Sinica Chemica, (10):1076-1081 (in Chinese). Blott, S.J., Pye, K., 2001.GRADISTAT:A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments.Earth Surface Processes and Landforms, 26(11):1237-1248.doi: 10.1002/esp.261 Bricker, O.P., Matisoff, G., Holder, G.R.Jr., 1977.Interstitial Water Chemistry of Chesapeake Bay Sediments, Basic Date Report No.9.Department of Natural Resources Maryland Geological Survey, U.S.A. Cao, J.T., Wang, S.M., Shen, J., et al., 2000.The Paleoclimate Changes during the Past Millennium Lnferred from the Lacustrine Core in Daihai Lake, Inner Mongolia.Scientia Geographica Sinica, 20(5):391-396 (in Chinese with English abstract). Chen, H., Wang, G.L., Zhang, W., et al., 2005.The Evolvement of Groundwater Chemic Character in Hebei Plain.Earth and Environment, 33(z1):620-623 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ2005S1131.htm Chen, S.Y., Wang, S.M., Wu, Y.H., 2006.Sedimentary Cycles and Paleoenvironmental Evolution of the Co Ngoin Lake in Tibetan Plateau since Late Cenozoic.Acta Geoscientica Sinica, 27(4):315-322 (in Chinese with English abstract). http://www.oalib.com/paper/1557882 Chen, Z.Y., Gao, H.Q., Wei, W., et al., 2009.Confined Aquifer in North China Plain.Resources Science, 31(3):388-393 (in Chinese with English abstract). http://www.oalib.com/paper/1704460#.WX7ZI_l69Hc Dansgaard, W., 1964.Stable Isotopes in Precipitation.Tellus, 16(4):436-468.doi: 10.1111/j.2153-3490.1964.tb00181.x Dansgaard, W., Johnson, J., Clausen, H.B., et al.1971.Climatic Oscillations Depicted and Predicted by Isotope Analysis of a Greenland Ice Core//First International Conference on Port and Ocean Engineering under Arctic Conditions I., U.S.A.17-22. Desaulniers, D.E., Cherry, J.A., Fritz, P., 1981.Origin, Age and Movement of Pore Water in Argillaceous Quaternary Deposits at Four Sites in Southwestern Ontario.Journal of Hydrology, 50:231-257.doi: 10.1016/0022-1694(81)90072-x Gao, H.Q., Fei, Y.H., Luo, G.Z., et al., 2010.Effect Analysis of Saline Groundwater Utilization in Hebei Plain.South-To-North Water Transfers and Water Science & Technology, 8(2):53-56 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NSBD201002022.htm Gao, Y.X., 2008.Study on Groundwater Hydraulic Connection in Different Aquifers under Mass Pumped Conditions in Typical Area North China Plain (Dissertation).Chinese Academey of Geological Sciences, Beijing (in Chinese with English abstract). He, H.C., Ding, H.Y., Zhang, Z.K., et al., 2005.Grain-Size Characteristics and their Environmental Significance of Hongze Lake Sediments.Scientia Geographica Sinica, 25(5):80-86 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLKX200505012.htm Hendry, M.J., Wassenaar, L.I., 1999.Implications of the Distribution of δD in Pore Waters for Groundwater Flow and the Timing of Geologic Events in a Thick Aquitard System.Water Resources Research, 35(6):1751-1760. doi: 10.1029/1999WR900046 Hendry, M.J., Woodbury, A.D..2007.Clay Aquitards as Archives of Holocene Paleoclimate:δ18O and Thermal Profiling.Ground Water-November-December, 45(6):683-691. doi: 10.1111/gwat.2007.45.issue-6 Huang, T.M., Nie, Z.Q., Yuan, L.J., 2008.Temperature and Geographical Effects of Hydrogen and Oxygen Isotopes in Precipitation in West of China.Journal of Arid Land Resources and Environment, 22(8):76-81 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GHZH200808015.htm Husain, M.M., Cherry, J.A., Frape, S.K., 2004.The Persistence of a Large Stagnation Zone in a Developed Regional Aquifer, Southwestern Ontario.Canadian Geotechnical Journal, 41(5):943-958.doi: 10.1139/t04-040 Lei, K., Meng, W., Zheng, B.H., et al., 2006.Grain Size Distributions of Sediments in the Intertidal Zone on the West Coast of the Bohai Bay.Marine Science Bulletin, 25(1):54-61 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-hutb200601008.htm Li, Q.H., 2003.Application of Deposit's Size to Reconstruction of Ancient Environment.Journal of Chaohu College, (3):26-28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CHXY200303007.htm Liu, C.F., Wang, P.Y., 1997 The Environment Significance of H, O, C and Cl Isotopic Composition in Groundwater of Hebei Plain.Earth Science Frontiers, 4(2):267-274 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY7Z1.042.htm Northern Shanxi Team of Chengdu College of Geology, 1978.Sedimentary Rocks (Sediments) Size Analysis and Its Applications.Geological Publishing House, Beijing (in Chinese). Reeburgh, W.S., 1967.An Improved Interstitial Water Sampler.Limnology and Oceanography, 12(1):163-165.doi: 10.4319/lo.1967.12.1.0163 Remenda, V.H., Cherry, J.A., Edwards, T.W.D., 1994.Isotopic Composition of Old Ground Water from Lake Agassiz:Implications for Late Pleistocene Climate.Science, 266(5193):1975-1978.doi: 10.1126/science.266.5193.1975 Sacchi, E., Michelot, J.L., Pitsch, H., et al., 2001.Extraction of Water and Solutes from Argillaceous Rocks for Geochemical Characterisation:Methods, Processes and Current Understanding.Hydrogeology Journal, 9(1):17-33.doi: 10.1007/s100400000113 Shen, Z.L., Zhu, W.H., 1993.Hydrogeochemical Foundation.Geological Publishing House, Beijing (in Chinese). Shi, K., Dai, X.R., Shi, Y.X., et al., 2009.Grain-Size Characterstics and their Paleoenvironmental Significance of SC7 Core Sediments in Lake Chenghu, Jiangsu Province, China.Journal of Lake Sciences, 21(5):741-748 (in Chinese with English abstract). doi: 10.18307/2009.0520 State Oceanic Administration, 1975.Area of Marine Survey (Fourth Volumes-Marine Geological Survey).Ocean Press, Beijing, 9-88 (in Chinese). Sun, Y.C., Li, H.S., 1986.Sedimentary Facies and Depositional environment of Clastic Rocks.Geological Publishing House, Beijing (in Chinese). Wang, H.Y., Shi, Y.C., Yu, P.T., et al., 2002.Alluviums of the Early and Middle Holocene in the Quzhou Area, the Southern Hebei Plain and Palaeoenvironment Inferences.Quaternary Sciences, 22(4):381-393 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200204010.htm Wang, J.B., Zhu, L.P., 2002.Grain-Size Characteristics and their Paleo-Environmental Significance of Chen Co Lake Sediments in Southern Tibet.Progress in Geography, 21(5):459-467 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DLKJ200205006.htm Wang, Q., Li, F.L., 1983.The Changes of Marine-Continental Conditions in the West Coast of the Bohai Gulf during Quaternary.Marine Geology & Quaternary Geology, 3(4):83-89 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ198304012.htm Wang, S.M., Wu, R.J., Jiang, X.H., 1990.Environment Evolution and Paleoclimate of Daihai Lake, Inner Mongolia since the last Glaciation.Quaternary Sciences, 10(3):223-232 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ199003003.htm Wang, X.Y., Wu, L., Zhang, G.S., et al., 2008.Characteristics and Environmental Significance of Magnetic Susceptibility and Grain Size of Lake Sediments since Holocene in Chaohu Lake, Anhui Province.Scientia Geographica Sinica, 28(4):548-553 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLKX200804015.htm Xiao, C.X., Li, Z.Z., 2006.The Research Summary of Grain Size Analysis and Its Application in the Sedimentation.Journal of Xinjiang Normal University, 25(3):118-123 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSZ200603034.htm Yang, G.F., Wu, F.D., Chen, Z.H., et al., 2015.n-Alkane Distribution and Their Palaeoenvironmental Implications in Fluvial-Lacustrine Sediments in Dengkou, Inner Mongolia.Earth Science, 40(2):327-333 (in Chinese with English abstract). Yu, G., Liu, J., Xue, B., et al., 2007.Dynamical Palaeoclimate Simulations.Higher Education Press, Beijing, 137-139 (in Chinese). Zhang, C.S., Zhang, Y.C., Hu, J.J., 1995.Evolution of Geological Environment in North Huabel Plain in Historic Times.Journal of Geological Hazards and Enveronment Preservation, 6(2):12-19 (in Chinese with English abstract). Zhang, G.H., Fei, Y.H., Yang, L.Z., et al., 2010.Variation Characteristics and Mechanisms of Exploitation Yield Formation in the Region with Confined-Groundwater Depression Cone.Advances in Water Science, 21(3):370-376 (in Chinese with English abstract). Zhang, J.X., Shen, Z.J., Gu, H.B., et al., 2007.Quaternary Environmental Geochemistry of Dongting Lake Area.Geological Publishing House, Beijing, 124-127 (in Chinese). Zhang, R.Q., Liang, X., Jin, M.G., 2013.The Evolution of Groundwater Flow Systems in the Quaternary of Hebei Plain since the last Glacial Maximum.Earth Science Frontiers, 20(3):217-226 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201303026.htm Zhang, S.E., Li, Z.J., Sun, X.F., et al., 2010.Impact of Invasion of Salty Groundwater into Fresh Groundwater in Hebei Province.Journal of Geological Hazards and Environment Preservation, 21(1):26-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZHB201001009.htm Zhang, Z.H., Shi, D.H., Ren, H.F., 1997.Evolution of the Quaternary groundwater system of the North China Plain.Scientia Sinica Terrae, 27(2):168-173 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxg199703007&dbname=CJFD&dbcode=CJFQ Zhou, L., Liu, C.F., Wang, P.Y., 1998.Isotopic Composition of Saline Water in Quaternary Aquifers of Hebei Plain.Hydrogeology and Engineering Geology, 25(3):6-10 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG803.001.htm 安芷生, 吴锡浩, 汪品先, 等, 1991a.最近130 ka中国的古季风-Ⅰ.古季风记录.中国科学B辑:化学, (10): 1076-1081. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199110010.htm 安芷生, 吴锡浩, 汪品先, 等, 1991b.最近130 ka中国的古季风-Ⅱ.古季风变迁.中国科学B辑:化学, (11): 1. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199111012.htm 曹建廷, 王苏民, 沈吉, 等, 2000.近千年来内蒙古岱海气候环境演变的湖泊沉积记录.地理科学, 20(5): 391-396. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200005000.htm 陈浩, 王贵玲, 张薇, 等, 2005.河北平原地下水水化学演化.地球与环境, 33(z1): 620-623. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200509002130.htm 陈诗越, 王苏民, 吴艳宏, 2006.西藏错鄂湖沉积旋回与古环境变迁.地球学报, 27(4): 315-322. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200604005.htm 陈宗宇, 皓洪强, 卫文, 等, 2009.华北平原深层地下水的更新与资源属性.资源科学, 31(3): 388-393. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY200903010.htm 成都地质学院陕北队, 1978.沉积岩(物)粒度分析及其应用.北京:地质出版社. 郜洪强, 费宇红, 雒国忠, 等, 2010.河北平原地下咸水资源利用的效应分析.南水北调与水利科技, 8(2): 53-56. http://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201002022.htm 高业新, 2008. 华北平原典型地区大规摸开采条件下不同层位含水组地下水互动关系研究(博士毕业论文). 北京: 中国地质科学院. http://cdmd.cnki.com.cn/Article/CDMD-82501-2008177389.htm 国家海洋局, 1975.海洋调查范围(第四分册—海洋地质调查).北京:海洋出版社, 9-88. 何华春, 丁海燕, 张振克, 等, 2005.淮河中下游洪泽湖湖泊沉积物粒度特征及其沉积环境意义.地理科学, 25(5): 80-86. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200505012.htm 黄天明, 聂中青, 袁利娟, 2008.西部降水氢氧稳定同位素温度及地理效应.干旱区资源与环境, 22(8): 76-81. http://www.cnki.com.cn/Article/CJFDTOTAL-GHZH200808015.htm 雷坤, 孟伟, 郑丙辉, 等, 2006.渤海湾西岸潮间带沉积物粒度分布特征.海洋通报, 25(1): 54-61. http://cdmd.cnki.com.cn/Article/CDMD-10183-2007093311.htm 李其华, 2003.沉积物粒度在古环境重建中的应用.巢湖学院学报, (3): 26-28. http://www.cnki.com.cn/Article/CJFDTOTAL-CHXY200303007.htm 刘存富, 王佩仪, 1997.河北平原地下水氢, 氧, 碳, 氯同位素组成的环境意义.地学前缘, 4(2): 267-274. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY7Z1.042.htm 沈照理, 朱宛华, 1993.水文地球化学基础.北京:地质出版社. 史凯, 戴雪荣, 师育新, 等, 2009.苏州澄湖SC7孔沉积物粒度特征及其古环境意义.湖泊科学, 21(5): 741-748. http://www.cnki.com.cn/Article/CJFDTOTAL-FLKX200905022.htm 孙永传, 李惠生, 1986.碎屑岩沉积相和沉积环境.北京:地质出版社. 王红亚, 石元春, 于澎涛, 等, 2002.河北平原南部曲周地区早、中全新世冲积物的分析及古环境状况的推测.第四纪研究, 22(4): 381-393. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200204010.htm 王君波, 朱立平, 2002.藏南沉错沉积物的粒度特征及其古环境意义.地理科学进展, 21(5): 459-467. doi: 10.11820/dlkxjz.2002.05.007 王强, 李凤林, 1983.渤海湾西岸第四纪海陆变迁.海洋地质与第四纪地质, 3(4): 83-89. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ198304012.htm 王苏民, 吴瑞金, 蒋新禾, 1990.内蒙古岱海末次冰期以来的环境变迁与古气候.第四纪研究, 10(3): 223-232. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ199003003.htm 王心源, 吴立, 张广胜, 等, 2008.安徽巢湖全新世湖泊沉积物磁化率与粒度组合的变化特征及其环境意义.地理科学, 28(4): 548-553. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200804015.htm 肖晨曦, 李志忠, 2006.粒度分析及其在沉积学中应用研究.新疆师范大学学报(自然科学版), 25(3): 118-123. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSZ200603034.htm 杨桂芳, 武法东, 陈正洪, 等, 2015.内蒙古磴口河湖相沉积物正构烷烃分布特征及其环境意义.地球科学, 40(2): 327-333. http://earth-science.net/WebPage/Article.aspx?id=3056 于革, 刘健, 薛滨, 等, 2007.古气候动力模拟.北京:高等教育出版社, 137-139. 张春山, 张业成, 胡景江, 1995.华北平原北部历史时期地质环境演化.地质灾害与环境保护, 6(2): 12-19. http://www.cnki.com.cn/Article/CJFDTOTAL-DZHB502.001.htm 张光辉, 费宇红, 杨丽芝, 等, 2010.深层水漏斗区开采量组成变化特征与机制.水科学进展, 21(3): 370-376. http://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201003013.htm 张建新, 申志军, 顾海滨, 等, 2007.洞庭湖区第四纪环境地球化学.北京:地质出版社:124-127. 张人权, 梁杏, 靳孟贵, 2013.末次盛冰期以来河北平原第四系地下水流系统的演变.地学前缘, 20(3): 217-226. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303026.htm 张素娥, 李志军, 孙先锋, 等, 2010.河北省地下咸水对地下淡水资源入侵影响分析.地质灾害与环境保护, 21(1): 26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201001009.htm 张宗祜, 施德鸿, 任福弘, 等, 1997.论华北平原第四系地下水系统之演化.中国科学D辑:地球科学, (2): 168-173. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199702012.htm 周炼, 刘存富, 王佩仪, 1998.河北平原第四系咸水同位素组成.水文地质工程地质, 25(3): 6-10. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG803.001.htm