Deformational Characteristics and Geochronological Constraints of Quxu Ductile Shear Zone in Middle Gangdese Magmatic Belt, South Tibet
-
摘要: 藏南曲水地区鸡公-色甫韧性剪切带系统的运动学和动力学研究,不仅对造山带构造研究具有重要理论意义,而且对青藏高原中-南部区域地质研究具有推进作用.作为藏南冈底斯岩浆带曲水岩基中的重要断裂构造,曲水韧性剪切带经历了新生代以来的大规模构造变形,其中走滑剪切作用最为显著,整体表现为右行走滑为主.通过对曲水剪切带中的构造片岩、初糜棱岩、糜棱岩以及长英质脉体等野外观测并结合室内镜下薄片以及石英EBSD(electron backscatter diffraction)组构分析,认为曲水剪切带主要经历了一期韧性变形事件.根据石英-长石变形矿物对并结合石英EBSD组构分析得出,构造变形发生的温度大约为500~550 ℃,高绿片岩相到角闪岩相.剪切带内普遍发育有不对称的褶皱、构造透镜体、σ碎斑、S-C组构和石香肠等变形组构,显示出右行走滑的特征.对研究区34组糜棱面理和9组拉伸线理进行极射赤平投影,糜棱面理的优选方位约为355°∠70°,拉伸线理产状约为95°∠8°.此外,在糜棱岩中发育两类长英质脉体,根据野外分布特征、显微组构、锆石成因学以及岩石地球化学特征综合研究认为,两类长英质脉体为同构造剪切脉体,其年代学可以对剪切带的形成时限起到很好的制约.通过对两套长英质脉体分别进行LA-ICP-MS锆石U-Pb定年,得到了38.67±0.88 Ma和35.05±0.29 Ma两组加权平均年龄,表明了曲水剪切带韧性变形发生于35~38 Ma的始新世末期(普利亚本期).这一年龄值处于印度-亚洲大陆晚碰撞期,因此曲水韧性剪切带右行走滑事件可能是印度板块持续向北俯冲,构造应力在欧亚板块边缘释放引起的陆内构造响应.Abstract: The systematic kinematic and dynamic researches of Jigong-Sefu ductile shear zone not only have theoretical significance for the orogenic tectonics, but also advance geological studies of the middle-southern segments of the Tibetan plateau. Quxu ductile shear zone, a vital part of geological structures of Quxu batholith in Gangdese magmatic belt, has experienced large-scale structural deformations featuring with ductile strike-slip shearing, predominantly of dextral shearing since Cenozoic (top to the east). Based on outcrop observations of structural schist, protomylonite, mylonite and felsic veins and thin section analyses as well as quartz EBSD fabric testing, one stage of ductile deformation was identified in the Quxu shear zone. It is found by mineral deformation geothermometer of quartz-feldspar and quartz EBSD fabric analyses that the shear zone is characterized by middle temperature deformations with 500-550 ℃ (from high greenschist facies to amphibolite facies). Structural deformation of the Quxu shear zone observed in South Tibet reveals that the asymmetric folds, structural lenses, σ porphyroclast, S-C fabrics and boudinages are good indicators, which suggest a dextral strike-slip shearing. Average values of 34 mylonitic foliations and 9 stretching lineation are 355°∠70° and 95°∠8°. Moreover, two kinds of granitic veins were identified in the Quxu shear zone. Combined with field occurrence, microstructures, zircon CL features and geochemistry of the felsic veins, we interpret that the two kinds of granitic veins are syn-tectonic shearing intrusions, whose ages can make an accurate geochronological constraint on the formation of the Quxu shear zone. LA-ICP-MS zircon dating of the granitic veins yields ages of 38.67±0.88 Ma and 35.05±0.29 Ma, respectively, further indicating that the Quxu shear zone started at 35-38 Ma (Priabonian stage of Eocene). The shearing time is consistent with that of the late stage of the Indian-Asian plate collision. Therefore, it is concluded that the Quxu shear zone might be related to continuous northward subduction of the Indian plate, corresponding to tectonic stress relation and an intra-continental deformation event.
-
图 1 青藏高原及邻区大地构造图(a)、冈底斯中段曲水岩基分布(b)和研究区及样品分布(c)
1.花岗岩类;2.晚侏罗世到晚白垩世沉积地层;3.林子宗火山岩;4.冈底斯岩群;5.石英闪长岩;6.花岗岩;7.紫苏花岗岩;8.晚侏罗世多底沟组;9.桑日群火山岩;10.修康岩群;11.噶学岩群;12.长英质脉体;13.剪切带;14.断层;15.采样点(绿色五角星为花岗质糜棱岩采样点;蓝色五角星为同构造脉体采样点;白色五角星为薄片采样点);16.G318国道;图a据Ji et al.(2009);图b和c据1:250 000区域地质图修改
Fig. 1. Tectonic framework of the southern Tibet (a), simplified geologic map of Quxu batholith (b) and study area and sampling locations (c)
图 6 研究区花岗质糜棱岩及同构造剪切脉稀土配分模式图(a)和微量元素蜘蛛网图(b)
球粒陨石标准化据Boynton(1984);原始地幔值据Sun and McDonough(1989)
Fig. 6. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace earth element patterns (b) for mylonite and syn-tectonic veins in Quxu region
图 11 拉萨地体主要逆冲断裂分布
据Yin et al.(1994);Li et al.(2015)修改
Fig. 11. Distribution sketch of major thrust belts in Lhasa terrane, southern Tibet
表 1 花岗质糜棱岩及长英质脉体岩石地球化学成分
Table 1. Major and trace elemental data for mylonitic granite and felsic veins in Quxu region
样品号 CT7-3-1 CT7-3-4 CT7-4-3 CT7-4-7 CT7-7-2 CT7-7-8 SiO2 71.7 75.5 62.8 62.8 77.1 76.8 Al2O3 15.75 13.15 16.35 16.20 12.75 12.4 BaO 0.12 0.09 0.06 0.06 0.03 0.06 CaO 2.14 1.01 4.24 4.38 1.28 0.64 Cr2O3 0.01 0.01 0.01 0.01 0.01 <0.01 Fe2O3 1.09 0.67 4.97 4.83 0.59 0.58 K2O 4.06 5.68 3.09 3.02 3.9 5.48 MgO 0.31 0.15 2.2 2.14 0.16 0.08 MnO 0.02 0.01 0.10 0.10 0.01 0.01 Na2O 4.20 2.78 3.95 3.95 3.53 2.82 P2O5 0.04 0.02 0.19 0.19 0.01 0.01 SrO 0.07 0.04 0.07 0.07 0.02 0.02 TiO2 0.15 0.11 0.53 0.53 0.1 0.07 LOI 0.29 0.19 0.89 1.1 0.17 0.31 Ti 0.08 0.06 0.31 0.31 0.05 0.04 Sc 1 1 10 8 1 1 Ti 0.08 0.06 0.31 0.31 0.05 0.04 Ba 984 770 496 490 128.5 487 Cr <10 <10 20 10 <10 <10 Cs 1.04 1.43 6.78 6.43 1.49 0.91 Ga 16.0 13.7 18.2 18.7 14.9 12.3 Hf 2.6 2.0 4.2 4.1 3.0 3.1 Nb 1.4 1.9 4.9 4.7 1.7 1.6 Rb 47.2 74.2 71.0 70.6 56.3 57.5 Sn <1 <1 1 1 <1 <1 Sr 605.0 354.0 583.0 579.0 136.5 156.0 Ta 0.1 0.2 0.3 0.3 0.1 0.2 Th 10.30 8.63 7.11 8.99 21.90 22.40 Zr 88 64 154 150 71 89 U 0.99 1.11 2.21 2.17 2.15 1.84 V 13 12 109 107 6 8 W 1 <1 1 1 <1 <1 Y 2.5 2.8 14.4 12.0 2.4 3.1 La 19.3 15.2 21.1 18.9 17.1 23.7 Ce 31.3 25.6 42.5 39.4 29.8 38.1 Pr 3.03 2.53 5.03 4.43 3.07 3.59 Nd 9.7 8.0 19.3 16.7 9.9 10.9 Sm 1.40 1.19 3.68 3.34 1.39 1.46 Eu 0.45 0.29 0.88 0.80 0.25 0.22 Gd 0.70 0.78 2.87 2.44 0.79 0.75 Tb 0.08 0.10 0.44 0.37 0.09 0.10 Dy 0.43 0.49 2.61 2.13 0.44 0.49 Ho 0.08 0.09 0.48 0.47 0.08 0.10 Er 0.29 0.23 1.49 1.26 0.25 0.32 Tm 0.04 0.04 0.24 0.21 0.04 0.05 Yb 0.29 0.34 1.54 1.21 0.29 0.36 Lu 0.05 0.06 0.25 0.21 0.05 0.06 Sr/Y 242 126 40 48 57 50 La/Yb 67 45 14 16 59 66 注:CT7-4-3和CT7-4-7为糜棱质花岗岩;CT7-3-1和CT7-3-4为岩墙状脉体;CT7-7-2和CT7-7-8为岩枝状脉体;主量元素单位为%;微量元素为10-6. 表 2 糜棱岩及长英质脉体的LA-ICP-MS锆石U-Pb定年结果
Table 2. LA-ICP-MS zircon U-Pb isotope data for mylonite and felsic veins in Quxu region
样品号 元素(10-6) 同位素比值 年龄比值(Ma) Th U Th/U 207Pb/206Pb ±1δ 207Pb/235U ±1δ 206Pb/238U ±1δ 207Pb/235U ±1δ 206Pb/238U ±1δ 样品Xk1-1-1为花岗质糜棱岩,加权平均年龄为49.99±0.76 Ma,MSWD=1.70 Xk1-1-1-1 1 932 941 2.05 0.048 20 0.002 42 0.051 91 0.002 72 0.007 81 0.000 13 51.00 3.00 50.20 0.80 Xk1-1-1-2 1 542 836 1.85 0.046 55 0.003 37 0.050 91 0.003 73 0.007 93 0.000 15 50.00 4.00 50.90 1.00 Xk1-1-1-3 1 082 606 1.78 0.045 95 0.003 77 0.049 39 0.004 09 0.007 80 0.000 15 49.00 4.00 50.10 1.00 Xk1-1-1-4 776 779 1.00 0.045 63 0.003 97 0.049 85 0.004 36 0.007 93 0.000 16 49.00 4.00 51.00 1.00 Xk1-1-1-5 1 151 473 2.43 0.047 45 0.007 93 0.050 74 0.008 38 0.007 76 0.000 26 50.00 8.00 50.00 2.00 Xk1-1-1-6 541 356 1.52 0.045 29 0.009 05 0.049 41 0.009 76 0.007 91 0.000 30 49.00 9.00 51.00 2.00 Xk1-1-1-7 715 477 1.50 0.046 50 0.003 53 0.050 57 0.003 89 0.007 89 0.000 14 50.00 4.00 50.70 0.90 Xk1-1-1-8 1 685 904 1.86 0.048 08 0.002 52 0.051 04 0.002 79 0.007 70 0.000 13 51.00 3.00 49.40 0.80 Xk1-1-1-9 1 057 689 1.53 0.048 16 0.005 89 0.051 55 0.006 25 0.007 76 0.000 21 51.00 6.00 50.00 1.00 Xk1-1-1-10 822 512 1.61 0.046 93 0.004 87 0.051 43 0.005 33 0.007 95 0.000 18 51.00 5.00 51.00 1.00 Xk1-1-1-11 1 322 706 1.87 0.047 59 0.003 23 0.053 31 0.003 68 0.008 13 0.000 15 53.00 4.00 52.20 1.00 Xk1-1-1-12 738 542 1.36 0.046 22 0.006 62 0.048 49 0.006 88 0.007 61 0.000 23 48.00 7.00 49.00 1.00 Xk1-1-1-13 624 406 1.54 0.048 04 0.004 30 0.049 67 0.004 47 0.007 50 0.000 15 49.00 4.00 48.20 1.00 Xk1-1-1-14 1 883 702 2.68 0.047 81 0.005 32 0.048 66 0.005 38 0.007 38 0.000 18 48.00 5.00 47.00 1.00 样品Xk1-1-2为岩枝状脉体,加权平均年龄为38.67±0.88 Ma,MSWD=3.00 Xk1-1-2-03 24 254 12 031 2.02 0.049 39 0.002 09 0.040 28 0.001 81 0.005 92 0.000 09 40.00 2.00 38.00 1.00 Xk1-1-2-04 7 518 6 303 1.19 0.046 05 0.001 38 0.035 92 0.000 95 0.005 66 0.000 08 36.00 1.00 36.00 1.00 Xk1-1-2-06 3 027 3 508 0.86 0.047 33 0.002 02 0.039 88 0.001 82 0.006 12 0.000 10 40.00 2.00 39.00 1.00 Xk1-1-2-07 264 221 1.20 0.046 74 0.014 22 0.040 49 0.012 19 0.006 29 0.000 32 40.00 12.00 40.00 2.00 Xk1-1-2-08 1 072 632 1.70 0.046 41 0.010 63 0.038 53 0.008 70 0.006 03 0.000 27 38.00 9.00 39.00 2.00 Xk1-1-2-09 2 650 1 050 2.52 0.049 53 0.007 36 0.042 81 0.006 27 0.006 27 0.000 21 43.00 6.00 40.00 1.00 Xk1-1-2-10 543 324 1.68 0.046 68 0.012 08 0.039 70 0.010 16 0.006 17 0.000 28 40.00 10.00 40.00 2.00 Xk1-1-2-12 17 642 7 176 2.46 0.049 81 0.002 03 0.040 93 0.001 79 0.005 97 0.000 09 41.00 2.00 38.00 1.00 Xk1-1-2-13 9 882 6 143 1.61 0.049 69 0.002 62 0.039 91 0.002 18 0.005 83 0.000 10 40.00 2.00 38.00 1.00 Xk1-1-2-14 9 749 4 474 2.18 0.047 20 0.002 38 0.041 24 0.002 17 0.006 34 0.000 11 41.00 2.00 41.00 1.00 Xk1-1-2-15 3 650 2 136 1.71 0.047 53 0.002 64 0.040 76 0.002 34 0.006 22 0.000 11 41.00 2.00 40.00 1.00 样品Xk1-1-3为岩墙状脉体,加权平均年龄为35.05±0.29 Ma,MSWD=0.98 Xk1-1-3-1 49 053 30 176 1.63 0.047 05 0.001 08 0.035 48 0.001 03 0.005 47 0.000 08 35.00 1.00 35.00 0.50 Xk1-1-3-3 6 474 11 291 0.57 0.048 78 0.002 94 0.037 21 0.002 29 0.005 54 0.000 10 37.00 2.00 36.00 0.60 Xk1-1-3-4 4 494 19 785 0.23 0.046 20 0.001 41 0.035 24 0.000 95 0.005 53 0.000 08 35.00 1.00 36.00 0.50 Xk1-1-3-5 2 755 11 020 0.25 0.046 26 0.001 36 0.035 66 0.001 22 0.005 59 0.000 08 36.00 1.00 36.00 0.50 Xk1-1-3-6 23 012 14 874 1.55 0.048 70 0.001 78 0.036 59 0.001 47 0.005 45 0.000 08 36.00 1.00 35.00 0.50 Xk1-1-3-7 109 693 33 468 3.28 0.049 58 0.001 51 0.037 03 0.00 13 0.005 42 0.000 08 37.00 1.00 35.00 0.50 Xk1-1-3-8 139 855 33 143 4.22 0.047 66 0.001 15 0.035 19 0.001 05 0.005 36 0.000 07 35.00 1.00 35.00 0.40 Xk1-1-3-9 6 042 11 069 0.55 0.047 28 0.001 27 0.035 68 0.001 15 0.005 48 0.000 08 36.00 1.00 35.00 0.50 Xk1-1-3-10 55 033 16 627 3.31 0.048 68 0.001 82 0.036 03 0.001 47 0.005 37 0.000 08 36.00 1.00 35.00 0.50 Xk1-1-3-13 10 635 13 871 0.77 0.048 76 0.001 95 0.035 94 0.001 55 0.005 35 0.000 08 36.00 2.00 34.00 0.50 Xk1-1-3-14 86 225 15 868 5.43 0.046 37 0.001 88 0.035 10 0.001 53 0.005 49 0.000 09 35.00 2.00 35.00 0.60 Xk1-1-3-15 9 751 14 488 0.67 0.050 68 0.002 15 0.038 13 0.001 73 0.005 46 0.000 09 38.00 2.00 35.00 0.60 -
Black, L.P., Gulson, B.L., 1978.The Age of the Mud Tank Carbonatite, Strangways Range, Northern Territory.BMR Journal of Australian Geology and Geophysics, 3(3):227-232. https://www.researchgate.net/publication/301347326_The_age_of_the_Mud_Tank_carbonatite_Strangways_range_Northern_Territory Borges, F.S., White, S.H., 1980.Micro Structural and Chemical Studies of Sheared Anorthosites, Roneval, South Harris.Journal of Structural Geology, 2(1-2):237-280.doi: 10.1016/0191-8141(80)90060-7 Boynton, W.V., 1984.Geochemistry of the Rare Earth Elements:Meteorite Studies.In:Henderson, P., ed., Rare Earth Element Geochemistry.Elsevier, Amsterdam, 63-114. http://www.oalib.com/references/19195779 Chang, C.F., Zheng, X.L., 1973.Tectonic Features of the Mount Jolmolungma Region in Southern Tibet, China.Scientia Geologica Sinica, 8(1):1-12 (in Chinese). Chen, W.J., Li, Q., Hao, J., et al., 1999.Postcrystallization Thermal Evolution History of Gangdese Batholithic Zone and Its Tectonic Implication.Science in China (Series D), 42(1):37-44. doi: 10.1007/BF02878496 Chu, M.F., Chung, S.L., Song, B., et al., 2006.Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet.Geology, 34(9):745-748.doi: 10.1130/G22725.1 Chung, S.L., Liu, D., Ji, J., et al., 2003.Adakites from Continental Collision Zones:Melting of Thickened Lower Crust beneath Southern Tibet.Geology, 31(11):1021-1024.doi: 10.1130/G19796.1 Debon, F., LeFort, P., Sheppard, S.M., 1986.The Four Plutonic Belts of the Transhimalaya-Himalaya:A Chemical, Mineralogical, Isotopic, and Chronological Synthesis along a Tibet-Nepal Section.Journal of Petrology, 27(1):219-250.doi: 10.1093/petrology/27.1.219 Drury, M.R., Urai, J.L., 1990.Deformation-Related Recrystallization Processes.Tectonophysics, 172:235-253.doi: 10.1016/0040-1951(90)90033-5 Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004.Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons.Precambrian Research, 131(3):231-282.doi: 10.1016/j.precamres.2003.12.011 Hanmer, S., 1990.Natural Rotated Inclusions in Non-Ideal Shear.Tectonophysics, 176(3-4):245-255.doi: 10.1016/0040-1951(90)90072-G Harris, N.B.W., Xu, R.H., Lewis, C.L., et al., 1988.Isotope Geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud.Philssophical Transactions of the Royal Society of London, 327(1594):263-285. doi: 10.1098/rsta.1988.0129 Harrison, T.M., Copeland, P., Kidd, W.S.F., et al., 1992.Raising Tibet.Science, 255(5052):1663-1670.doi:10.1126science.255.5052.1663 Hirth, G., Tullis, J., 1992.Dislocation Creep Regimes in Quartz Aggregates.Journal of Structural Geology, 14(2):145-159.doi: 10.1016/0191-8141(92)90053-Y Hoskin, P.W.O., Schaltegger, U., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62.doi: 10.2113/0530027 Hou, Z.Q., Pan, G.T., Wang, A.J., et al., 2006.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅱ.Mineralization in Late-Collisional Transformation Setting.Mineral Deposits, 25(5):521-543 (in Chinese with English abstract). https://www.researchgate.net/publication/284229515_Metallogenesis_in_Tibetan_collisional_orogenic_belt_Ⅱ_Mineralization_in_late-collisional_transformation_setting?ev=auth_pub Hou, Z.Q., Zheng, Y.C., Yang, Z.M., et al., 2012.Metallogenesis of Continental Collision Setting:Part Ⅰ.Gangdese Cenozoic Porphyry Cu-Mo System in Tibet.Mineral Deposits, 31(4):647-670 (in Chinese with English abstract). https://www.researchgate.net/publication/284610053_Metallogenesis_of_continental_collision_setting_Part_Ⅰ_Gangdese_Cenozoic_porphy_Cu-Mo_systems_in_Tibet Hu, J.R., 1995.Deformation Features of Ductile Shear Belt in Qushui County.Tibetan Geology, (1):99-109 (in Chinese with English abstract). Hu, L., Liu, J.L., Ji, M., et al., 2009.Microstructural Deformation Identity Handbook.Geological Publishing House, Beijing (in Chinese). Jackson, S.E., Pearson, N.J., Griffin, W.L., et al., 2004.The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In-Situ U-Pb Zircon Geochronology.Chemical Geology, 211(1):47-69.doi: 10.1016/j.chemgeo.2004.06.017 Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2009.Geochronology and Petrogenesis of Granitic Rocks in Gangdese Batholith, Southern Tibet.Science in China (Series D), 52(9):1240-1261.doi: 10.1007/s11430-009-0131-y Ji, W.Q., Wu, F.Y., Liu, C.Z., et al., 2012.Early Eocene Crustal Thickening in Southern Tibet:New Age and Geochemical Constraints from the Gangdese Batholith.Journal of Asian Earth Sciences, 53:82-95.doi: 10.1016/j.jseaes.2011.08.020 Jin, C.W., Zhou, Y.S., 1978.Igneous Rock Belts in the Himalayas and the Gangdese Arc and Their Genetic Model.Scientia Geologica Sinica, 13(4):297-312 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX197804000.htm Kapp, P., Decelles, P.G., Leier, A.L., et al., 2007.The Gangdese Retroarc Thrust Belt Revealed.GSA Today, 17(7):4-9.doi: 10.1130/GSAT01707A.1 Li, H.B., 2001.The Formation Age of Altyn Tagh Fault Zone and the Contribution of Its Strike-Slipping to the Uplifting of North Qinghai-Tibet Plateau (Dissertation).Chinese Academy of Geological Sciences, Beijing, 17-48 (in Chinese with English abstract). Li, Y.L., Wang, C.S., Dai, J.G., et al., 2015.Propagation of the Deformation and Growth of the Tibetan-Himalayan Orogen:A Review.Earth-Science Reviews, 143:36-61.doi:org/10.101016/j.earscirev.2015.01.001 Ludwig, K.R., 2003.User's Manual for Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Berkeley. https://www.researchgate.net/publication/303107803_User's_manual_for_Isoplot_36_A_geochronological_toolkit_for_microsoft_excel_Berkeley_Geochronology_Center Maluski, H., Proust, F., Xiao, X.C., 1982.39Ar/40Ar Dating of the Trans-Himalayan Calc-Alkaline Magmatism of Southern Tibet.Nature, 298(5870):152-154.doi: 10.1038/298152a0 Mancktelow, N.S., Pennacchioni, G., 2004.The Influence of Grain Boundary Fluids on the Microstructure of Quartz-Feldspar Mylonites.Journal of Structural Geology, 26(1):47-69.doi: 10.1016/S0191-8141(03)00081-6 Meng, Y.K., Xu, Z.Q., Chen, X.J., et al., 2015a.Isotope Study of Alkali-Feldspar Granite Zircon in the Middle Gangdise Batholith and Its Geological Significance.Geology in China, 42(5):1202-1213 (in Chinese with English abstract). https://www.researchgate.net/publication/289541177_Isotope_study_of_alkali-feldspar_granite_zircon_in_the_middle_Gangdise_batholith_and_its_geological_significance Meng, Y.K., Xu, Z.Q., Chen, X.J., et al., 2015b.Zircon Geochronology and Hf Isotopic Composition of Eocene Granite Batholith from Xaitongmoin in Middle Gangdise and Its Geological Significance.Geotectonica et Metallogenia, 39(5):933-948 (in Chinese with English abstract). https://www.researchgate.net/publication/285765900_Zircon_geochronology_and_Hf_isotopic_composition_of_eocene_granite_Batholith_from_Xaitongmoin_in_middle_gangdise_and_its_geological_significance Mo, X.X., 2011.Magmatism and Evolution of the Tibetan Plateau.Geological Journal of China Universities, 17(3):351-367 (in Chinese with English abstract). https://www.researchgate.net/publication/281258325_Magmatism_and_evolution_of_the_Tibetan_Plateau Mo, X.X., Dong, G.C., Zhao, Z.D., et al., 2005.Timing of Magma Mixing in the Gangdise Magmatic Belt during the India-Asia Collision:Zircons SHRIMP U-Pb Dating.Acta Geologica Sinica, 79(1):66-76.doi: 10.1111/j.1755-6724.2005.tb00868.x Mo, X.X., Zhao, Z.D., Yu, X.H., et al., 2009.Cenozoic Collisional-Postcollisional Igneous Rocks in the Tibetan Plateau.Geological Publishing House, Beijing(in Chinese). Murphy, M.A., Yin, A., Harrison, T.M., et al., 1997.Did the Indo-Asian Collision alone Create the Tibetan Plateau? Geology, 25(8):719-722.doi: 10.1130/0091-7613(1997) Neil, S.M., Giorgio, P., 2004.The Influence of Grain Boundary Fluids on the Microstructure of Quartz-Feldspar Mylonites.Journal of Structural Geology, 26(1):47-69.doi: 10.1016/S0191-8141(03)00081-6 Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution.Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). https://www.researchgate.net/publication/279572099_Spatial-temporal_framework_of_the_Gangdese_Orogenic_Belt_and_its_evolution Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Evolution of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences, 53:3-14.doi: 10.1016/j.jseaes.2011.12.018 Pan, Y., Copeland, P., Roden, M.K., et al., 1993.Thermal and Unroofing History of the Lhasa Area, Southern Tibet—Evidence from Apatite Fission Track Thermochronology.Nuclear Tracks and Radiation Measurements, 21(4):543-554.doi: 10.1016/1359-0189(93)90195-F Passchier, C.W., Simpson, C., 1986.Porphyroclast Systems as Kinematic Indicators.Journal of Structural Geology, 8(8):831-843.doi: 10.1016/0191-8141(86)90029-5 Passchier, C.W., Trouw, R.A.J., 1996.Micro-Tectonics.Springer, Berlin, 36-45. Paterson, S.R., Vernon, R.H., Tobisch, O.T., 1989.A Review of Criteria for the Identification of Magmatic and Tectonic Foliations in Granitoids.Journal of Structural Geology, 11(3):349-363.doi: 10.1016/0191-8141(89)90074-6 Qi, X.X., Li, H.B., Zhang, J.X., et al., 2003.Relationship between Deformation-Metamorphism and Syntectonic Melting in a Ductile Shear Zone:A Case Study of the Baokuhe Ductile Shear Zone in the Central Qilian Mountains.Geological Review, 49(4) :413-421 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200304011.htm Scharer, U., Xu, R.H., Allegre, C.J., 1984.U-Pb Geochronology of Gangdese (Transhimalaya) Plutonism in the Lhasa-Xigaze Region, Tibet.Earth and Planetary Science Letters, 69(2):311-320.doi: 10.1016/0012-821X(84)90190-0 Searle, M.P., 2006.Role of the Red River Shear Zone, Yunnan and Vietnam, in the Continental Extrusion of SE Asia.Journal of the Geological Society of London, 163(6):1025-1036.doi: 10.1144/0016-76492005-144 Searle, M.P., Cooper, D.J.W., Rex, A.J., et al., 1988.Collision Tectonics of the Ladakh-Zan Skar Himalaya (Discussion).Philosophical Transactions, 326(1589):117-150.doi: 10.1098/rsta.1988.0082 Stipp, M., Stünitz, H., Heilbronner, R., et al., 2002.The Eastern Tonale Fault Zone:A Natural Laboratory for Crystal Plastic Deformation of Quartz over Temperature Range from 250 to 700 ℃.Journal of Structural Geology, 24(12):1861-1884.doi: 10.1016/S0191-8141(02)00035-4 Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19 Tang, Y., Liu, J.L., Tran, M.D., et al., 2013.Timing of Left-Lateral Shearing along the Ailao Shan-Red River Shear Zone:Constraints from Zircon U-Pb Ages from Granitic Rocks in the Shear Zone along the Ailao Shan Range, Western Yunnan, China.International Journal of Earth Sciences, 102(3):605-626.doi: 10.1007/s00531-012-0831-y Tang, Y., Yin, F.G., Wang, L.Q., et al., 2013.Structural Characterization of and Geochronological Constraints on Sinistral Strike-Slip Shearing along the Southern Segment of Chongshan Shear Zone, Western Yunnan.Acta Petrologica Sinica, 29(4):1311-1324 (in Chinese with English abstract). http://www.oalib.com/paper/1474347 Tu, G.C., Zhang, Y.Q., Zhao, Z.H., et al., 1981.Characteristics and Evolution of Granitoids of South Xizang (Tibet).Geochimica, (1):1-7 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX198101000.htm Tullis, J., Yund, R.A., 1991.Diffusion Creep in Feldspar Aggregates:Experimental Evidence.Journal of Structural Geology, 13(3):987-1000.doi: 10.1016/0191-8141(91)90051-J van Hinsbergen, D.J.J., Steinberger, B., Doubrovine, P.V., et al., 2011.Acceleration and Deceleration of India-Asia Convergence since the Cretaceous:Roles of Mantle Plumes and Continental Collision.Journal of Geophysical Research (Solid Earth), 116 (B6):100-114.doi: 10.1029/2010JB008051 Vernon, R.H., Paterson, S.R., Geary, E.E., 1989.Evidence for Syntectonic Intrusion of Plutons in the Bear Mountains Fault Zone, California.Geology, 17(8):723-726.doi:10.1130/0091-7613(1989)017<0723:EFSIOP>2.3.CO;2 Virginia, G.T., David, J.P., Richard, J.N., 2008.Quartz Fabrics in the Alpine Fault Mylonites:Influence of Pre-Existing Preferred Orientation on Fabric Development during Progressive Uplift.Journal of Structural Geology, 30(5):602-621.doi: 10.1016/j.jsg.2008.01.001 Wang, M., Zhang, J.J., Qi, G.W., et al., 2014.An Early Silurian Ductile Deformation Event in the Sangshuyuanzi Shear Zone, the Southern Margin of the Central Tianshan Belt, and Its Geological Significance.Acta Petrologica Sinica, 30(10):3051-3061 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201410019.htm Wang, R., Richards, J.P., Zhou, L.M., et al., 2015.The Role of Indian and Tibetan Lithosphere in Spatial Distribution of Cenozoic Magmatism and Porphyry Cu-Mo Deposits in the Gangdese Belt, Southern Tibet.Earth-Science Reviews, 150:68-94.doi: 10.1016/j.earscirev.2015.07.003 Wen, D.R., Liu, D.Y., Chung, S.L., et al., 2008a.Zircon SHRIMP U-Pb Ages of the Gangdese Batholith and Implication for Neotethyan Subduction in Southern Tibet.Chemical Geology, 252(3):191-201.doi: 10.1016/j.chemgeo.2008.03.003 Wen, D.R., Chung, S.L., Song, B., et al., 2008b.Late Cretaceous Gangdese Intrusions of Adakitic Geochemical Characteristics, SE Tibet:Petrogenesis and Tectonic Implications.Lithos, 105(S1-2):1-11.doi: 10.1016/j.lithos.2008.02.005 White, S.H., 1977.Geological Significance of Recovery and Recrystallization Processes in Quartz.Tectonophysics, 39(1-3):143-170.doi: 10.1016/0040-1951(77)90093-2 Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(15):1554-1569. doi: 10.1007/BF03184122 Wu, Y.B., Zheng, Y.F., Zhang, S.B., et al., 2007.Zircon U-Pb Ages and Hf Isotope Compositions of Migmatite from the North Dabie Terrane in China:Constraints on Partial Melting.Journal of Metamorphic Geology, 25(9):991-1009.doi: 10.1111/j.1525-1314.2007.00738.x Wu, Z.H., Barosh, P.J., Wu, Z.H., et al., 2008.Vast Early Miocene Lakes of the Central Tibetan Plateau.Geological Society of America Bulletin, 120(9-10):1326-1337.doi: 10.1130/B26043.1v.120no.9-10p.1326-1337 Xiang, B.W., Zhu, G., Wang, Y.S., et al., 2007.Mineral Deformation Thermometer for Mylonitization.Advances in Earth Science, 22(2):126-135 (in Chinese with English abstract). https://www.researchgate.net/publication/297770675_Mineral_deformation_thermometer_for_mylonitization Xu, R.H., Jin, C.W., 1984.A Geochronological Study of the Quxu Batholith, Xizang.Scientia Geologica Sinica, (4):414-422 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX198404007.htm Xu, Z.Q., Wang, Q., Liang, F.H., et al., 2009.Electron Backscatter Diffraction (EBSD) Technique and Its Application to Study of Continental Dynamics.Acta Petrologica Sinica, 25(7):1721-1736 (in Chinese with English abstract). https://www.researchgate.net/publication/285907165_Electron_backscatter_diffraction_EBSD_technique_and_its_application_to_study_of_continental_dynamics?ev=auth_pub Xu, Z.Q, Wang, Q., Pêcher, A., et al., 2013.Orogen-Parallel Ductile Extension and Extrusion of the Greater Himalaya in the Late Oligocene and Miocene.Tectonics, 32(2):191-215. doi: 10.1002/tect.v32.2 Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2011.On the Tectonics of the India-Asia Collision.Acta Geologica Sinica, 85(1):1-33 (in Chinese with English abstract). doi: 10.1111/acgs.2011.85.issue-1 Yin, A., Harrison, T.M., Ryerson, F.J., et al., 1994.Tertiary Structural Evolution of the Gangdese Thrust System, Southeastern Tibet.Journal of Geophysical Research, 99(9):18175-18201. doi: 10.1029/94JB00504/abstract Zeh, A., Gerdes, A., Barton, J.J., et al., 2010.U-Th-Pb and Lu-Hf Systematics of Zircon from TTG's Leucosomes, Meta-Anorthosites and Quartzites of the Limpopo Belt (South Africa):Constraints for the Formation, Recycling and Metamorphism of Palaeoarchaean Crust.Precambrian Research, 179(1-4):50-68.doi: 10.1016/j.precamres.2010.02.012 Zhang, J.J., 1999.Indicators for Syntectonic Granites in Large-Scale Strike-Slip Zone.Geological Science and Technology Information, 18(4):23-26 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ199904006.htm Zhang, K.J., Zhang, Y.X., Tang, X.C., et al., 2012.Late Mesozoic Tectonic Evolution and Growth of the Tibetan Plateau Prior to the Indo-Asian Collision.Earth-Science Reviews, 114(3-4):236-249.doi: 10.1016/j.earscirev.2012.06.001 Zhu, D.C., Pan, G.T., Chung, S.L., et al., 2008.SHRIMP Zircon Age and Geochemical Constraints on the Origin of Early Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese in South Tibet.International Geology Review, 50(5):442-471.doi: 10.2747/0020-6814.50.5.442 Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of Microcontinent and Its Histories of Drift and Growth.Earth and Planetary Science Letters, 301(1):241-255.doi: 10.1016/j.epsl.2010.11.005 Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012.Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane.Geological Journal of China Universities, 18(1):1-15 (in Chinese with English abstract). https://www.researchgate.net/publication/260835521_Origin_and_Paleozoic_Tectonic_Evolution_of_the_Lhasa_Terrane Zou, G.S., Zhong, D.B., 1993.The Basic Features and Deformation Mechanism of Ductile Shear Zone in Qushui Area, Tibet.Geology of Jiangxi, 7(2):121-127 (in Chinese with English abstract). 常承法, 郑錫瀾, 1973.中国西藏南部珠穆朗玛峰地区地质构造特征.地质科学, 8(1): 1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-JAXK197302006.htm 侯增谦, 潘桂棠, 王安建, 等, 2006.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用.矿床地质, 25(5):521-543. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200605000.htm 侯增谦, 郑远川, 杨志明, 等, 2012.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统.矿床地质, 31(4):647-670. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201204003.htm 胡敬仁, 1995.西藏曲水县色甫-科木韧性剪切带变形变质特征.西藏地质, (1): 99-109. http://www.cqvip.com/QK/97137X/199501/1918628.html 胡玲, 刘俊来, 纪沫, 等, 2009.变形显微构造识别手册.北京:地质出版社. 金成伟, 周云生, 1978.喜马拉雅和冈底斯弧形山系中的岩浆岩带及其成因模式.地质科学, 13(4): 297-312. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX197804000.htm 李海兵, 2001.阿尔金断裂带形成时代及其走滑作用对青藏高原北部隆升的贡献(博士学位论文).北京:中国地质科学院, 17-48. 孟元库, 许志琴, 陈希节, 等, 2015a.冈底斯中段碱长花岗岩锆石U-Pb-Hf同位素特征及地质意义.中国地质, 42(5):1202-1213. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201505003.htm 孟元库, 许志琴, 陈希节, 等, 2015b.藏南冈底斯中段谢通门始新世复式岩体锆石U-Pb年代学、Hf同位素特征及其地质意义.大地构造与成矿学, 39(5):933-948. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201505017.htm 莫宣学, 2011.岩浆作用与青藏高原演化.高校地质学报, 17(3):351-367. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201103003.htm 莫宣学, 赵志丹, 喻学惠, 等, 2009.青藏高原新生代碰撞-后碰撞火成岩.北京:地质出版社. 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3): 521-533. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm 戚学祥, 李海兵, 张建新, 等, 2003.韧性剪切带的变形变质与同构造熔融作用——以中祁连地块宝库河韧性走滑剪切带为例.地质论评, 49(4):413-421. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200304011.htm 唐渊, 尹福光, 王立权, 等, 2013.滇西崇山剪切带南段左行走滑作用的构造特征及时代约束.岩石学报, 29(4):1311-1324. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201304017.htm 涂光炽, 张玉泉, 赵振华, 等, 1981.西藏南部花岗岩类的特征和演化.地球化学, (1): 1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198101000.htm 王盟, 张进江, 戚国伟, 等, 2014.中天山南缘桑树园子剪切带早志留世韧性变形事件及其地质意义.岩石学报, 30(10):3051-3061. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201410019.htm 向必伟, 朱光, 王勇生, 等, 2007.糜棱岩化过程中矿物变形温度计.地球科学进展, 22(2):126-135. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200702001.htm 许荣华, 金成伟, 1984.西藏曲水岩基的时代研究.地质科学, (4):414-422. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198404007.htm 许志琴, 王勤, 梁凤华, 等, 2009.电子背散射衍射(EBSD)技术在大陆动力学研究中的应用.岩石学报, 25(7):1721-1736. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200907016.htm 许志琴, 杨经绥, 李海兵, 等, 2011.印度-亚洲碰撞大地构造.地质学报, 85(1):1-33. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201101001.htm 张进江, 1999.大型走滑剪切带内同构造花岗岩的判别.地质科技情报, 18(4):23-26. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199904006.htm 朱弟成, 赵志丹, 牛耀龄, 等, 2012.拉萨地体的起源和古生代构造演化.高校地质学报, 18(1):1-15. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201201003.htm 邹干生, 钟定波, 1993.西藏曲水地区韧性剪切带基本特征和变形机制.江西地质, 7(2):121-127. http://cdmd.cnki.com.cn/Article/CDMD-82501-1016056636.htm