• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    黔东松桃南华系大塘坡组锰矿层物源:来自Sr同位素的证据

    余文超 杜远生 周琦 彭头平 王萍 袁良军 徐源 潘文 谢小峰 齐靓

    余文超, 杜远生, 周琦, 彭头平, 王萍, 袁良军, 徐源, 潘文, 谢小峰, 齐靓, 2016. 黔东松桃南华系大塘坡组锰矿层物源:来自Sr同位素的证据. 地球科学, 41(7): 1110-1120. doi: 10.3799/dqkx.2016.092
    引用本文: 余文超, 杜远生, 周琦, 彭头平, 王萍, 袁良军, 徐源, 潘文, 谢小峰, 齐靓, 2016. 黔东松桃南华系大塘坡组锰矿层物源:来自Sr同位素的证据. 地球科学, 41(7): 1110-1120. doi: 10.3799/dqkx.2016.092
    Yu Wenchao, Du Yuansheng, Zhou Qi, Peng Touping, Wang Ping, Yuan Liangjun, Xu Yuan, Pan Wen, Xie Xiaofeng, Qi Liang, 2016. Provenance of Nanhuan Datangpo Formation Manganese Mn Deposit in Songtao Area, East Guizhou Province: Evidence from Sr Isotope. Earth Science, 41(7): 1110-1120. doi: 10.3799/dqkx.2016.092
    Citation: Yu Wenchao, Du Yuansheng, Zhou Qi, Peng Touping, Wang Ping, Yuan Liangjun, Xu Yuan, Pan Wen, Xie Xiaofeng, Qi Liang, 2016. Provenance of Nanhuan Datangpo Formation Manganese Mn Deposit in Songtao Area, East Guizhou Province: Evidence from Sr Isotope. Earth Science, 41(7): 1110-1120. doi: 10.3799/dqkx.2016.092

    黔东松桃南华系大塘坡组锰矿层物源:来自Sr同位素的证据

    doi: 10.3799/dqkx.2016.092
    基金项目: 

    国土资源部公益性行业科研专项经费 201411051

    中国地质调查局项目 12120114016701

    详细信息
      作者简介:

      余文超(1988-),男,博士,主要从事古生物与地层学方面研究.E-mail:yuwenchaocug@163.com

      通讯作者:

      杜远生, E-mail:duyuansheng126@126.com

    • 中图分类号: P597

    Provenance of Nanhuan Datangpo Formation Manganese Mn Deposit in Songtao Area, East Guizhou Province: Evidence from Sr Isotope

    • 摘要: 锰矿床的物质来源是锰矿床研究的难点问题之一.辨别黔东松桃地区南华系大塘坡组锰矿沉积的物质来源有助于加深对锰矿成矿过程的理解.对黔东松桃地区南华系大塘坡组锰矿沉积的Sr同位素研究显示,15个锰矿石、锰质页岩及炭质页岩样品87Sr/86Sr同位素比值变化范围为0.705 727~0.732 536,其中炭质页岩样品具有最高的Sr同位素比值0.732 536,含锰岩系样品87Sr/86Sr同位素比值平均值为0.711 128.样品中87Sr/86Sr比值随着Al含量的上升,分别出现87Sr/86Sr比值上升与下降的两个分异趋势.87Sr/86Sr比值随Mn含量的上升总体呈现下降的趋势,但该趋势无显著相关性,残差分析显示这主要是由于样品中87Sr/86Sr比值随着Mn含量上升出现收敛性波动造成.上述现象是由于陆源碎屑成分和海底热液成分混合输入造成.通过与大塘坡组同时代(约660 Ma)古海水Sr同位素组成,世界范围内不同时代锰矿沉积以及现代红海沉积物的Sr同位素结果对比,发现黔东松桃地区南华系锰矿层中Sr同位素比值分布范围较宽,部分锰矿样品87Sr/86Sr比值低于古海水87Sr/86Sr比值,与典型大洋成因的锰矿层或铁锰结核具有不同的Sr同位素特征.联系黔东南华系大塘坡组锰矿层形成时期的特殊地质背景,认为锰质积累过程与沉淀过程为不同阶段产物——锰质的积累过程在Sturtian冰期盆地缺氧水体中完成,可能主要以海底热液喷溢系统完成;而锰矿的沉淀过程则是在间冰期伊始古海洋化学条件动荡的水体中完成.

       

    • 图  1  华南构造简图(a)和黔东松桃西溪堡矿区地质简图及采样钻孔位置(b)

      Fig.  1.  Simplified tectonic map of South China (a) and geological map of Xixibao area in Songtao, East Guizhou and locations of sampling drilling cores (b)

      图  2  黔东松桃地区西溪堡矿区ZK1408与ZK4207柱状图及采样位置

      Fig.  2.  Lithological columns of drilling core ZK 1408 and ZK 4207 in Xixibao area, Songtao Country, East Guizhou

      图  3  黔东松桃地区西溪堡矿区ZK1408中菱锰矿石薄片照片(a)及SEM照片(b)

      a.正交偏光40x;Py.黄铁矿;Rds.菱锰矿;Qtz.石英

      Fig.  3.  Optical and SEM micrographs of Mn ore in drilling core ZK1408 in Xixibao area, Songtao Country, East Guizhou

      图  4  黔东松桃地区西溪堡矿区锰矿样品87Sr/86Sr比值与Al元素(a)、Mn元素(b)含量变化图解和87Sr/86Sr比值与Mn元素含量变化残差分析(c)

      Fig.  4.  87Sr/86Sr -Al(a), Mn (b) binary diagrams and residual analysis diagram of 87Sr/86Sr-Mn (c) in Xixibao area, Songtao Country, East Guizhou

      图  5  世界不同时代锰矿石或沉积物87Sr/86Sr比值数据

      湖南南华系锰矿数据来源于唐世瑜(1990);Pennine Alps侏罗系锰矿数据来源于Stille et al.(1989);墨西哥Molango地区侏罗系锰矿及摩洛哥Imini地区数据来源于Doe et al.(1996);红海现代沉积物数据来源于Cocherie et al.(1994).图中虚线表示锰矿或沉积物形成时期古海水/现代海水87Sr/86Sr比值

      Fig.  5.  87Sr/86Sr data of Mn deposits with different ages in the world

      表  1  黔东松桃地区大塘坡组锰矿层Sr同位素测试数据

      Table  1.   Sr isotope data of Mn deposit in Datangpo Formation in Xixibao area, Songtao Country, East Guizhou

      样品号 岩性 样品时代(Ma) 87Sr/86Sr 2σ Rb(10-6) Sr(10-6) 87Rb/86Sr 初始87Sr/86Sr Al(%) Mn(%)
      ZK1408-76-11 黑色页岩 660 0.745 166 0.000 014 81.4 172.0 1.341 4 0.732 536 17.42 0.47
      ZK1408-76-12 菱锰矿 660 0.723 849 0.000 016 115.0 169.0 1.924 7 0.705 727 11.38 13.56
      ZK1408-77-1 含锰页岩 660 0.723 347 0.000 026 57.5 213.0 0.763 5 0.716 158 9.21 2.56
      ZK1408-77-2 菱锰矿 660 0.712 724 0.000 032 24.9 211.0 0.333 4 0.709 584 2.38 27.67
      ZK1408-77-4 含锰页岩 660 0.724 816 0.000 027 110.5 161.0 1.941 4 0.706 536 13.84 6.43
      ZK1408-77-5 含锰页岩 660 0.721 299 0.000 020 97.8 198.0 1.396 7 0.708 147 11.52 2.33
      ZK4207-26 含锰页岩 660 0.731 784 0.000 013 103.5 119.5 2.451 7 0.708 699 11.30 9.81
      ZK4207-25 菱锰矿 660 0.730 458 0.000 012 109.5 158.5 1.955 3 0.712 047 11.45 10.60
      ZK4207-23 菱锰矿 660 0.727 100 0.000 013 92.1 147.5 1.766 7 0.710 465 9.72 14.49
      ZK4207-21 含锰页岩 660 0.729 591 0.000 016 87.2 133.0 1.855 5 0.712 120 12.60 8.36
      ZK4207-17 菱锰矿 660 0.720 587 0.000 014 30.8 257.0 0.338 9 0.717 396 12.60 21.56
      ZK4207-11 含锰页岩 660 0.729 526 0.000 016 85.5 146.0 1.657 3 0.713 921 9.33 6.85
      ZK4207-5 菱锰矿 660 0.724 907 0.000 013 88.2 156.0 1.599 3 0.709 848 9.85 13.92
      ZK4207-2 菱锰矿 660 0.717 525 0.000 014 34.0 183.5 0.523 7 0.712 593 3.97 20.04
      ZK4207-1 含锰页岩 660 0.728 197 0.000 012 104.5 178.0 1.661 2 0.712 555 12.10 5.26
      注:Al与Mn数据引用自齐靓等(2015).
      下载: 导出CSV
    • [1] Amakawa, H., Ingri, J., Masuda, A., et al., 1991.Isotopic Compositions of Ce, Nd and Sr in Ferromanganese Nodules from the Pacific and Atlantic Oceans, the Baltic and Barents Seas, and the Gulf of Bothnia.Earth and Planetary Science Letters, 105(4):554-565.doi: 10.1016/0012-821X(91)90192-K
      [2] Anschutz, P., Blanc, G., Stille, P., 1995.Origin of Fluids and the Evolution of the Atlantis Ⅱ Deep Hydrothermal System, Red Sea:Strontium Isotope Study.Geochimica et Cosmochimica Acta, 59(23):4799-4808.doi: 10.1016/0016-7037(95)00350-9
      [3] Bühn, B., Stanistreet, I.G., 1997.Insight into the Enigma of Neoproterozoic Manganese and Iron Formations from the Perspective of Supercontinental Break-Up and Glaciation.Geological Society, London, Special Publications, 119(1):81-90.doi: 10.1144/gsl.sp.1997.119.01.05
      [4] Butuzova, G.Y., Drits, V.A., Morozov, A.A., et al., 2009.Processes of Formation of Iron-Manganese Oxyhydroxides in the Atlantis-Ⅱ and Thetis Deeps of the Red Sea.In:John Parnell, Y.L., Chen, C., eds., Sediment-Hosted Mineral Deposits.Blackwell Publishing Ltd., London, 57-72.
      [5] Cai, X.L., Cao, J.M., Zhu, J.S., et al., 2008.The System of Crust-Mantle Ductile Shear Zones in China Continental Lithosphere.Earth Science Frontiers, 15(3):36-54(in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60061-5
      [6] Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998.Strontium Isotopes as Tracers of Ecosystem Processes:Theory and Methods.Geoderma, 82(1):197-225.doi: 10.1016/S0016-7061(97)00102-X
      [7] Chen, D.F., Chen, X.P., 1992.Geological and Geochemical Characteristices of Songtao Hydrothermal Sedimentary Mangenese Deposits, Guizhou.Acta Sedimentologica Sinica, 10(4):35-43 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB199204003.htm
      [8] Cocherie, A., Calvez J.Y., Oudin-Dunlop, E., 1994.Hydrothermal Activity as Recorded by Red Sea Sediments:Sr-Nd Isotopes and REE Signatures.Marine Geology, 118(3-4):291-302.doi: 10.1016/0025-3227(94)90089-2
      [9] Cox, R., Lowe, D.R., Cullers, R.L., 1995.The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States.Geochimica et Cosmochimica Acta, 59(14):2919-2940.doi: 10.1016/0016-7037(95)00185-9
      [10] de Vries, S.T., Pryer, L.L., Fry, N., 2008.Evolution of Neoarchaean and Proterozoic Basins of Australia.Precambrian Research, 166(1-4):39-53.doi: 10.1016/j.precamres.2008.01.005
      [11] Dehler, C.M., Fanning, C.M., Link, P.K., et al., 2010.Maximum Depositional Age and Provenance of the Uinta Mountain Group and Big Cottonwood Formation, Northern Utah:Paleogeography of Rifting Western Laurentia.Geological Society of America Bulletin, 122(9-10):1686-1699.doi: 10.1130/b30094.1
      [12] Doe, B., Ayuso, R., Futa, K., et al., 1996.Evaluation of the Sedimentary Manganese Deposits of Mexico and Morocco for Determining Lead and Strontium Isotopes in Ancient Seawater.Earth Processes:Reading the Isotopic Code, 95:391-408.doi: 10.1029/GM095p0391
      [13] Du, Y.S., Zhou, Q., Yu, W.C., et al., 2015.Linking the Cryogenian Manganese Matallogenic Process in the Southeast Margin of Yangtze Block to Break-Up of Rodinia Supercontinent and Sturtian Glaciation.Geological Science and Technology Information, 34(6):1-7 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201506001.htm
      [14] El Rhazi, M., Hayashi, K.I., 2003.Origin and Formational Environment of Noda-Tamagawa Manganese Ore, Northeast Japan:Constraints from Isotopic Studies.Chemie der Erde -Geochemistry, 63(2):149-162.doi: 10.1078/0009-2819-00028
      [15] Eyles, N., Januszczak, N., 2004.'Zipper-Rift':A Tectonic Model for Neoproterozoic Glaciations during the Breakup of Rodinia after 750 Ma.Earth-Science Reviews, 65(1-2):1-73.doi: 10.1016/S0012-8252(03)00080-1
      [16] Goldstein, S.L., O'Nions, R.K., 1981.Nd and Sr Isotopic Relationships in Pelagic Clays and Ferromanganese Deposits.Nature, 292(5821):324-327.doi: 10.1038/292324a0
      [17] Halverson, G.P., Dudás, F. ., Maloof, A.C., et al., 2007.Evolution of the 87Sr/86Sr Composition of Neoproterozoic Seawater.Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3-4):103-129.doi: 10.1016/j.palaeo.2007.02.028
      [18] Hartmann, M., Scholten, J.C., Stoffers, P., et al., 1998.Hydrographic Structure of Brine-Filled Deeps in the Red Sea—New Results from the Shaban, Kebrit, Atlantis Ⅱ, and Discovery Deep.Marine Geology, 144(4):311-330.doi: 10.1016/S0025-3227(97)00055-8
      [19] He, W.H., Tang, T.T., Yue, M.L., et al., 2014.Sedimentary and Tectonic Evolution of Nanhuan-Permian in South China.Earth Science, 39(8):929-953(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201408002.htm
      [20] He, Z.W., Yang, R.D., Gao, J.B., et al., 2014.The Geochemical Characteristics and Sedimentary Environment of Manganese-Bearing Rock Series of Daotuo Manganese Deposit, Songtao County of Guizhou Province.Geological Review, 60(5):1061-1075 (in Chinese with English abstract). https://www.researchgate.net/publication/292021634_The_geochemical_characteristics_and_sedimentary_environment_of_manganese-bearing_rock_series_of_Daotuo_manganese_deposit_Songtao_County_of_Guizhou_Province
      [21] Hoffman, P.F., Kaufman, A.J., Halverson, G.P., et al., 1998.A Neoproterozoic Snowball Earth.Science, 281(5381):1342-1346.doi: 10.1126/science.281.5381.1342
      [22] Huckriede, H., Meischner, D., 1996.Origin and Environment of Manganese-Rich Sediments within Black-Shale Basins.Geochimica et Cosmochimica Acta, 60(8):1399-1413.doi: 10.1016/0016-7037(96)00008-7
      [23] Jacobsen, S.B., Kaufman, A.J., 1999.The Sr, C and O Isotopic Evolution of Neoproterozoic Seawater.Chemical Geology, 161(1-3):37-57.doi: 10.1016/S0009-2541(99)00080-7
      [24] Lan, Z., Li, X.H., Zhu, M., et al., 2015.Revisiting the Liantuo Formation in Yangtze Block, South China, SIMS U-Pb Zircon Age Constraints and Regional and Global Significance.Precambrian Research, 263:123-141.doi: 10.1016/j.precamres.2015.03.012
      [25] Le Heron, D.P., Craig, J., 2012.Neoproterozoic Deglacial Sediments and Their Hydrocarbon Source Rock Potential.Geological Society, London, Special Publications, 368(1):381-393.doi: 10.1144/sp368.16
      [26] Li, C., Love, G.D., Lyons, T.W., et al., 2012.Evidence for a Redox Stratified Cryogenian Marine Basin, Datangpo Formation, South China.Earth and Planetary Science Letters, 331-332:246-256.doi: 10.1016/j.epsl.2012.03.018
      [27] Li, J., Sun, Z.L., Huang, W., et al., 2014.Modern Seafloor Hydrothermal Processes and Mineralization.Earth Science, 39(3):312-324(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201403007.htm
      [28] Liu, W.J., 1985.Evolution of Hunan-Guizhou Fault Zone and the Features of Mineralization.Geological Review, 31(3):224-231(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP198503004.htm
      [29] Liu, X.F., Hu, Z., Zeng, L.X., et al., 1983.Origin and Characteristics of Sedimentary Facies of Sinaian Manganese Deposits in Guizhou.Acta Sedimentologica Sinica, 1(4):106-116, 138-139(in Chinese with English abstract). https://www.researchgate.net/publication/289359977_Hydrothermal_sedimentary_manganese_deposits_associated_to_volcanic_activities_-_Permian_manganese_deposit_in_Guizhou
      [30] Maynard, J.B., 2003.Manganiferous Sediments, Rocks, and Ores.Treatise on Geochemistry, 7:289-308. http://www.sciencedirect.com/science/article/pii/B0080437516070997
      [31] McArthur, J.M., 1994.Recent Trends in Strontium Isotope Stratigraphy.Terra Nova, 6(4):331-358.doi: 10.1111/j.1365-3121.1994.tb00507.x
      [32] McArthur, J.M., Howarth, R.J., Shields, G.A., 2012.The Geologic Time Scale.Elsevier, Boston, 127-144.
      [33] Nicholson, K., 1992.Contrasting Mineralogical-Geochemical Signatures of Manganese Oxides; Guides to Metallogenesis.Economic Geology, 87(5):1253-1264.doi: 10.2113/gsecongeo.87.5.1253
      [34] Nicholson, K., Nayak, V.K., Nanda, J.K., 1997.Manganese Ores of the Ghoriajhor-Monmunda Area, Sundergarh District, Orissa, India:Geochemical Evidence for a Mixed Mn Source.Geological Society, London, Special Publications, 119(1):117-121.doi: 10.1144/gsl.sp.1997.119.01.08
      [35] Okita, P.M., Shanks III, W.C., 1992.Origin of Stratiform Sediment-Hosted Manganese Carbonate Ore Deposits:Examples from Molango, Mexico, and Taojiang, China.Chemical Geology, 99(1-3):139-163.doi: 10.1016/0009-2541(92)90036-5
      [36] Palmer, M.R., Edmond, J.M., 1989.The Strontium Isotope Budget of the Modern Ocean.Earth and Planetary Science Letters, 92(1):11-26.doi: 10.1016/0012-821X(89)90017-4
      [37] Preiss, W.V., 2000.The Adelaide Geosyncline of South Australia and Its Significance in Neoproterozoic Continental Reconstruction.Precambrian Research, 100(1-3):21-63.doi: 10.1016/S0301-9268(99)00068-6
      [38] Qi, L., Yu, W.C., Du, Y.S., et al., 2015.Paleoclimate Evolution of the Cryogenian Tiesi'ao Formation-Datangpo Formation in Eastern Guizhou Province:Evidence from Chemical Index of Alteration.Geological Science and Technology Information, 37(6):47-57 (in Chinese with English abstract).
      [39] Rogers, N., MacDonald, R., Fitton, J.G., et al., 2000.Two Mantle Plumes beneath the East African Rift System:Sr, Nd and Pb Isotope Evidence from Kenya Rift Basalts.Earth and Planetary Science Letters, 176(3):387-400.doi: 10.1016/S0012-821X(00)00012-1
      [40] Roy, S., 2000.The Manganese Formation of the Neoproterozoic Penganga Group, India—Revision of an Enigma—A Discussion.Economic Geology, 95(1):237-238.doi: 10.2113/gsecongeo.95.1.237
      [41] Roy, S., 2006.Sedimentary Manganese Metallogenesis in Response to the Evolution of the Earth System.Earth-Science Reviews, 77(4):273-305.doi: 10.1016/j.earscirev.2006.03.004
      [42] Stille, P., Clauer N., Abrecht J., 1989.Nd Isotopic Composition of Jurassic Tethys Seawater and the Genesis of Alpine Mn-Deposits:Evidence from Sr-Nd Isotope Data.Geochimica et Cosmochimica Acta, 53(5):1095-1099.doi: 10.1016/0016-7037(89)90214-7
      [43] Tang, S.Y., 1990.Isotope Geological Study of Manganese Deposit in Minle Area, Hunan Province.Acta Sedimentologica Sinica, 8(4):77-84 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB199004008.htm
      [44] Thomson, D., Rainbird, R.H., Krapez, B., 2015.Sequence and Tectonostratigraphy of the Neoproterozoic(Tonian-Cryogenian)Amundsen Basin Prior to Supercontinent(Rodinia)Breakup.Precambrian Research, 263:246-259.doi: 10.1016/j.precamres.2015.03.001
      [45] Veizer, J., Ala, D., Azmy, K., et al., 1999.87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater.Chemical Geology, 161(1-3):59-88.doi: 10.1016/S0009-2541(99)00081-9
      [46] Wang, J., Li, Z.X., 2003.History of Neoproterozoic Rift Basins in South China:Implications for Rodinia Break-Up.Precambrian Research, 122(1-4):141-158.doi: 10.1016/S0301-9268(02)00209-7
      [47] Wang, Y.G., 1990.Old Hot Brine Manganese Deposit in a Shallow-Sea Rift Basin:An Example from the Sinian Manganese Deposits in the Wuling Mountain Area.Sedimentary Facies and Paleogeography, 10(1):38-45 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD199001004.htm
      [48] Yang, R.D., Ouyang, Z.Y., Zhu, L.J., et al., 2002.A New Understanding of Manganese Carbonate Deposits in Early Sinian Datangpo Stage.Acta Mineralogica Sinica, 22(4):329-334 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWXB200204006.htm
      [49] Yang, S.X., Lao, K.T., 2006.Mineralization Model for the Manganese Deposits in Northwestern Hunan:An Example from Minle Manganese Deposit in Huayuan, Hunan.Sedimentary Geology and Tethyan Geology, 26(2):72-80 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD200602017.htm
      [50] Yin, C.Y., Wang, Y.G., Tang, F., et al., 2006.SHRIMPⅡ U-Pb Zircon Date from the Nanhuan Datangpo Formation in Songtao County, Guizhou Province.Acta Geologica Sinica, 80(2):273-278(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE200602019.htm
      [51] Yuan, X.C., Hua, J.R., 2011.3D Lithospheric Structure of South China.Geology in China, 38(1):1-19(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201101002.htm
      [52] Zhang, F.F., Yan, B., Guo, Y.L., et al., 2013.Precipitation Form of Manganese Ore Deposit in Gucheng, Hubei Province, and Its Paleoenvironment Implication.Acta Geologica Sinica, 87(2):245-258(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201302011.htm
      [53] Zhang, F., Zhu, X., Yan, B., et al., 2015.Oxygenation of a Cryogenian Ocean (Nanhua Basin, South China) Revealed by Pyrite Fe Isotope Compositions.Earth and Planetary Science Letters, 429:11-19.doi: 10.1016/j.epsl.2015.07.021
      [54] Zhou, C., Tucker R., Xiao, S., et al., 2004.New Constraints on the Ages of Neoproterozoic Glaciations in South China.Geology, 32(5):437-440.doi: 10.1130/g20286.1
      [55] Zhou, Q., Du, Y.S., Qin, Y., 2013.Ancient Natural Gas Seepage Sedimentary-Type Manganese Metallogenic System and Ore-Forming Model:A Case Study of 'Datangpo Type ' Manganese Deposits Formed in Rift Basin of Nanhua Period along Guizhou-Hunan-Chongqing Border Area.Mineral Deposits, 32(3):457-466 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201303001.htm
      [56] Zhou, Q., Du, Y.S., Wang, J.S., et al., 2007a.Characteristics and Significance of the Cold Seep Carbonates from the Datangpo Formation of the Nanhua Series in the Northeast Guizhou.Earth Science, 32(3):339-346(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200703005.htm
      [57] Zhou, Q., Du, Y.S., Yan, J.X., et al., 2007b.Geological and Geochemical Characteristics of the Cold Seep Carbonates in the Early Nanhua System in Datangpo, Songtao, Guizhou Province.Earth Science, 32(6):845-852 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200706016.htm
      [58] 蔡学林, 曹家敏, 朱介寿, 等, 2008.中国大陆岩石圈壳幔韧性剪切带系统.地学前缘, 15(3):36-54. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200803002.htm
      [59] 陈多福, 陈先沛, 1992.贵州省松桃热水沉积锰矿的地质地球化学特征.沉积学报, 10(4):35-43. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199204003.htm
      [60] 杜远生, 周琦, 余文超, 等, 2015.Rodinia超大陆裂解、Sturtian冰期事件和扬子地块东南缘大规模锰成矿作用.地质科技情报, 34(6):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506001.htm
      [61] 何卫红, 唐婷婷, 乐明亮, 等, 2014.华南南华纪-二叠纪沉积大地构造演化.地球科学, 39(8):929-953. http://earth-science.net/WebPage/Article.aspx?id=2906
      [62] 何志威, 杨瑞东, 高军波, 等, 2014.贵州松桃道坨锰矿含锰岩系地球化学特征和沉积环境分析.地质论评, 60(5):1061-1075. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201405012.htm
      [63] 李军, 孙治雷, 黄威, 等, 2014.现代海底热液过程及成矿.地球科学, 39(3):312-324. http://earth-science.net/WebPage/Article.aspx?id=2841
      [64] 刘文均, 1985.湘黔断裂带的演化及其成矿作用特点.地质论评, 31(3):224-231. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP198503004.htm
      [65] 刘巽锋, 胡肇荣, 曾励训, 等, 1983.贵州震旦纪锰矿沉积相特征及其成因探讨.沉积学报, 1(4):106-116, 138-139. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198304008.htm
      [66] 齐靓, 余文超, 杜远生, 等, 2015.黔东南华纪铁丝坳组—大塘坡组古气候的演变——来自CIA的证据.地质科技情报, 37(6):47-57. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506007.htm
      [67] 唐世瑜, 1990.湖南花垣民乐震旦系锰矿床同位素地质研究.沉积学报, 8(4):77-84. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199004008.htm
      [68] 王砚耕, 1990.一个浅海裂谷盆地的古老热水沉积锰矿——以武陵山震旦纪锰矿为例.岩相古地理, 10(1):38-45. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD199001004.htm
      [69] 杨瑞东, 欧阳自远, 朱立军, 等, 2002.早震旦世大塘坡期锰矿成因新认识.矿物学报, 22(4):329-334. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200204006.htm
      [70] 杨绍祥, 劳可通, 2006.湘西北锰矿床成矿模式研究——以湖南花垣民乐锰矿床为例.沉积与特提斯地质, 26(2):72-80. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200602017.htm
      [71] 尹崇玉, 王砚耕, 唐烽, 等, 2006.贵州松桃南华系大塘坡组凝灰岩锆石SHRIMPⅡ U-Pb年龄.地质学报, 80(2):273-278. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200602019.htm
      [72] 袁学诚, 华九如, 2011.华南岩石圈三维结构.中国地质, 38(1):1-19. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200304001.htm
      [73] 张飞飞, 闫斌, 郭跃玲, 等, 2013.湖北古城锰矿的沉淀形式及其古环境意义.地质学报, 87(2):245-258. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201302011.htm
      [74] 周琦, 杜远生, 覃英, 2013.古天然气渗漏沉积型锰矿床成矿系统与成矿模式——以黔湘渝毗邻区南华纪"大塘坡式"锰矿为例.矿床地质, 32(3):457-466. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201303001.htm
      [75] 周琦, 杜远生, 王家生, 等, 2007a.黔东北地区南华系大塘坡组冷泉碳酸盐岩及其意义.地球科学, 32(3):339-346. http://earth-science.net/WebPage/Article.aspx?id=3459
      [76] 周琦, 杜远生, 颜佳新, 等, 2007b.贵州松桃大塘坡地区南华纪早期冷泉碳酸盐岩地质地球化学特征.地球科学, 32(6):845-852. http://earth-science.net/WebPage/Article.aspx?id=3512
    • 加载中
    图(5) / 表(1)
    计量
    • 文章访问数:  5985
    • HTML全文浏览量:  1748
    • PDF下载量:  33
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-08-21
    • 刊出日期:  2016-07-15

    目录

      /

      返回文章
      返回