Carbon Cycle Characteristics in Karst Cave System of Xueyu Cave from 2012 to 2013
-
摘要: 重庆雪玉洞洞内CO2浓度之高,在国内外皆罕见,但此洞穴系统碳循环特征及控制因素仍不清楚.利用土壤二氧化碳分压(PCO2-soil)、洞内大气二氧化碳分压(PCO2-cave)、地下河水二氧化碳分压(PCO2-eq)、方解石饱和指数(SIc)、地下河水溶解无机碳同位素(δ13CDIC)等指标来研究雪玉洞洞内CO2浓度变化、控制因素以及地下河对洞内碳循环的影响.结果表明:雪玉洞上覆PCO2-soil雨季高,旱季低;降雨量是控制上覆PCO2-soil的重要因子.雪玉洞PCO2-cave变化规律明显,暖季高,冷季低;温度变化导致洞内外气流频繁交换是PCO2-cave突变的重要原因,地下河水CO2脱气能够在短时间内让PCO2-cave上升到较高值.雨季由于土壤CO2效应,地下河水具有低SIc、高PCO2-eq特性,矿化度较高,并且部分月份地下河水具有溶蚀性;旱季由于土壤CO2效应及降雨较少,地下河水呈现高SIc、低PCO2-eq特性,矿化度较低,以沉积为主.Abstract: The high CO2 concentration in Xueyue cave, Chongqing, is rare at home and abroad. However, the circulation characteristics of carbon and its controlling factors in this cave system remain unknown. PCO2-soil, PCO2-cave, PCO2-eq, SIc, and δ13CDIC of subterranean stream were analyzed to investigate the laws of CO2 concentration variations in Xueyu cave and its contolling factors, as well as the impact on carbon cycle in this cave by subterranean stream. It is found that soil PCO2 mainly controlled by precipitation in subtropical areas was higher in rainy season than that of dry season. Cave air PCO2 exhibited seasonal variations, high cave air PCO2 typically occurred during warm periods, and low cave air PCO2 were typical of cold periods. It was ventilation driven by the temperature difference between cave and outside air that resulted in a sharp transition of cave air PCO2. Meanwhile, cave air PCO2 could rise to high level in a short period of time because of CO2 degassing from subterranean stream. Due to soil CO2 effect, groundwater became more mineralized water with low SIc and high water PCO2-eq, and dissolution in some months in rainy season. With the reduction of soil CO2 and precipitation, groundwater had low degree of mineralization with high SIc and low water PCO2-eq in dry season.
-
Key words:
- karst cave system /
- carbon cycle /
- CO2 partial pressure /
- calcite saturation index /
- Xueyu cave /
- climate change
-
表 1 文中术语
Table 1. The nomenclature in article
表达式 代表意义 表达式 代表意义 [Ca2+] 钙离子活度 SIc 方解石饱和指数 (Ca2+) 钙离子摩尔当量 PCO2 二氧化碳分压 [HCO3-] 碳酸氢根离子活度 PCO2-eq 水-气平衡时二氧化碳分压 (HCO3-) 碳酸氢根离子摩尔当量 PCO2-sat SIc=0时的二氧化碳分压 γCa2+ 钙离子活度系数 PCO2-cave 洞穴内大气二氧化碳分压 γHCO3- 碳酸氢根离子活度系数 PCO2-soil 土壤二氧化碳分压 G & D 吸气脱气直线 pH 酸碱指标 K0 亨利气体溶解平衡常数 pHm 实际测试的pH值 K1 碳酸的一次离解常数 pHsat SIc=0时的pH值 K2 碳酸的二次离解常数 Model-HCO3- (-lg(PCO2-eq) vs. SIc)模型得出的HCO3-浓度 Kc CaCO3溶解时平衡常数 Model-PCO2-sat (-lg(PCO2-eq) vs. SIc)模型得出的PCO2-sat 表 2 地下河水上下游二氧化碳分压(%)
Table 2. Water PCO2 in upstream and downstream water of subterranean river (%)
日期 下游PCO2-eq 上游PCO2-eq △PCO2-eq PCO2-cave PCO2-cave增加/减少量 2013-11-02 0.14 0.15 0.01 0.39 - 2013-11-03 0.20 0.24 0.04 0.50 0.11 2013-11-04 0.18 0.31 0.13 0.60 0.10 2013-11-05 0.34 0.43 0.09 0.73 0.13 2013-11-06 0.33 0.34 0.01 0.54 -0.19 2013-11-07 0.36 0.49 0.14 0.66 0.12 2013-11-08 0.61 0.76 0.15 0.91 0.25 2013-11-09 0.67 0.96 0.29 0.98 0.07 平均值 0.35 0.46 0.11 0.70 0.09 注:PCO2-cave为4个洞穴大气监测点的平均值;PCO2-cave增加/减少量为相邻2天数据之差. -
Amundson, R., Kelly, E., 1987.The Chemistry and Mineralogy of a CO2-Rich Travertine Depositing Spring in the California Coast Range.Geochimica et Cosmochimica Acta, 51(11):2883-2890.doi: 10.1016/0016-7037(87)90364-4 Appelo, C.A.J., Postma, D., 2005.Geochemistry, Groundwater and Pollution.Taylor & Francis Press, London, 29-50. Baldini, J.U.L., McDermott, F., Hoffmann, D.L., et al., 2008.Very High-Frequency and Seasonal Cave Atmosphere PCO2 Variability:Implications for Stalagmite Growth and Oxygen Isotope-Based Paleoclimate Records.Earth and Planetary Science Letters, 272(1):118-129.doi: 10.1016/j.epsl.2008.04.031 Boucot, A.J., Gray, J., 2001.A Critique of Phanerozoic Climatic Models Involving Changes in the CO2 Content of the Atmosphere.Earth-Science Reviews, 56(1-4):1-159.doi: 10.1016/S0012-8252(01)00066-6 Bourges, F., Genthon, P., Mangin, A., et al., 2006.Microclimates of l'Aven d'Orgnac and other French Limestone Caves (Chauvet, Esparros, Marsoulas).International Journal Climatology, 26(12):1651-1670.doi: 10.1002/joc.1327 Cuezva, S., Fernandez-Cortes, A., Benavente, D., et al., 2011.Short-Term CO2 (g) Exchange between a Shallow Karstic Cavity and the External Atmosphere during Summer:Role of the Surface Soil Layer.Atmospheric Environment, 45(7):1418-1427.doi: 10.1016/j.atmosenv.2010.12.023 Davidson, E.A., Janssens, I.A., 2006.Temperature Sensitivity of Soil Carbon Decomposition and Feedbacks to Climate Change.Nature, 440(7081):165-173.doi: 10.1038/nature04514 Dreybrodt, W., Scholz, D., 2011.Climatic Dependence of Stable Carbon and Oxygen Isotope Signals Recorded in Speleothems:From Soil Water to Speleothem Calcite.Geochimica et Cosmochimica Acta, 75(3):734-752.doi: 10.1016/j.gca.2010.11.002 Faimon, J., Štelcl, J., Sas, D., 2006.Anthropogenic CO2-Flux into Cave Atmosphere and Its Environmental Impact:A Case Study in the Cíšarská Cave (Moravian Karst, Czech Republic).Science of the Total Environment, 369(1-3):231-245.doi: 10.1016/j.scitotenv.2006.04.006 Feng, W., Banner, J.L., Guilfoyle, A.L., et al., 2012.Oxygen Isotopic Fractionation between Drip Water and Speleothem Calcite:A 10-Year Monitoring Study, Central Texas, USA.Chemical Geology, 304-305(3):53-67.doi: 10.1016/j.chemgeo.2012.02.004 Ford, D., Williams, P., 2007.Karst Hydrogeology and Geomorphology.John Wiley & Sons Inc Press, New York, 103-144. Friend, A.D., Arneth, A., Kiang, N.Y., et al., 2007.Fluxnet and Modelling the Global Carbon Cycle.Global Change Biology, 13(3):610-633.doi: 10.1111/j.1365-2486.2006.01223.x Frisia, S., Fairchild, I.J., Fohlmeister, J., et al., 2011.Carbon Mass-Balance Modelling and Carbon Isotope Exchange Processes in Dynamic Caves.Geochimica et Cosmochimica Acta, 75(2):380-400.doi: 10.1016/j.gca.2010.10.021 Hess, J.W., White, W.B., 1993.Groundwater Geochemistry of the Carbonate Karst Aquifer, Southcentral Kentucky, USA.Applied Geochemistry, 8(2):189-204.doi: 10.1016/0883-2927(93)90034-E Huang, Q.B., Qing, X.Q., Liu, P.Y., et al., 2015.Impact of Acid Rainto δ13CDIC of Karst Groundwater and Carbon Sink in Dry Season in Guilin.China.Earth Science, 40(7):1237-1247 (in Chinese with English abstract). Knorr.W., Prentice, I.C., House, J.I., et al., 2005.Long-Term Sensitivity of Soil Carbon Turnover to Warming.Nature, 433(7023):298-301.doi: 10.1038/nature03226 Kowalczk, A.J., Froelich, P.N., 2010.Cave Air Ventilation and CO2 Outgassing by Radon-222 Modeling:How Fast Do Caves Breathe?Earth and Planetary Science Letters, 289(1-2):209-219.doi: 10.1016/j.epsl.2009.11.010 Liu, Z.H., Dreybrodt, D., Han, J., et al., 2005.Equilibrium Chemistry of the CaCO3-CO2-H2O System and Discussions.Carsologica Sinica, 24(1):1-14 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-zgyr200501001.htm Liu, Z.H., Yuan, D.X., 2000.Features of Geochemical Variation in Typical Systems of China and Their Environment Significance.Geological Review, 46(3):324-327 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzlp200003017.htm Liu, Z., Dreybrodt, W., 2015.Significance of Carbon Sink Produced by H2O-Carbonate-CO2-Aquatic Phototroph Interaction on Land.Science Bulletin, 60(2):182-191.doi: 10.1007/s11434-014-0682-y Liu, Z., Li, Q., Sun, H., et al., 2007.Seasonal, Diurnal and Storm-Scale Hydrochemical Variations of Typical Epikarst Springs in Subtropical Karst Areas of SW China:Soil CO2 and Dilution Effects.Journal of Hydrology, 337(1-2):207-223.doi: 10.1016/j.jhydrol.2007.01.034 Mandić, M., Mihevc, A., Leis, A., et al., 2013.Concentration and Stable Carbon Isotopic Composition of CO2 in Cave Air of Postojnska Jama, Slovenia.International Journal of Speleology, 42(3):279-287.doi: 10.5038/1827-806X.42.3.11 Milanolo, S., Gabrovšek, F., 2009.Analysis of Carbon Dioxide Variations in the Atmosphere of Srednja Bijambarska Cave, Bosnia and Herzegovina.Boundary-Layer Meteorology, 131(3):479-493.doi: 10.1007/s10546-009-9375-5 Perşoiu, A., Onac, B.P., Perşoiu, I., 2011.The Interplay between Air Temperature and Ice Mass Balance Changes in Scǎrişoara Ice Cave, Romania.Acta Carsologica, 40(3):445-456.doi: 10.3986/ac.v40i3.4 Peyraube, N., Lastennet, R., Denis, A., 2012.Geochemical Evolution of Groundwater in the Unsaturated Zone of a Karstic Massif, Using the PCO2-SIc Relationship.Journal of Hydrology, 430-431(14):13-24.doi: 10.1016/j.jhydrol.2012.01.003 Pu, J., Yuan, D, Zhao, H., et al., 2014.Hydrochemical and PCO2 Variations of a Cave Stream in a Subtropical Karst Area, Chongqing, SW China:Piston Effects, Dilution Effects, Soil CO2 and Buffer Effects.Environmental Earth Sciences, 71(9):4039-4049.doi: 10.1007/s12665-013-2787-z Schimel, D.S., 1995.Terrestrial Ecosystems and the Carbon Cycle.Global Change Biology, 1(1):77-91.doi: 10.1111/j.1365-2486.1995.tb00008.x Sherwin, C.M., Baldini, J.U.L., 2011.Cave Air and Hydrological Controls on Prior Calcite Precipitation and Stalagmite Growth Rates:Implications for Palaeoclimate Reconstructions Using Speleothems.Geochimica et Cosmochimica Acta, 75(14):3915-3929.doi: 10.1016/j.gca.2011.04.020 Wang, A.Y., 2010.Study on Operation Regularity and Environment Information Reservation of Cave Karst Dynamic System (Dissertation).Southwest University, Chongqing, 15-17(in Chinese with English abstract). Wang, A.Y., Pu, J.B., Shen, L.C., et al., 2010.Natural and Human Factors of CO2 Concentration Variations in Xueyu Cave, Chongqing.Tropical Geography, 30(3):272-277 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDDD201003011.htm Wang, X.X., 2014.The Character of Carbon Variation and Source of CO2 in Xueyu Cave (Dissertation).Southwest University, Chongqing, 17-36 (in Chinese with English abstract). Wang, X.X., Yin, J.J., Xu, S.Q., et al., 2013.The Variations of Soil CO2 and Hydrochemistry of Epikarst Spring above Xueyu Cave.Journal of Water and Soil Conservation, 27(2):85-89 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQS201302018.htm Were, A., Serrano-Ortiz, P., Moreno de Jong, C., et al., 2010.Ventilation of Subterranean CO2 and Eddy Covariance Incongruities over Carbonate Ecosystems.Biogeosciences, 7(3):859-867.doi: 10.5194/bg-7-859-2010 Wu, K.Y., Shen, L.C., Zhang, T., et al., 2015.Links between Host Rock, Water, and Speleothems of Xueyu Cave in Southwestern China:Lithology, Hydrochemistry, and Carbonate Geochemistry.Arabian Journal of Geosciences, 8(11):8999-9013.doi: 10.1007/s12517-015-1876-6 Xu, S.Q., Yang, P.H., Jin, J.J., et al., 2013.Research on the Sensitivity of Geochemical of Underground River in Chongqing Xueyu Cave.Environment Science, 34(1):77-83 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HJKZ201301014.htm Xu, S.Q., Yin, J.J., Yang, P.H., et al., 2012.Impacts of Tourism Activities on Cave Environments and Self-Purification Ability of the Cave:A Case Study of Xueyu Cave, Chongqing.Tropical Geography, 32(3):286-292 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDDD201203015.htm Yuan, D.X., 1999.Progress in the Study on Karst Processes and Carbon Cycle.Advance in Earth Sciences, 14(5):425-432 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXJZ199905000.htm Yuan, D.X., Cai, G.H., 1988.Karst Enviroment.Chongqing Press, Chongqing, 23-126 (in Chinese). Zhang, C., 2011.Carbonate Rock Dissolution Rates in Different Landuses and Their Carbon Sink Effect.Chinese Science Bulletin, 56(26):2174-2180 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxtw201135005&dbname=CJFD&dbcode=CJFQ Zhou, X.P., Lan, J.C., Zhang, X.W., et al., 2013.CO2 Outgassing and Precipitation of Calcium Carbonate in Karst Stream:A Case Study in Baishuwan Spring in Nanchuan, Chongqing.Acta Sedimentologica Sinica, 31(6):1014-1021 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201306008.htm 黄奇波, 覃小群, 刘朋雨, 等, 2015.酸雨对桂林枯水期岩溶地下水δ13CDIC及碳汇效应的影响.地球科学, 40(7):1237-1247. http://earth-science.net/WebPage/Article.aspx?id=3114 刘再华, Dreybrodt, W., 韩军, 等, 2005.CaCO3-CO2-H2O岩溶系统的平衡化学及其分析.中国岩溶, 24(1):1-14. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgyr200501001&dbname=CJFD&dbcode=CJFQ 刘再华, 袁道先, 2000.中国典型表层岩溶系统的地球化学动态特征及其环境意义.地质论评, 46(3): 324-327. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200003017.htm 王翱宇, 2010. 洞穴岩溶动力系统运行规律与环境信息保存的研究(硕士学位论文). 重庆: 西南大学, 15-17. http://cdmd.cnki.com.cn/article/cdmd-10635-2010095370.htm 王翱宇, 蒲俊兵, 沈立成, 等, 2010.重庆雪玉洞CO2浓度变化的自然与人为因素探讨.热带地理, 30(3): 272-277. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=rddd201003011&dbname=CJFD&dbcode=CJFQ 王晓晓, 2014. 雪玉洞洞穴系统碳的变化特征及洞内CO2来源研究(硕士学位论文). 重庆: 西南大学, 17-36. http://cdmd.cnki.com.cn/Article/CDMD-10635-1014264654.htm 王晓晓, 殷建军, 徐尚全, 等, 2013.雪玉洞上覆土壤CO2变化及对表层岩溶泉水化学特征的影响.水土保持学报, 27(2): 85-89. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=trqs201302018&dbname=CJFD&dbcode=CJFQ 徐尚全, 杨平恒, 殷建军, 等, 2013.重庆雪玉洞岩溶地下河地球化学敏感性研究.环境科学, 34(1): 77-83. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201301014.htm 徐尚全, 殷建军, 杨平恒, 等, 2012.旅游活动对洞穴环境的影响及洞穴的自净能力研究——以重庆雪玉洞为例.热带地理, 32(3): 286-292. http://www.cnki.com.cn/Article/CJFDTOTAL-RDDD201203015.htm 袁道先, 1999."岩溶作用与碳循环"研究进展.地球科学进展, 14(5): 425-432. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200001015.htm 袁道先, 蔡桂鸿, 1988.岩溶环境学.重庆:重庆出版社, 23-126. 章程, 2011.不同土地利用下的岩溶作用强度及其碳汇效应.科学通报, 56(26): 2174-2180. http://cdmd.cnki.com.cn/Article/CDMD-10635-1012342332.htm 周小萍, 蓝家程, 张笑微, 等, 2013.岩溶溪流的脱气作用及碳酸钙沉积——以重庆市南川区柏树湾泉溪流为例.沉积学报, 31(6): 1014-1021. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201306008.htm