The Biostratigraphic Correlation of the Permian-Triassic Boundary in Jinzhong Section, Weining, Guizhou, South China
-
摘要: 二叠纪—三叠纪之交发生了显生宙最大的生物灭绝事件,同时发生了复杂的环境变化.由于陆相二叠系-三叠系界线附近生物化石记录没有海相记录完整,同时也缺乏其他可靠的年代地层标志,所以如何标定陆相剖面的二叠纪—三叠纪界线一直是研究热点和难点.贵州威宁金钟地区二叠纪—三叠纪之交位于康滇古陆的东侧,毗邻海陆过渡相区,可以与同期的浅海碎屑岩相、海陆过渡相、陆相剖面进行由海到陆“追索式”的生物地层对比,是我国研究海、陆相二叠系-三叠系界线及对比的关键研究区之一.研究区的金钟二叠系-三叠系界线剖面中化石丰富,共发现双壳类化石4属6种,叶肢介2属4种,植物化石9属及腕足类化石1属,为海、陆相地层对比提供了桥梁.依据叶肢介Euestheria gutta-Palaeolimnadia xuanweiensis组合、植物Annalepis-Peltaspermum组合以及双壳类Pteria ussurica variabilis-Neoschizodus orbicularis组合的生物化石时代归属讨论,识别出金钟剖面的二叠系-三叠系界线应该在卡以头组下部.通过与邻区不同相剖面的对比,提出双壳类Pteria ussurica variabilis-Neoschizodus orbicularis组合以及陆相的叶肢介Euestheria gutta-Palaeolimnadia xuanweiensis组合可以作为三叠纪最早期的识别和对比标志.Abstract: The Permian-Triassic extinction event, which was associated with major global environmental changes, was the most significant one in the Phanerozoic. However, fossil records around the Permian-Triassic boundary in the terrestrial section are not complete compared with those in the marine section, and the precise time framework is not available. Thus the study of the Permian-Triassic boundary in terrestrial section has been hot and complicated. The Jinzhong section located in the eastern margin of the Kangdian Continent, near the transitional facies zone of the Permian and Triassic, can be compared with the marine section and terrestrial section at the same time in this period. The Jinzhong section has abundant fossils, including bivalve (4 genus 6 species), conchostracans (2 genus 4 species), plant fossils (9 genus) and brachiopods (1 genus).According to the age of the conchostracans fossil assemblages Euestheria gutta-Palaeolimnadia xuanweiensis, the plant fossil assemblages Annalepis sp.-Peltaspermum sp. and the bivalve fossil assemblages Pteria ussurica variabilis-Neoschizodus orbicularis, the Permian-Triassic boundary in the Jinzhong section is at the bottom of Kayitou Formation. In addition, the conchostracans fossil assemblages Euestheria gutta-Palaeolimnadia xuanweiensis and the bivalve fossil assemblages Pteria ussurica variabilis-Neoschizodus orbicularis can be used as a reliable marker of early Triassic in stratigraphic division and correlation in the marine-continental transitional facies in South China.
-
Key words:
- Permian-Triassic boundary /
- biostratigraphy /
- paleobiolgy /
- Jinzhong section /
- stratigraphy /
-
二叠纪—三叠纪之交发生了显生宙以来最大的生物灭绝事件,有超过90%的海洋无脊椎动物惨遭灭绝(Raup, 1979; Erwin, 1993; Alroy et al., 2008),同时陆地上的脊椎动物和植物也遭受重创(Retallack, 1995; Looy et al., 1999, 2001; Benton and Newell, 2014; Yu et al., 2015).经过此次灭绝事件,海洋生态系发生了从古生代类型向中生代类型(现代类型)的巨大转变(Benton,1997),而陆地生态系统也发生了一系列的生物与环境事件.根据统计资料显示,有超过70%的陆地生物惨遭灭绝(Erwin,1993).某些淡水无脊椎动物,如介形虫,也与海洋生物一样,其个体大小发生了明显的减小(Chu et al., 2015a).皱纹构造在陆相地层中的发现,指示了二叠纪—三叠纪过渡期微生物繁盛和后生动物扰动匮乏的生态系特征(Chu et al., 2015b; Tu et al., 2016).除了这些异常生物事件,还有多方面的证据表明当时的环境发生了重要转变.例如,南非卡鲁盆地的沉积记录表明二叠纪末曲流河向三叠纪早期的辫状河转变,说明气候变暖以及植物灭绝事件导致的陆地风化和剥蚀作用的加强对河流发育产生了巨大影响(Ward et al., 2000).浙江煤山剖面和意大利阿尔卑斯山脉南部的Vigo Meano剖面中保存的陆源生物标志化合物,指示当时陆地可能发生了大规模的野火事件和土壤酸化事件(Shen et al., 2011; Sephton et al., 2015).华南陆相剖面卡以头组中的有机碳同位素负偏以及沉积系统的巨大转变,都指示了陆地环境发生了明显变化(Cui et al., 2015; Zhang et al., 2015).
然而,无论是生物事件研究还是古环境条件重建,都必须以精确的地层学研究为基础.目前,陆相地层划分和对比明显滞后海相地层,一直是国际地层学研究中的难点之一.特别是在二叠纪-三叠纪地层学研究中,海相已经建立了以牙形石为主要化石依据的高分辨率生物地层格架,并以Hindeodus parvus的出现作为二叠系-三叠系界线的划分标志(Yin et al., 2001, 2012; Jiang et al., 2007; 张克信等, 2009).其次,高精度的锆石定年数据在海相地层中已经标定了生物灭绝事件和二叠纪-三叠纪界线的精确时间(Shen et al., 2011; Burgess et al., 2014).
海洋环境中的沉积地质记录相对更加完整、连续,且内容丰富,尤其化石记录在海相沉积物中更容易保存,同时海相地层中记录的环境信息也更加丰富.通过过去30年的研究,已经建立了相对完整的海相二叠系-三叠系对比和划分方案(Yin et al., 2001; Jiang et al., 2007; Shen et al., 2011; 童金南和殷鸿福, 2015),为重建生物灭绝模式和复苏过程提供了基础的地层依据(杨浩等,2006; 陈晶等,2011; Song et al., 2013; 田力等, 2014; 黄云飞等,2015).相反地,陆相不仅沉积环境变化大,而且碎屑岩沉积保存的生物和环境信息有限,在时、空连续性和完整性上明显不如海相地质记录.同时在陆相地层研究中,由于没有牙形石和菊石等具有明确地层意义的海生生物化石,因此无法准确划分陆相二叠系-三叠系界线.传统上是以活动范围比较宽泛的爬行类脊椎动物作为陆相二叠系-三叠系界线的定义,即以水龙兽Lystrosaurus的首现点作为陆相三叠系第一个陆地脊椎动物时带Lootsbergian底界的定义(Lucas,1998).但是,脊椎动物化石的保存不具有连续性,采集较难且产出地点有限,因此大区域的对比也有很大的困难,尤其是作为精细的地层对比标志难度更大(Lucas,2009).同时,最新的对南非Karoo盆地二叠纪—三叠纪生物地层、磁性地层以及年代数据的研究表明Lystrosaurus不能作陆相二叠系-三叠系界线的划分标准(Gastaldo et al., 2015).除脊椎动物化石外,孢粉化石是十分有效的地质年代界定工具.但由于孢粉化石特有的异地保存特性和统计学分类方法,使得其不利于作为精确地层界线的标志(Schneebeli-Hermann et al., 2015; Yu et al., 2015),所以在二叠纪—三叠纪过渡期,孢粉地层学的识辨率还满足不了高精度地层学研究的要求.陆相二叠系-三叠系剖面生物地层的研究还包括植物,但主要还是针对二叠纪—三叠纪之交植物的演变过程和相关事件的研究(Retallack,1995; Wang,1996; Looy et al., 1999, 2001; Cascales-Miñana et al., 2015; Yu et al., 2015).除了这些陆相地层学研究中最常用的化石外,叶肢介、介形虫和双壳类等化石也被认为有着重要的生物地层学意义.介形虫相关报道主要是集中于俄罗斯台地和中国新疆地区,并且两个地区之间有一定的可对比性(庞其清等,2004; Kukhtinov et al., 2008);叶肢介化石研究比较深入,包括德国盆地、俄罗斯台地和我国新疆地区以及黔西滇东地区(刘淑文等,1989; Kozur and Weems, 2010, 2011; 楚道亮等, 2013; Scholze et al., 2015).此外,双壳类化石在海陆过渡等相区也有一定的全球对比意义(Mcroberts, 2010).
我国是世界上陆相二叠系-三叠系地层最发育的地区之一,主要包括新疆准噶尔盆地、华北地区以及位于康滇古陆东缘的黔西滇东地区等(彭元桥等,2004),尤其是黔西滇东地区近年来受到广泛关注.黔西滇东地区,发育了一套从海相、经海陆交互相,再到陆相的连续的二叠纪—三叠纪沉积记录和地层剖面,并且含有丰富的动、植物化石(彭元桥等,2001),有利于海、陆相地层的追索对比,建立地层等时格架,寻找出新的划分标准,为以后实现大范围跨相区的地层对比提供便利的条件,是世界范围内进行海、陆相二叠系-三叠系界线地层对比及生物与环境事件对比研究的理想区域之一.
本文研究的金钟剖面在二叠纪—三叠纪过渡时期位于康滇古陆的东侧,毗邻海陆过渡相区(图 1).特殊的古地理位置和丰富的无脊椎动物化石和植物化石,使得该剖面成为海相地层与陆相地层对比的桥梁.因此,对金钟剖面的化石组合面貌进行详细研究,对该地区海陆二叠系-三叠系界线对比具有重要的地层学意义.
1. 区域地质和地层剖面介绍
1.1 区域地质背景
黔西滇东位于扬子地块西缘,康滇古陆东侧,二叠纪三叠纪之交时期沉积地层主要包括宣威组、卡以头组和东川组.宣威组为晚二叠世的陆相含煤沉积,岩性主要为黄绿、灰绿、褐黄色细砂岩、粉砂岩、粘土岩夹煤层,偶含菱铁矿,富含大羽羊齿植物群.下部以凝灰岩或底砾岩与峨眉山玄武岩分界,呈平行不整合接触; 其顶部以煤层结束为标志,与卡以头组呈整合接触.卡以头组下部是黄绿、灰绿、粉砂岩、砾岩、粘土岩和页岩组合,与宣威组的主要区别是不含煤层;上部是黄绿、灰绿、褐黄色夹紫红色粉砂岩、粘土岩和页岩组合,向上紫红色岩石所占比例增加.与上伏紫红色碎屑岩组成的东川组渐变过渡,以整套紫红色碎屑岩的出现为东川组开始,二者整合接触.临近海陆过渡相区卡以头组中产双壳类、腕足类和介形虫化石,并与叶肢介和植物化石共生.东川组由一套紫红色砾岩、砂岩、粉砂岩和泥岩组成,上部夹少量灰绿色砂岩、泥岩,分布于曲靖-昭通一线,以河流相沉积为主,上部显示为潮坪环境.东川组底部紫红色碎屑岩与下伏卡以头组灰绿色粉砂岩夹紫红色碎屑岩、顶部紫红色粉砂岩与上覆关岭组均呈整合接触(王尚彦和殷鸿福,2001a).
在黔西滇东地区发育了许多完整的海相、海-陆过渡相、陆相二叠系-三叠系界线剖面.晚二叠世长兴期海域范围相对较小,二叠纪结束时,发生海侵,海域扩大到纳雍-六枝一线以西,海陆过渡相和陆相范围也逐渐西移.早三叠世初期,海水进一步向西侵进,海域范围相对更大,陆区范围更小(彭元桥等,2001).典型的陆相二叠系-三叠系界线剖面位于宣威-富源一线以西地区,在该区已经报导过的二叠系-三叠系界线剖面中,贵州威宁哲觉剖面和岔河剖面(王尚彦和殷鸿福, 2001a, 2001b),威宁小河边剖面、韭菜冲剖面(楚道亮等,2013)位于此带内,其东则发育海陆过渡相剖面,如宣威密德剖面(喻建新等,2008)和本文研究的金钟剖面等.
1.2 剖面描述
金钟海陆过渡相二叠系-三叠系界线剖面位于贵州省威宁县金钟镇松树垭口.剖面自下而上出露宣威组、卡以头组和东川组.宣威组是一套黄绿、灰绿、褐黄色细砂岩、粉砂岩、粘土岩、页岩的陆相含煤沉积.卡以头组下部是黄绿、灰绿、褐黄色粉砂岩为主,上部以土黄色夹紫红色泥岩、泥砂岩和细砂岩为主,均不含煤层.东川组由一套紫红色砾岩、砂岩、粉砂岩、泥岩组成.
本研究实测剖面包括宣威组(1~6层,未到底)、卡以头组(7~17层)、东川组(18~19层,未到顶)(图 2).具体描述如下(表 1):
表 1 研究区岩性与分层描述Table Supplementary Table Lithology and stratigraphy of research area东川组(未到顶) 19.紫红色厚层状细砂岩 9.30 m 18.紫红色中厚层状细砂岩 8.20 m 卡以头组 17.土黄色、紫红色、灰绿色薄层状泥质粉砂岩互层.含叶肢介化石:Euestheria gutta 7.30 m 16.黄绿色-土黄色粉砂质泥岩.含叶肢介化石:Euestheria gutta,Euestheria sp. 11.10 m 15.土黄色厚层状粉砂岩.含植物化石:Annalepis sp.;含叶肢介化石:Euestheria gutta,Euestheria sp.,Palaeolimnadia xuanweiensis,Palaeolimnadia sp. 14.80 m 14.黄绿色薄层粉砂岩夹土黄色粉砂质泥岩.含植物化石:Annalepis sp.,Peltaspermum sp.;含叶肢介化石:Euestheria gutta,Euestheria sp.,Palaeolimnadia xuanweiensis,Palaeolimnadia sp. 9.80 m 13.土黄色薄层粉砂质泥岩.含植物化石:Annalepis sp.,Peltaspermum sp.;含叶肢介化石:Euestheria gutta,Euestheria sp.,Palaeolimnadia xuanweiensis,Palaeolimnadia sp. 5.00 m 12.土黄色薄层粉砂岩.含叶肢介化石:Euestheria gutta,Euestheria sp. 6.20 m 11.土黄色粉砂质泥岩夹黄绿色中薄层砂质泥岩.含植物化石:Annalepis sp.,Peltaspermum sp.;含叶肢介化石:Euestheria gutta,Euestheria sp.,Palaeolimnadia xuanweiensis,Palaeolimnadia sp. 5.30 m 10.黄绿色薄层粉砂质泥岩.含植物化石:Annalepis sp.,Peltaspermum sp.;双壳化石:Pteria ussurica variabilis,Neoschizodus orbicularis,Neoschizodus laevigatus,Promyalina schamarae,Permophorus bregeri,Pteria sp.;叶肢介化石:Euestheria gutta,Euestheria sp.,Palaeolimnadia xuanweiensis,Palaeolimnadia sp.;以及腕足化石Lingula sp.和腹足化石 3.00 m 9.黄绿色薄层粉砂岩.含植物化石:Annalepis sp.;叶肢介化石:Euestheria gutta,Palaeolimnadia xuanweiensis,Palaeolimnadia sp. 2.20 m 8.黄绿色厚层状泥质粉砂岩.含植物化石:Peltaspermum sp.,Annalepis zeilleri,Annalepis angusta;双壳化石Neoschizodus orbicularis,Pteria ussurica variabilis,Neoschizodus laevigatus,Pteria sp.;叶肢介化石:Euestheria gutta,Euestheria sp.,Palaeolimnadia xuanweiensis,Palaeolimnadia sp.;腕足化石Lingula sp. 2.80 m 7.黄绿色薄层状泥岩.含植物化石:Gigantopteris sp.,Cordaites sp.,Gigantonoclea sp. 0.88 m 宣威组(未到底) 6.黄绿色厚层状粉砂岩,下部2层煤线,不连续.含植物化石Pecopteris sp.,Cordaites sp.,Stigmaria sp.,Lepidodendron sp.,Fascipteris densata 1.46 m 5.厚层土黄色泥岩夹厚度不均的煤层 0.60 m 4.黄绿色厚层状粉砂岩,顶部为薄层煤层.含植物化石Gigantopteris sp.,Cordaites sp.,Gigantonoclea sp.,Fascipteris densata 1.60 m 3.灰绿色-土黄色厚层粉砂岩,夹0.70 m白色古土壤,顶部夹0.03 m煤线.含植物化石Gigantopteris sp.,Pecopteris sp.,Gigantonoclea sp.,Stigmaria sp. 3.53 m 2.土黄色厚层状粉砂岩,夹0.38 m灰白色粘土,顶部夹0.08 m煤层.含植物化石Pecopteris sp.,Cordaites sp. 2.41 m 1.土黄色厚层状粉砂岩,可见0.90 m灰白色粘土,带铁质包壳,顶部夹0.06 m煤层.含植物化石Gigantopteris sp.,Cordaites sp.,Gigantonoclea sp.,Pecopteris sp. 未见底 1.3 沉积相分析
宣威组以粉砂岩、粘土岩和煤层交替出现为特征,岩石粒度逐渐变细,且宣威组富含煤,所以主要为沼泽沉积.卡以头组下部黄绿色、灰绿色粉砂质泥岩、泥质粉砂岩交替出现,厚度比较薄,为2~3 m,水平层理发育.第8层产有陆相植物Annalepis,Peltaspermum,Gigantopteris等和叶肢介化石Euestheria,Palaeolimnadia等,以及海相双壳类Pteria和腕足类Lingula等化石,是典型的海陆过渡相沉积环境;上部以土黄色砂岩粉砂岩为主,有植物和叶肢介化石产出,同时也可见腕足类Lingula,表明仍以滨岸海陆过渡相为主.东川组为一套厚层的紫红色细砂岩,不含海相化石和海相沉积标志,形成于干旱炎热的河流湖泊环境.
由此可见,金钟剖面所反映的本区二叠纪-三叠纪之交沉积相的演变是由温湿成煤的湖泊沼泽相,经由海陆过渡滨岸碎屑泻湖相,逐渐转变为干旱炎热的河湖相环境.
2. 化石面貌
金钟剖面二叠系-三叠系界线附近地层中,化石产出比较丰富,包括了植物、叶肢介、双壳类和腕足类化石.经鉴定,植物化石9属;叶肢介共2属4种,其中未定种2种;双壳类化石共4属6种,含1个未定种;腕足类化石1属(图 2).
金钟剖面宣威组的煤系地层中采集到的化石有Gigantopteris、Gigantonoclea、Cordaites、Pecopteris等属,属于真蕨纲和种子蕨纲、楔叶纲.该剖面宣威组产出的植物化石是典型的晚二叠世晚期大羽羊齿植物群的代表分子,与相邻地区宣威组产出的植物化石面貌相同(喻建新等,2008).卡以头组(第8层及以上层位)开始出现Annalepis和Peltaspermum属化石,在卡以头组底部还可发现少量Gigantonoclea、Pecopteris及Paracalamites属植物化石残留碎片,可能是远距离搬运再沉积的产物.根据其分布特点可分为宣威组的Pecopteris-Gigantopteris组合和卡以头组的Annalepis-Peltaspermum组合.
金钟剖面卡以头组的叶肢介化石产出丰富,由Palaeolimnadia和Euestheria两属组成,产出层位相近.其中Palaeolimnadia(古渔乡叶肢介)属,壳瓣长或圆,有时近方形,胎壳一般较大,生长带少,光滑无壳饰;Euestheria(真叶肢介)属,壳瓣小,近方形,生长线较多,生长带近壳顶处骤减,有小网状纹饰.Euestheria属以E.gutta为优势种.Palaeolimnadia属以P.xuanweiensis为优势种.根据叶肢介化石分布特点,可建立Euestheria gutta-Palaeolimnadia xuanweiensis组合.
双壳类化石主要产出于卡以头组下部两个介壳层,共计4属6种,包括Neoschizodus laevigatus、N.orbicularis、Pteria ussurica variabilis、Pteria sp.、Promyalina schamarae和Permophorus bregeri.化石呈集群产出,丰度较大但分异度一般,化石保存较完整,个别双壳化石与叶肢介化石同层产出.根据双壳化石的产出特点可建立Pteria ussurica variabilis-Neoschizodus orbicularis组合.
3. 讨论
3.1 金钟剖面化石时代归属及二叠系-三叠系界线划分
该剖面宣威组中Gigantopteris、Giantonoclea、Cordaites、Pecopteris等属化石在黔西滇东地区的晚二叠世晚期的地层中普遍发育,其时代归属于晚二叠世,与黔西滇东地区晚二叠世的植物整体面貌相似(姚兆奇,1978;姚兆奇等,1980;李星学,1995;王尚彦和殷鸿福,2001a;喻建新等,2008;Yu et al., 2015).另外,在该研究剖面以西的典型陆相剖面中,宣威组也产有丰富的大羽羊齿植物群化石,如小河边剖面和韭菜冲剖面(楚道亮,2013;Yu et al., 2015).大羽羊齿植物群是华夏古陆晚古生代典型的植物化石群,其主要分布时代为中二叠世到晚二叠世晚期(Li,1995).在黔西滇东地区大羽羊齿植物群主要分布于晚二叠世宣威组地层中,并且在二叠纪末生物灭绝事件后丰度和分异度大幅度降低,是该地区陆相地层中遭受灭绝的典型代表(Peng and Shi, 2009).一般认为在二叠纪—三叠纪之交大羽羊齿植物群的消失代表了华南地区陆地生物灭绝事件的发生,并且大羽羊齿植物群的灭绝有可能与海相主灭绝事件是同步的(Yu et al., 2015;Zhang et al., 2015).不过,在海陆过渡相的密得剖面和土城剖面上,在卡以头组底部地层中也发现有大羽羊齿植物群化石的碎片.因此,如果不是再沉积作用的结果,那么有可能部分植物能够在二叠纪—三叠纪之交的生物大灭绝中得以幸存(Yu et al., 2015).
卡以头组植物化石以石松纲的Annalepis及种子蕨纲的Peltaspermum为主,也可见少量Gigantonoclea、Pecopteris及Paracalamites属植物化石碎片.Annalepis是一种石松纲植物的繁殖器官,Fliche(1910)首次发现于法国Lorraine的中三叠世地层中,是北半球三叠纪一种罕见的植物类型.叶美娜(1979)在安徽怀宁、贵州罗甸、边阳的中三叠世地层中亦有发现.Annalepis化石被认为是早三叠世晚期到中三叠世全球范围内具有地层意义的重要化石标志(Retallack, 1975, 1997;Meng,1994;Grauvogel-Stamm and Lugardon, 2001;Liu et al., 2004).事实上,Annalepis化石在华南卡尼阶(晚三叠纪)也有发现(孟繁松等,2000).但在黔西滇东卡以头组发现的Annalepis化石具有重要的地层学和生态学意义,它们均产自海陆过渡相地层中,并且与多种海相化石共同产出,包括菊石Ophiceras,双壳类Pteria ussurica variabilis、Neoschizodus laevigatus、Leviconcha orbicularis、Unionites fassaensis、介形虫Langdaia suboblonga和腕足类Lingula等,其中菊石化石Ophiceras是华南Griesbachian(早三叠世)早期重要标志化石(杨遵仪等,1987;Chen et al., 2009).其他的海相化石包括双壳类、腕足类和介形虫等,也都是广泛分布于华南早三叠世地层中的重要类群.因此,Pecopteris-Gigantopteris组合属于晚二叠世,而Annalepis-Peltaspermum组合则属于早三叠世.
叶肢介化石在陆相二叠纪—三叠纪之交生物地层的研究中被认为是可进行大范围甚至全球对比的化石门类之一,主要原因是叶肢介化石具有广泛的地理分布并且演化速度快,在陆相地层比较容易被找到,尤其是能够在陆相红层中保存.在中生代中晚期叶肢介作为重要的生物地层对比的带化石,具有与海相地层中牙形石生物地层的同等地位.对叶肢介化石研究比较深入的地区包括德国盆地、俄罗斯台地以及我国新疆地区和黔西滇东地区,其中德国盆地研究最多(Kozur and Weems, 2010,2011;Scholze et al., 2015).最新研究表明大龙口剖面的叶肢介化石组合可与德国盆地已建立的叶肢介化石组合带行直接对比(Kozur and Weems, 2011).
在黔西地区卡以头组陆相地层中叶肢介化石比较常见,且数量丰富,保存较好,但分异度较低,主要为Palaeolimnadia和Euestheria两个属.Palaeolimnadia属前人早已有所报道(张文堂等,1976;Peng et al., 2005),最近楚道亮等(2013)在本区陆相卡以头组中又发现了Euestheria属,该属分布于二叠系-三叠系界线附近,是过渡期的特有种属,具有重要的地层学意义.在威宁小河边剖面上,Palaeolimnadia属与Euestheria属同层共生或者晚于Euestheria属出现,且两属具有此消彼长的分布特征(楚道亮等,2013).此外,在黔西地区的岔河剖面的71~77层,小河边剖面的8~12层以及韭菜冲剖面25~28层均有Palaeolimnadia属叶肢介化石分布(楚道亮等,2013),与金钟剖面叶肢介化石组合面貌相似,并且可进行对比.另外,Euestheria gutta广泛分布于德国盆地和俄罗斯台地的早三叠世地层中,被认为是具有早三叠世早期全球陆相地层对比意义的关键分子之一(Kozur and Weems, 2010,2011;Scholze et al., 2015).因此,叶肢介化石Euestheria gutta-Palaeolimnadia xuanweiensis组合应属于早三叠世早期.
当前剖面上,双壳类化石主要产自卡以头组底部,个体丰富且保存较完整.因为双壳类化石在世界范围内广泛分布,因此有利于进行区域性对比,甚至可以进行全球性的地层对比.Pteria ussurica variabilis和Promyalina schamarae两个属种化石在我国华南地区的晚二叠世大灭绝之后的过渡层中广泛分布(黄云飞和童金南,2014),如在浙江湖州黄芝山、江西宜春柏木、贵州盘县、重庆以及云南宣威等地均有发现(姚兆齐等,1978;陈金华,2004;田云涛等,2008),同时在全球范围内不同地区也进行过多次报道,包括克什米尔地区、意大利北部、越南北部等多个地区(Nakazawa,1981;Komatsu et al., 2008;Posenato,2009).但该属化石的具体时代归仍属有一定争议.浙江黄芝山剖面的Eumorphotis venetiana-Towapteria scythica-Pteria ussurica variabilis组合带曾被认为是跨越了二叠系-三叠系界线的,陈金华(2004)通过进一步的研究表明,该组合带对应于牙形石Hindeodus parvus带,时代为Griesbachian早期;云南宣威密德剖面下三叠统卡以头组中产出Pteria ussurica variabilis等分子,因在同层位地层中发现菊石Ophiceras,因而其时代被对应于早三叠世Ophiceras带(田云涛等,2008);但是在意大利Bulla剖面Werfen组底部产出的Promyalina属化石因与牙形石Hindeodus praeparvus共生,而被归于晚二叠世末期(Posenato,2009).黄云飞和童金南(2014)通过大量综述研究认为在华南地区,Pteria ussurica variabilis-Towapteria scythica组合带是早三叠世最早的双壳类生物带,大致位于二叠系-三叠系界线之上.因此,我们将Pteria ussurica variabilis-Neoschizodus orbicularis组合带归于早三叠世早期.
综上所述,植物化石Annalepis-Peltaspermum组合、叶肢介化石Euestheria gutta-Palaeolimnadia xuanweiensis组合以及双壳类Pteria ussurica variabilis-Neoschizodus orbicularis化石组合的出现可以作为早三叠世的开始,对应于金钟剖面的第8层底部.
3.2 黔西地区典型海-陆相二叠系-三叠系界线剖面生物地层对比
黔西滇东地区发育了一系列的二叠系-三叠系界线剖面,其中有研究人员进行详细生物地层研究的有贵州威宁岔河剖面、哲觉剖面、小河边剖面、韭菜冲剖面、盘县土城剖面、六枝中寨剖面以及云南宣威密德剖面(杨逢清等,2005;喻建新等,2008;陈建华等,2011;楚道亮等,2013).本文选取陆相岔河剖面、小河边剖面和海陆交互相的密德剖面(喻建新等,2008;陈建华等,2011)进行综合对比.这4条剖面在地理位置上由东南向西北依次为密德剖面、金钟剖面、小河边剖面以及岔河剖面(图 1a).
二叠纪—三叠纪之交密德剖面位于海陆过渡相区,以滨岸碎屑岩沉积为主,主要产出的化石有植物和双壳类,但尚未发现叶肢介化石.在密德剖面第18层粘土层之上产双壳类化石Unionites sp.、Pteria ussurica variabilis和腕足类化石Lingula sp.等,与金钟剖面的第8层产出的双壳类和腕足类化石面貌相似(图 3);同时,密德剖面第18层也有植物化石Annalepis zeilleri、Pecopteris guizhouensis和Peltaspermum sp.,与金钟剖面第8层发现的植物化石Annalepis sp.和Peltaspermum sp.面貌基本一致(图 3).因此,密德剖面的第18层与本文中的金钟剖面第8层层位相当,都属于早三叠世最早期.
图 4 研究区化石标本a,b.Gigantopteris sp.;a.登记号:JZ06-12.产地:金钟剖面6层顶部;b.登记号:JZ07-40.产地:金钟剖面7层底部;c, d.Pecopteris sp.;c.登记号:JZ06-08.产地:金钟剖面6层顶部;d.登记号:JZ07-48.产地:金钟剖面7层底部;e, f.Annalepis sp.;e.登记号:JZ07-30.产地:金钟剖面8层顶部;f.登记号:JZ07-34.产地:金钟剖面9层顶部;g, h.Peltaspermum sp.;g.登记号:JZ08-28.产地:金钟剖面9层顶部;h.登记号:JZ07-37.产地:金钟剖面8层顶部;i, j.Euestheria gutta Lyutkevich, 1937i.左瓣.登记号:JZ07-01.产地与层位:金钟剖面卡以头组8层顶部;j.右瓣.登记号:JZ08-20.产地:金钟剖面卡以头组9层底部;k, l.Palaeolimnadia xuanweiensis Shen, 1976k.右瓣.登记号:JZ07-04.产地:金钟剖面8层顶部;l.右瓣.登记号:JZ07-05.产地:金钟剖面8层中部;m.Pteria ussurica variabilis Chen and Lan in Gu et al., 1976, 登记号:JZ07-14.产地:金钟剖面8层底部;n.Neoschizodus orbicularis(Bronn, 1837),登记号:JZ07-24.产地:金钟剖面8层底部;o.介壳层, 产地:金钟剖面8层底部;本文研究的化石标本均保存在中国地质大学(武汉)生物地质与环境地质国家重点实验室,采集于贵州威宁金钟剖面宣威组和卡以头组.说明的标本登记号中包括剖面缩写、化石产出层位和标本编号(金钟剖面1层1号标本=JZ01-01).图片使用单反相机(Canon EOS 7D)和体视显微镜(Leica SAP80) 拍摄Fig. 4. Collection of fossils of research area早三叠世最早期位于陆相沉积区的岔河剖面和小河边剖面卡以头组下部均含有植物化石和叶肢介化石.其中岔河剖面第69层产植物化石Gigantopteris sp.,70、71层有Pecopteris guizhouensis、Peltaspermum sp.化石产出,71层中部开始产叶肢介化石Euestheria gutta、Palaeolimnadia xuanweiensis;小河边剖面的第7层顶部粘土层之上的化石分布与岔河剖面化石面貌类似,可见植物化石Pecopteris guizhouensis、Peltaspermum sp.,同时还有叶肢介化石Euestheria gutta(楚道亮等,2013).根据化石分布特点,金钟剖面的第8层可以与岔河剖面的71层、小河边剖面的8层对比,其时代均为早三叠世最早期.
通过对岔河剖面、小河边剖面、密德剖面与金钟剖面的化石分布的综合对比(图 3),认为金钟剖面的第8层底部等时于岔河剖面的第71层中上部、小河边剖面的第8层和密德剖面的第18层,均属于早三叠世最早期.由此可见,黔西滇东地区在二叠纪—三叠纪之交跨越从海到陆不同的沉积古地理相区中,借助产出相同或者相似的生物化石组合,可以进行直接的生物地层对比.研究结果表明,本地区二叠系-三叠系界线应该位于卡以头组下部.
Shen etal.(2011) 报道了同样位于黔西滇东地区的岔河剖面宣威组顶部的粘土岩(69层底部)绝对年龄,其锆石测年结果为252.30±0.07 Ma,为二叠纪最末期.同样,本文在宣威组顶部发现的植物化石Pecopteris-Gigantopteris组合,也证明该地区的宣威组二叠纪末期的地层属性.有机碳地层对比结果认为,卡以头组记录了当时的主要灭绝过程,属于二叠纪—三叠纪过渡期沉积,精确的P-T界线可能在卡以头组顶部或东川组底部(Shen et al., 2011;Zhang et al., 2015).本文提出的地层划分方案以化石记录为主,确认了卡以头组过渡期的地层属性,而且借助多门类化石群落对比,提出了与化学地层不同的划分方案:认为精确的二叠系-三叠系界线要低于有机碳同位素最大负偏位置,为全面认识当时的地层划分和生物与环境演变提供了新的材料和思路.
4. 结论
陆相二叠系-三叠系界线的定义及其与海相地层的对比是目前亟需解决的科学问题之一,而在重要的研究区寻找可供生物地层对比的关键生物化石组合和标志就是解决这一问题的关键所在.本文对黔西滇东地区二叠纪—三叠纪之交海陆交互相的典型代表剖面——金钟剖面进行了系统的生物地层学研究,并且与该地区其他海相和陆相二叠系-三叠系界线剖面进行详细的生物地层对比.结果表明,利用海陆过渡相剖面的桥梁链接可以实现海、陆相二叠系-三叠纪界线地层的大致对比.对比结果显示, 研究区的二叠系-三叠系界线应该位于卡以头组的下部.叶肢介化石Euestheria gutta-Palaeolimnadia xuanweiensis组合,植物化石Annalepis-Peltaspermum组合以及双壳化石Pteria ussurica variabilis-Neoschizodus orbicularis组合,在陆相二叠纪-三叠纪界线研究中有重要的地层指示意义,特别是双壳化石Pteria ussurica variabilis-Neoschizodus orbicularis组合以及叶肢介化石Euestheria gutta-Palaeolimnadia xuanweiensis组合,可以作为海陆过渡相和陆相三叠纪开始的重要识别和对比标志.
-
图 3 黔西滇东地区剖面地层对比
岔河剖面(杨逢清等,2005;Shen et al., 2011)、小河边剖面(楚道亮等,2013)、金钟剖面、密德剖面(喻建新等,2008)
Fig. 3. The biostratigraphic correlation of various sections in western Guizhou and eastern Yunnan
图 4 研究区化石标本
a,b.Gigantopteris sp.;a.登记号:JZ06-12.产地:金钟剖面6层顶部;b.登记号:JZ07-40.产地:金钟剖面7层底部;c, d.Pecopteris sp.;c.登记号:JZ06-08.产地:金钟剖面6层顶部;d.登记号:JZ07-48.产地:金钟剖面7层底部;e, f.Annalepis sp.;e.登记号:JZ07-30.产地:金钟剖面8层顶部;f.登记号:JZ07-34.产地:金钟剖面9层顶部;g, h.Peltaspermum sp.;g.登记号:JZ08-28.产地:金钟剖面9层顶部;h.登记号:JZ07-37.产地:金钟剖面8层顶部;i, j.Euestheria gutta Lyutkevich, 1937i.左瓣.登记号:JZ07-01.产地与层位:金钟剖面卡以头组8层顶部;j.右瓣.登记号:JZ08-20.产地:金钟剖面卡以头组9层底部;k, l.Palaeolimnadia xuanweiensis Shen, 1976k.右瓣.登记号:JZ07-04.产地:金钟剖面8层顶部;l.右瓣.登记号:JZ07-05.产地:金钟剖面8层中部;m.Pteria ussurica variabilis Chen and Lan in Gu et al., 1976, 登记号:JZ07-14.产地:金钟剖面8层底部;n.Neoschizodus orbicularis(Bronn, 1837),登记号:JZ07-24.产地:金钟剖面8层底部;o.介壳层, 产地:金钟剖面8层底部;本文研究的化石标本均保存在中国地质大学(武汉)生物地质与环境地质国家重点实验室,采集于贵州威宁金钟剖面宣威组和卡以头组.说明的标本登记号中包括剖面缩写、化石产出层位和标本编号(金钟剖面1层1号标本=JZ01-01).图片使用单反相机(Canon EOS 7D)和体视显微镜(Leica SAP80) 拍摄
Fig. 4. Collection of fossils of research area
表 1 研究区岩性与分层描述
Table 1. Lithology and stratigraphy of research area
东川组(未到顶) 19.紫红色厚层状细砂岩 9.30 m 18.紫红色中厚层状细砂岩 8.20 m 卡以头组 17.土黄色、紫红色、灰绿色薄层状泥质粉砂岩互层.含叶肢介化石:Euestheria gutta 7.30 m 16.黄绿色-土黄色粉砂质泥岩.含叶肢介化石:Euestheria gutta,Euestheria sp. 11.10 m 15.土黄色厚层状粉砂岩.含植物化石:Annalepis sp.;含叶肢介化石:Euestheria gutta,Euestheria sp.,Palaeolimnadia xuanweiensis,Palaeolimnadia sp. 14.80 m 14.黄绿色薄层粉砂岩夹土黄色粉砂质泥岩.含植物化石:Annalepis sp.,Peltaspermum sp.;含叶肢介化石:Euestheria gutta,Euestheria sp.,Palaeolimnadia xuanweiensis,Palaeolimnadia sp. 9.80 m 13.土黄色薄层粉砂质泥岩.含植物化石:Annalepis sp.,Peltaspermum sp.;含叶肢介化石:Euestheria gutta,Euestheria sp.,Palaeolimnadia xuanweiensis,Palaeolimnadia sp. 5.00 m 12.土黄色薄层粉砂岩.含叶肢介化石:Euestheria gutta,Euestheria sp. 6.20 m 11.土黄色粉砂质泥岩夹黄绿色中薄层砂质泥岩.含植物化石:Annalepis sp.,Peltaspermum sp.;含叶肢介化石:Euestheria gutta,Euestheria sp.,Palaeolimnadia xuanweiensis,Palaeolimnadia sp. 5.30 m 10.黄绿色薄层粉砂质泥岩.含植物化石:Annalepis sp.,Peltaspermum sp.;双壳化石:Pteria ussurica variabilis,Neoschizodus orbicularis,Neoschizodus laevigatus,Promyalina schamarae,Permophorus bregeri,Pteria sp.;叶肢介化石:Euestheria gutta,Euestheria sp.,Palaeolimnadia xuanweiensis,Palaeolimnadia sp.;以及腕足化石Lingula sp.和腹足化石 3.00 m 9.黄绿色薄层粉砂岩.含植物化石:Annalepis sp.;叶肢介化石:Euestheria gutta,Palaeolimnadia xuanweiensis,Palaeolimnadia sp. 2.20 m 8.黄绿色厚层状泥质粉砂岩.含植物化石:Peltaspermum sp.,Annalepis zeilleri,Annalepis angusta;双壳化石Neoschizodus orbicularis,Pteria ussurica variabilis,Neoschizodus laevigatus,Pteria sp.;叶肢介化石:Euestheria gutta,Euestheria sp.,Palaeolimnadia xuanweiensis,Palaeolimnadia sp.;腕足化石Lingula sp. 2.80 m 7.黄绿色薄层状泥岩.含植物化石:Gigantopteris sp.,Cordaites sp.,Gigantonoclea sp. 0.88 m 宣威组(未到底) 6.黄绿色厚层状粉砂岩,下部2层煤线,不连续.含植物化石Pecopteris sp.,Cordaites sp.,Stigmaria sp.,Lepidodendron sp.,Fascipteris densata 1.46 m 5.厚层土黄色泥岩夹厚度不均的煤层 0.60 m 4.黄绿色厚层状粉砂岩,顶部为薄层煤层.含植物化石Gigantopteris sp.,Cordaites sp.,Gigantonoclea sp.,Fascipteris densata 1.60 m 3.灰绿色-土黄色厚层粉砂岩,夹0.70 m白色古土壤,顶部夹0.03 m煤线.含植物化石Gigantopteris sp.,Pecopteris sp.,Gigantonoclea sp.,Stigmaria sp. 3.53 m 2.土黄色厚层状粉砂岩,夹0.38 m灰白色粘土,顶部夹0.08 m煤层.含植物化石Pecopteris sp.,Cordaites sp. 2.41 m 1.土黄色厚层状粉砂岩,可见0.90 m灰白色粘土,带铁质包壳,顶部夹0.06 m煤层.含植物化石Gigantopteris sp.,Cordaites sp.,Gigantonoclea sp.,Pecopteris sp. 未见底 -
Alroy, J., Aberhan, M., Bottjer, D.J., et al., 2008.Phanerozoic Trends in the Global Diversity of Marine Invertebrates.Science, 321(5885):97-100.doi: 10.1126/science.1156963 Benton, M.J., 1997.Models for the Diversification of Life.Trends in Ecology & Evolution, 12(12):490-495.doi: 10.1016/S0169-5347(97)84410-2 Bercovici, A., Cui, Y., Forel, M.B., et al., 2015.Terrestrial Paleoenvironment Characterization across the Permian-Triassic Boundary in South China.Journal of Asian Earth Sciences, 98:225-246.doi: 10.1016/j.jseaes.2014.11.016 Burgess, S.D., Samuel, B., Shen, S.Z., 2014.High-Precision Timeline for Earth's Most Severe Extinction.Proceedings of the National Academy of Sciences, 111(9):3316-3321.doi: 10.1073/pnas.1317692111 Cascales-Miñana, B., Diez, J.B., Gerrienne, P., et al., 2015.A Palaeobotanical Perspective on the Great End-Permian Biotic Crisis.Historical Biology, 2015:1-9.doi: 10.1080/08912963.2015.1103237 Chen, J., Tong, J.N., Niu, Z.J., et al., 2010.Lower-Middle Triassic Strata in Qingyan, Guizhou Province, South China.Earth Science, 35(1):51-61(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201001009.htm Chen, J.H., 2005.Macroevolution of Bivalves after the End-Permian Mass Extinction in South China.In:Rong, J.Y., Fang, Z.J., eds., Mass Extinction and Recovery:Evicences from the Palaeozoic and Triassic of South China(Vol.One).University of Science and Technology of China Press, Hefei, 647-700 (in Chinese). Chen, J.H., Yu, J.X., Huang, Q.S., et al., 2011.New Research Progress on the Paleoflora in the Earliest Triassic of Western Guizhouand Eastern Yunnan, South China.Earth Science, 36(3):500-510(in Chinese with English abstract). Chen, Z.Q., Benton, M.J., 2012.The Timing and Pattern of Biotic Recovery Following the End-Permian Mass Extinction.Nature Geoscience, 5(6):375-383.doi: 10.1038/ngeo1475 Chen, Z.Q., George, A.D., Yang, W.R., 2009.Effects of Middle-Late Permian Sea-Level Changes and Mass Extinction on the Formation of the Tieqiao Skeletal Mound in the Laibin Area, South China.Australian Journal of Earth Sciences, 56:745-763.doi: 10.1080/08120090903002581 Chu, D.L., Tong, J.N., Yu, J.X., et al., 2013.The Conchostracan Fauna from the Kayitou Formation of Western Guizhou, China.Acta Palaeontologica Sinica, 52(3):265-268(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX201303001.htm Chu, D.L., Tong, J.N., Song, H.J., et al., 2015a.Lilliput Effect in Freshwater Ostracods during the Permian-Triassic Extinction.Palaeogeography, Palaeoclimatology, Palaeoecology, 435:38-52.doi: 10.1016/j.palaeo.2015.06.003 Chu, D.L., Tong, J.N., Song, H.J., et al., 2015b.Early Triassic Wrinkle Structures on Land:Stressed Environments and Oases for Life.Scientific Reports, 5:10109.doi: 10.1038/srep10109 Cui, Y., Bercovici, A., Yu, J., et al., 2015.Carbon Cycle Perturbation Expressed in Terrestrial Permian-Triassic Boundary Sections in South China.Global & Planetary Change, In Press.doi: 10.1016/j.gloplacha.2015.10.018 Erwin, D.H., 1993.The Great Paleozoic Crisis:Life and Death in the Permian.Columbia University Press, New York. Fliche, P., Zeiller, R., 1910.Flore Fossile du Trias en Lorraine et Franche-Comté (Avec Des Considerations Finales Par M.R.Zeiller).Bulletin de la Société des Sciences de Nancy, Ⅲ, Ⅺ 1:222-286. Gastaldo, R.A., Kamo, S.L., Neveling, J., et al., 2015.Is the Vertebrate-Defined Permian-Triassic Boundary in the Karoo Basin, South Africa, the Terrestrial Expression of the End-Permian Marine Event?Geology, 43(10):939-942.doi: 10.1130/G37040.1 Grauvogel-Stamm L., Lugardon, B., 2001.The Triassic Lycopsids Pleuromeia and Annalepis:Relationship, Evolution and Origin.American Fern Journal, 91:115-149.doi: 10.1640/0002-8444(2001)091[0115:TTLPAA]2.0.CO;2 Hou, J.P., Ouyang, S., 2000.Palynoflora from the Sunjiagou Formation in Liulin County, Shanxi Province.Acta Palaeontologica Sinica, 39(3):356-368(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX200003005.htm Huang, Y.F., Tong, J.N., 2014.Advance in the Study of the Permian-Triassic Bivalves.Advances in Earth Science, 29(8):922-933(in Chinese with English abstract). Huang, Y.F., Tong, J.N., Xiang, Y., et al., 2015.The Extinction and Delayed Recovery of Bivalves during the Permian-Triassic Crisis.Earth Science, 40(2):334-345(in Chinese with English abstract). Jiang, H.S., Lai, X.L., Luo, G.M., et al., 2007.Restudy of Conodont Zonation and Evolution across the P/T Boundary at Meishan Section, Changxing, Zhejiang, China.Global & Planetary Change, 55(1-3):39-55.doi: 10.1016/j.gloplacha.2006.06.007 Komatsu, T., Huyen, D.T., Chen, J.H., 2008.Lower Triassic Bivalve Assemblages after the End-Permian Mass Extinction in South China and North Vietnam.Paleontological Research, 12(2):119-128.doi: 10.2517/1342-8144(2008)12[119:LTBAAT]2.0.CO;2 Kozur, H.W., Weems, R.E., 2010.The Biostratigraphic Importance of Conchostracans in the Continental Triassic of the Northern Hemisphere.Geological Society, London, Special Publications, 34(1):315-417.doi: 10.1144/SP334.13 Kozur, H.W., Weems, R.E., 2011.Detailed Correlation and Age of Continental Late Changhsingian and Earliest Triassic Beds:Implications for the Role of the Siberian Trap in the Permian-Triassic Biotic Crisis.Palaeogeography Palaeoclimatology Palaeoecology, 308(1-2):22-40.doi: 10.1016/j.palaeo.2011.02.020 Li, X.X., 1995.Fossil Floras of China through the Geological Ages.Guangdong Science and Technology Press, Guangdong, 229 -253(in Chinese). Liu, S.W., Li, Y.G., Wang, S.T., et al., 1990.Study of Some Permian-Triassic Fauna Fossils in Duwa, Hotan, Xinjiang.Xinjiang Geology, 8(1):36-46(in Chinese with English abstract). Liu, X., Gituru, W.R., Wang, Q.F., 2004.Distribution of Basic Diploid and Polyploid Species of Isoetes in East Asia.Journal of Biogeography, 31:1239-1250.doi: 10.1111/j.1365-2699.2004.01115.x Looy, C.V., Brugman, W.A., Dilcher, D.L., et al., 1999.The Delayed Resurgence of Equatorial Forests after the Permian-Triassic Ecologic Crisis.Proceedings of the National Academy of Sciences, 96(24):13857-13862.doi: 10.1073/pnas.96.24.13857 Looy, C.V., Twitchett, R.J., Dilcher, D.L., et al., 2001.Life in the End-Permian Dead Zone.Proceedings of the National Academy of Sciences, 98(14):7879-7883.doi: 10.1073/pnas.131218098 Lucas, S.G., 1998.Global Triassic Tetrapod Biostratigraphy and Biochronology.Palaeogeography Palaeoclimatology Palaeoecology, 143(98):347-384.doi: 10.1016/S0031-0182(98)00117-5 Lucas, S.G., 2009.Timing and Magnitude of Tetrapod Extinctions across the Permo-Triassic Boundary.Journal of Asian Earth Sciences, 36(6):491-502.doi: 10.1016/j.jseaes.2008.11.016 Mcroberts, C.A., 2010.Biochronology of Triassic Bivalves.Geological Society London Special Publications, (1):201-219.doi: 10.1144/SP334.9 Meng, F.S., 1994.Discovery of Pleuromeia-Annalepis Flora in South China and Its Significance.Chinese Science Bulletin, 39:130-134. Meng, F.S., Zhang, Z.L., Niu, Z.J., et al., 2000.Primitive Lycopsid Flora in the Yangtze Valley of China and Systematics and Evolution of Isoetales.Hunan Science and Technology Press, Changsha (in Chinese with English abstract). Nakazawa, K., 1981.Permian and Triassic Bivalves of Kashmir.In:Nakazawa, K., Kapoor, H.M., eds., The Upper Permian and Lower Triassic Faunas of Kashmir, Palaeontologica Indica, New Series, 46, 87-122. Ouyang, S., 1991.Transitional Palynofloras from Basal Lower Triassic of China and Their Ecological Implications, with Special Reference to Paleophyte/Mesophyte Problems.In:Jin Y.G., ed., Palaeoecology of China 1, Nanjing University Press, Nanjing, 168-196. Pang, Q.Q., Jin, X.C., 2004.Ostracoda of the Guodikeng Formation and the Continental Permo Triassic Boundary of the Dalongkou Section, Jimsar, Xinjiang.Professional Papers of Stratigraphy and Palaeontology, 00:205-246(in Chinese with English abstract). Peng, Y.Q., Tong, J.N., 1999.The Study on Permian-Triassic Boundary Bed in Yangtze Platform.Earth Science, 24(1):39-48(in Chinese with English abstract). Peng, Y.Q., Yin, H.F., Yang, F.Q., 2001.Advance in the Study of Terrestrial Permian-Triassic Boundary.Advance in Earth Science, 16(6):769-776(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXJZ200106007.htm Peng, Y.Q., Zhang, S.X., Yu, T.X., et al., 2005.High-Resolution Terrestrial Permian-Triassic Eventostratigraphic Boundary in Western Guizhou and Eastern Yunnan, Southwestern China.Palaeogeography Palaeoclimatology Palaeoecology, 215(3):285-295.doi: 10.1016/j.palaeo.2004.09.009 Posenato, R., 2009.Survival Patterns of Macrobenthic Marine Assemblages during the End-Permian Mass Extinction in the Western Tethys (Dolomites, Italy).Palaeogeography, Palaeoclimatology, Palaeoecology, 280(1):150-167.doi: 10.1016/j.palaeo.2009.06.009 Raup, D.M., 1979.Size of the Permo-Triassic Bottleneck and Its Evolutionary Implications.Science, 206(4415):217-218.doi: 10.1126/science.206.4415.217 Retallack, G.J., 1975.The Life and Times of a Triassic Lycopod.Alcheringa, 1:3-29.doi: 10.1080/03115517508619477 Retallack, G.J., 1995.Permian-Triassic Life Crisis on Land.Science, 267(5194):77-80.doi: 10.1126/science.267.5194.77 Retallack, G.J., 1997.Earliest Triassic Origin of Isoetes and Quillwort Evolutionary Radiation.Journal of Paleontology, 71:500-521.doi: 10.1017/S0022336000039524 Schneebeli-Hermann, E., Bucher, H., 2015. Palynostratigraphy at the Permian-Triassic Boundary of the Amb Section, Salt Range, Pakistan.Palynology, 39(1):1-18.doi: 10.1080/01916122.2014.921648 Scholze, F., Golubev, V.K., Niedwiedzki, G., et al., 2015.Early Triassic Conchostracans (Crustacea:Branchiopoda) from the Terrestrial Permian-Triassic Boundary Sections in the Moscow Syncline.Palaeogeography Palaeoclimatology Palaeoecology, 429:22-40.doi: 10.1016/j.palaeo.2015.04.002 Sephton, M.A., Jiao, D., Engel, M.H., et al., 2015.Terrestrial Acidification during the End-Permian Biosphere Crisis? Geology, 43(2):159-162.doi: 10.1130/G36227.1 Shen, S.Z., He, X.L., Shi, G.R., 1995.Biostratigraphy and Correlation of Several Permian-Triassic Boundary Sections in Southwestern China.Journal of Southeast Asian Earth Sciences, 12(1):19-30.doi: 10.1016/0743-9547(95)00026-7 Shen, S.Z., Henderson, C.M., Bowring, S.A., et al., 2010.High-Resolution Lopingian (Late Permian) Timescale of South China.Geological Journal, 45(2-3):122-134.doi: 10.1002/gj.1232 Shen, S.Z., Crowley, J.L., Wang, Y., et al., 2011.Calibrating the End-Permian Mass Extinction.Science, 334(6061):1367.doi: 10.1126/science.1213454 Shen, W.J., Sun, Y.G., Lin, Y.T., et al., 2011.Evidence for Wildfire in the Meishan Section and Implications for Permian-Triassic Events.Geochimica et Cosmochimica Acta, 75(7):1992-2006.doi: 10.1016/j.gca.2011.01.027 Song, H.J., Wignall, P.B., Tong, J.N., et al., 2013.Two Pulses of Extinction during the Permian-Triassic Crisis.Nature Geoscience, 6(1):52-56.doi: 10.1038/ngeo1649 Tian, L., Tong, J.N., Song, H.J., et al., 2014.Foraminiferal Evolution and Formation of Oolitic Limestone near Permian-Triassic Boundary at Yangou Section, Jiangxi Province.Earth Science, 39(11):1473-1486(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201411001.htm Tian, Y.T., Yu, J.X., Feng, Q.L., 2008.The Discovery of Ophiceras in the Kayitou Formation in Eastern Yunnan Province and Its Signification.Journal of Stratigraphy, 32(2):153-158(in Chinese with English abstract). Tong, J.N., Yin, H.F., 2015.Triassic Chronostratigraphy and Chinese Stages.Earth Science, 40(2):189-197(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201502001.htm Tu, C.Y., Chen, Z.Q., Retallack, G.J., et al.2016.Proliferation of MISS-Related Microbial Mats Following the End-Permian Mass Extinction in Terrestrial Ecosystems:Evidence from the Lower Triassic of the Yiyang Area, Henan Province, North China.Sedimentary Geology, 333:50-69.doi: 10.1016/j.sedgeo.2015.12.006 Wang, S.Y., Yin, H.F., 2001a.Study on Terrestrial Permian-Triassic Boundary in Eastern Yunnan and Western Guizhou.China University of Geosciences Press, Wuhan (in Chinese). Wang, S.Y., Yin, H.F., 2011b.Advance in the Study of the Terrestrial Permian-Triassic Boundary, South China.Chineses Geology, 28(7):16-21(in Chinese). Wang, Z.Q., 1996.Recovery of Vegetation from the Terminal Permian Mass Extinction in North China.Review of Palaeobotany & Palynology, 91(1):121-142.doi: 10.1016/0034-6667(95)00069-0 Wang, Z.Q., Chen, A.S., 2001.Traces of Arborescent Lycopsids and Dieback of the Forest Vegetation in Relation to the Terminal Permian Mass Extinction in North China.Review of Palaeobotany & Palynology, 117(4):217-243.doi: 10.1016/S0034-6667(01)00094-X Ward, P.D., Montgomery, D.R., Smith, R., 2000.Altered River Morphology in South Africa Related to the Permian-Triassic Extinction.Science, 289(5485):1740-1743.doi: 10.1126/science.289.5485.1740 Yang, F.Q., Yin, H.F., Yu, J.X., et al., 2005.Study of the Terrestrial Permian-Triassic Boundary of the Chahe Section, Weining, Guizhou Province.Science in China(Ser.D), 35(6):519-529 (in Chinese). Yang, H., Zhang, S.X., Jiang, H.S., et al., 2006.Age and General Characteristics of Calcimicrobialite near the Permian-Triassic Boundary in Chongyang, Hubei Province.Earth Science, 31(2):165-170(in Chinese with English abstract). Yang, Z.Y., Yin, H.F., Wu, S.B., et al., 1987.Permian-Triassic Boundary Stratigraphy and Fauna of South China.Geological Publishing House, Beijing (in Chinese with English abstract). Yao, Z.Q., 1978.On the Age of " Gigantopteris Coal Series" and Gigantopteris-Flora in South China.Acta Palaeontologica Sinica, 17(1):81-89 (in Chinese with English abstract). Yao, Z.Q., Xu, J.T., Zhen, Z.G., et al., 1980.Biostratigraphy of Late Permian in West Guizhouand and Easte Yunnan and the Permo-Triassic Boundary.In:Nanjing Institute of Geology and Palaeontology, Academia Sinica, ed., Stratigraphy and Palaeontology of Late Permian Coal-Bearing Formations.Science Press, Beijing (in Chinese). Ye, M.N., 1979.On Some Middle Triassic Plants from Hupeh and Szechuan.Acta Palaeontologica Sinica, 18(1):73-82(in Chinese with English abstract). Yin, H.F., Xie, S.C., Luo, G.M., et al., 2012.Two Episodes of Environmental Change at the Permian-Triassic Boundary of the GSSP Section Meishan.Earth-Science Reviews, 115(3):163-172.doi: 10.1016/j.earscirev.2012.08.006 Yin, H.F., Zhang, K.X., Tong, J.N., et al., 2001.The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary.Episodes, 24(2):102-114. http://ci.nii.ac.jp/naid/10020538786 Yu, J.X., Broutin, J., Chen, Z.Q., et al., 2015.Vegetation Changeover across the Permian-Triassic Boundary in Southwest China:Extinction, Survival, Recovery and Palaeoclimate:A Critical Review.Earth-Science Reviews, 149:203-224.doi: 10.1016/j.earscirev.2015.04.005 Yu, J.X., Huang, Q.S., Broutin, J., 2008.The Early Early Triassic Annalepis from Western Guizhou and Eastern Yunnan, South China.Acta Palaeontologica Sinica, 47(3):292-300(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX200803006.htm Zhang, H., Cao, C.Q., Liu, X.L., et al., 2015.The Terrestrial End-Permian Mass Extinction in South China.Palaeogeography, Palaeoclimatology, Palaeoecology, In Press.doi: 10.1016/j.palaeo.2015.07.002 Zhang, W.T., Chen, P.J., Shen, Y.B., 1976.The Conchostracan of China.Science Press, Beijing(in Chinese). 陈建华, 喻建新, 黄其胜, 等, 2011.黔西滇东地区早三叠世早期植物化石研究的新进展.地球科学, 36(3):500-510. http://earth-science.net/WebPage/Article.aspx?id=2113 陈晶, 童金南, 牛志军, 等, 2010.贵州青岩地区早-中三叠世生物地层.地球科学, 35(1):51-61. http://earth-science.net/WebPage/Article.aspx?id=1929 陈金华, 2005.华南二叠纪末大灭绝后双壳类的宏演化阶段.见戎嘉余, 方宗杰, 生物大绝灭与复苏:来自华南古生物代和三叠纪的证据(上卷).合肥:中国科学技术大学出版社, 647-700. 楚道亮, 童金南, 喻建新, 等.2013.黔西地区卡以头组叶肢介动物群.古生物学报, 52(3):265-280. http://www.cnki.com.cn/Article/CJFDTOTAL-GSWX201303001.htm 侯静鹏, 欧阳舒, 2000.山西柳林孙家沟组孢粉植物群.古生物学报, 39(3):356-368. http://www.cnki.com.cn/Article/CJFDTOTAL-GSWX200003005.htm 黄云飞, 童金南, 2014.古-中生代之交双壳类演变研究进展.地球科学进展, 29(08):922-933. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201408008.htm 黄云飞, 童金南, 向烨, 等, 2015.二叠纪-三叠纪之交双壳类的灭绝与复苏过程.地球科学, 40(2):334-345. http://earth-science.net/WebPage/Article.aspx?id=3048 李星学, 1995.中国地质时期植物群.广东:广东科技出版社, 229-253. 刘淑文, 李友桂, 王士涛, 等.1990.新疆和田杜瓦二叠-三叠纪动物化石研究.新疆地质, 8(1):36-46. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI199001004.htm 孟繁松, 张振来, 牛志军, 等, 2000.长江流域原始石松植物及水韭目植物分类与演化.长沙:湖南科学技术出版社. 庞其清, 金小赤, 2004.新疆吉木萨尔大龙口锅底坑组的介形虫及陆相二叠系-三叠系界线.地层古生物论文集, 00:205-246. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200400008015.htm 彭元桥, 童金南, 1999.扬子台区二叠-三叠系界线层综合地层学研究.地球科学, 24(1):39-48. http://earth-science.net/WebPage/Article.aspx?id=744 彭元桥, 殷鸿福, 杨逢清, 2001.陆相二叠系-三叠系界线研究进展.地球科学进展, 16(6):769-776. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200106007.htm 田力, 童金南, 宋海军, 等, 2014.江西乐平沿沟二叠纪末有孔虫的演变及对鲕状灰岩的古环境指示意义.地球科学, 39(11):1473-1486. http://earth-science.net/WebPage/Article.aspx?id=2975 田云涛, 喻建新, 冯庆来, 2008.Ophiceras(蛇菊石)在滇东卡以头组的发现及其意义.地层学杂志, 32(2):153-158. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200802003.htm 童金南, 殷鸿福, 2015.三叠纪年代地层与中国建阶.地球科学:中国地质大学学报, 40(2):189-197. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201502001.htm 王尚彦, 殷鸿福, 2001a.滇东黔西陆相二叠纪-三叠纪界线地层研究.武汉:中国地质大学出版社. 王尚彦, 殷鸿福, 2001b.华南陆相二叠-三叠系界线地层研究新进展.中国地质, 28(7):16-21. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200107002.htm 杨逢清, 殷鸿福, 喻建新, 等, 2005.贵州威宁岔河陆相二叠系-三叠系界线地层研究.中国科学(D辑), 35(6):519-529. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200506004.htm 杨浩, 张素新, 江海水, 等, 2006.湖北崇阳二叠纪-三叠纪之交钙质微生物岩的时代及基本特征.地球科学, 31(2):165-170. http://earth-science.net/WebPage/Article.aspx?id=1573 杨遵仪, 殷鸿福, 吴顺宝, 等, 1987.华南二叠-三叠系界线地层及动物群.北京:地质出版社. 姚兆奇, 1978.华南"大羽羊齿煤系"和大羽羊齿植物群的时代.古生物学报, 17(1):81-89. http://www.cnki.com.cn/Article/CJFDTOTAL-GSWX197801004.htm 姚兆奇, 徐均涛, 郑灼官, 等, 1980.黔西滇东晚二叠世生物地层和二叠系与三叠系的界线问题.见黔西滇东晚二叠世含煤地层和古生物群.北京:科学出版社. 叶美娜, 1979.湖北、四川中三叠统植物化石的发现.古生物学报, 18(1):73-82. http://www.cnki.com.cn/Article/CJFDTOTAL-GSWX197901004.htm 喻建新, 黄其胜, Broutin, J., 等, 2008.黔西滇东早三叠世早期Annalepis(脊囊属)的出现及其地层意义.古生物学报, 47(3):292-300. http://www.cnki.com.cn/Article/CJFDTOTAL-GSWX200803006.htm 张文堂, 陈丕基, 沈炎彬, 1976.中国的叶肢介化石.北京:科学出版社. 期刊类型引用(9)
1. 黄云飞. 贵州威宁小河边剖面早三叠世奥伦尼克期双壳类化石及其指示意义. 长江大学学报(自然科学版). 2023(01): 13-20 . 百度学术
2. 张航飞,赵俊兴,文俊,韩晓影,钟强生,竹合林,梁成. 四川沐川地区下三叠统飞仙关组底部的沉积型铜矿含矿岩系特征及其对物源区的制约. 矿物岩石. 2023(02): 58-68 . 百度学术
3. 刘丰良,董树义,程文斌,赵兵,赵红,王涌,展望. 四川省沐川地区的P-T界线沉积学与地球化学初步研究. 矿物岩石. 2022(03): 20-33 . 百度学术
4. Jinnan TONG,Daoliang CHU,Lei LIANG,Wenchao SHU,Haijun SONG,Ting SONG,Huyue SONG,Yuyang WU. Triassic integrative stratigraphy and timescale of China. Science China(Earth Sciences). 2019(01): 189-222 . 必应学术
5. 童金南,楚道亮,梁蕾,舒文超,宋海军,宋婷,宋虎跃,吴玉样. 中国三叠纪综合地层和时间框架. 中国科学:地球科学. 2019(01): 194-226 . 百度学术
6. 陈伟,王庆同,李璇,马锦龙. 论古生物化石在地质学中的作用及最新研究意义. 甘肃科技纵横. 2018(09): 22-23+63 . 百度学术
7. 季长军,吴珍汉,伊海生,夏囯清,赵珍,王霆. 西藏文布当桑二叠系-三叠系界线剖面碳酸盐岩碳氧同位素异常研究. 地质学报. 2018(10): 2018-2027 . 百度学术
8. 楚道亮,缪雪,吴玉样,郭文伟,舒文超,童金南. 陕西渭北二叠纪-三叠纪之交叶肢介化石及其地层对比. 地球科学. 2018(11): 3910-3921 . 本站查看
9. 江海水,陈龑,刘芬. 贵州海相拉丁阶-卡尼阶界线研究展望. 地球科学. 2018(11): 3947-3954 . 本站查看
其他类型引用(7)
-