• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    莺歌海盆地黄流组浅海重力流砂体物源分析及油气地质意义

    黄银涛 姚光庆 周锋德

    黄银涛, 姚光庆, 周锋德, 2016. 莺歌海盆地黄流组浅海重力流砂体物源分析及油气地质意义. 地球科学, 41(9): 1526-1538. doi: 10.3799/dqkx.2016.511
    引用本文: 黄银涛, 姚光庆, 周锋德, 2016. 莺歌海盆地黄流组浅海重力流砂体物源分析及油气地质意义. 地球科学, 41(9): 1526-1538. doi: 10.3799/dqkx.2016.511
    Huang Yintao, Yao Guangqing, Zhou Fengde, 2016. Provenance Analysis and Petroleum Geological Significance of Shallow-Marine Gravity Flow Sandstone for Huangliu Formation of Dongfang Area in Yinggehai Basin, the South China Sea. Earth Science, 41(9): 1526-1538. doi: 10.3799/dqkx.2016.511
    Citation: Huang Yintao, Yao Guangqing, Zhou Fengde, 2016. Provenance Analysis and Petroleum Geological Significance of Shallow-Marine Gravity Flow Sandstone for Huangliu Formation of Dongfang Area in Yinggehai Basin, the South China Sea. Earth Science, 41(9): 1526-1538. doi: 10.3799/dqkx.2016.511

    莺歌海盆地黄流组浅海重力流砂体物源分析及油气地质意义

    doi: 10.3799/dqkx.2016.511
    基金项目: 

    中海石油有限公司湛江分公司资助项目 CCL-2013-ZJFN1012

    详细信息
      作者简介:

      黄银涛(1989-),男,博士研究生,主要从事油气储层地质研究工作. E-mail: huangyintao@hotmail.com

      通讯作者:

      姚光庆, E-mail: gqyao@cug.edu.cn

    • 中图分类号: P595

    Provenance Analysis and Petroleum Geological Significance of Shallow-Marine Gravity Flow Sandstone for Huangliu Formation of Dongfang Area in Yinggehai Basin, the South China Sea

    • 摘要: 莺歌海盆地中央带上中新统黄流组一段近年新发现一套浅海重力流沉积体系,夹持于海南古隆起和越南昆嵩古隆起之间,探讨其物源供给对掌握砂体展布规律以及“源-汇复合体系”的研究具有重要意义.结合东方气田新钻井资料和岩石测试资料,如砂岩碎屑组分、重矿物组合特征及元素地球化学特征对研究区黄流组物源进行了分析, 结果表明:(1) 西部昆嵩隆起物源是本区浅海重力流沉积体系的主要物源区,浅海重力流砂岩长石、岩屑含量较高,结构成熟度高,泥质含量低(平均3.8%),以岩屑石英细-极细砂岩为主;源自东部物源浅海砂坝砂岩的长石、岩屑含量较低,成分成熟度高,但泥质含量高(平均18.6%),以岩屑石英粉砂岩-石英粉砂岩为主;(2) 源于西部物源的浅海重力流砂岩锆石、电气石含量低,磁铁矿、石榴石含量高,源于东部物源的浅海砂坝锆石、电气石、白钛矿含量高,磁铁矿、石榴石含量低.此外,区域古水流方向主要为南东-东西向,反映其可能受到西部越南水系的影响;(3) 岩心样品相似的稀土元素配分模式表明浅海重力流砂岩具有一致的物质来源,稀土元素含量及比值、Th-Sc及Co/Th-La/Sc图解均显示中性-长英质源岩特征,La-Th-Sc三角图、Th-Sc-Zr/10三角图以及主量元素判别图解均显示样品落在主动大陆边缘或大陆岛弧区域,说明浅海重力流砂岩源区为挤压构造背景,与昆嵩隆起相符合;(4) 中央底辟带西侧的浅海重力流砂体规模大,物性好,含气丰富,为下一步向西部勘探的主力砂体,而中央底辟带东侧的浅海砂坝储层规模较小,储层质量较差.

       

    • 图  1  莺歌海盆地研究区位置(a)、地层系统(b)、井位及沉积体系分布(c)及过研究区地震剖面(d)

      图 1a~1c张伙兰(2013)修改

      Fig.  1.  Location of the study area (a), stratum system (b), location of wells and distribution of sedimentary systems (c), and one seismic section from the study area (d) in Yingehai basin

      图  2  砂岩元素地化样品分布

      Fig.  2.  The locations of sandstone samples which were collected for geochemistry analysis

      图  3  黄流组一段砂岩组分三角图

      Fig.  3.  The QFL triangle diagram of sandstones from member #1 of Huangliu Formation

      图  4  黄流组一段重矿物组合平面分布

      Fig.  4.  The distribution of heavy mineral assemblages from member #1 of Huangliu Formation

      图  5  黄流组一段古水流平面分布

      Fig.  5.  The distribution of paleo-current from member #1 of Huangliu Formation

      图  6  黄流组砂岩稀土元素配分模式

      球粒陨石、UCC及PAAS数据来自于Henderson(1984)Taylor and McLennan(1985)Rudnick and Gao(2003)

      Fig.  6.  The REE pattern of the sandstone samples from Huangliu Formation

      图  7  黄流组砂岩Th-Sc(a)及Co/Th-La/Sc(b)图解

      Th/Sc=1代表平均大陆上地壳,据Taylor and McLennan(1985)

      Fig.  7.  Th-Sc (a) and Co/Th-La/Sc (b) diagram of sandstones from Huangliu Formation

      图  8  黄流组砂岩La-Th-Sc(a)、Th-Sc-Zr/10(b)和黄流组砂岩主量元素(DF1-DF2) 判别图解(c)

      OIA.大洋岛弧;CIA.大陆岛弧;ACM.主动大陆边缘;PM.被动大陆边缘

      Fig.  8.  La-Th-Sc (a), Th-Sc-Zr/10 (b) and discriminant function diagram for the tectonic setting using major elements (c) of Huangliusha Formation

      表  1  莺歌海盆地东方区岩石成分

      Table  1.   The proportion of sandstone components of study area

      微相 井号 气组 厚度(m) 面孔率(%) 粒度中值(μm) 胶结物含量(%) 碎屑组分(%) 结构成熟度 成分成熟度 排替压力(MPa) 中值压力(MPa) 平均孔喉半径(μm) 岩石类型
      石英 长石 岩屑 泥质含量(%) 成熟度 指数 成熟度
      浅海砂坝 C-12 10 8.2 62 8.0 52.5 5.2 6.3 17.6 7.3 极高 / / / 长石石英粉砂岩-石英粉砂岩
      A-3 18 2.9 48 4.8 58.0 4.2 3.8 19.6 7.3 极高 3.60 22.59 0.07 长石石英粉砂岩
      浅海重力流 A-2 15 16.4 88 10.5 57.7 4.0 7.5 2.9 5.1 0.42 2.05 0.57 岩屑石英极细砂岩
      A-2 38 19.3 65 5.4 62.9 4.1 8.5 0.5 5.1 0.41 1.15 0.73 岩屑石英极细砂岩
      A-4 23 18.7 165 7.7 58.1 3.9 11.4 0.7 4.1 0.19 0.74 1.44 岩屑石英细砂岩
      A-5 28 14.2 231 3.2 58.0 7.5 11.9 0.9 3.1 0.36 2.25 0.66 岩屑石英细砂岩
      A-6 44 19.6 71 6.0 61.5 3.0 0.8 1.2 5.0 0.37 1.33 0.74 岩屑石英极细砂岩
      A-7 20 20.0 79 3.8 57.3 5.4 3.2 0.5 3.1 0.17 3.18 1.41 岩屑石英细-极细砂岩
      A-7 37 19.0 123 4.7 57.2 5.3 13.5 1.1 3.1 0.17 0.99 1.54 岩屑石英细-极细砂岩
      A-8 8 15.5 188 5.6 54.3 4.3 14.3 8.0 2.6 / / / 岩屑石英极细-细砂岩
      A-8 18 17.5 90 4.5 54.3 6.1 15.1 3.1 2.6 / / / 岩屑石英细-极细砂岩
      B-1 20 12.1 99 2.1 62.9 8.5 13.3 1.2 2.9 / / / 长石岩屑石英极细砂岩
      B-2 10 10.7 125 3.1 61.1 5.7 8.9 10.5 4.4 0.17 5.72 1.39 石英细-极细砂岩
      B-4 20 15.9 135 8.9 45.6 6.6 13.9 3.3 2.3 0.11 1.64 2.35 长石岩屑石英细砂岩
      B-6 10 15.8 193 5.2 42.5 5.4 13.8 3.3 2.2 0.71 0.19 4.48 岩屑石英中-细砂岩
      B-6 8 15.1 146 5.0 49.9 6.3 12.9 6.4 2.6 0.29 2.00 1.43 岩屑石英细-极细砂岩
      B-8 29 18.7 154 4.9 52.9 6.9 12.1 2.1 2.8 0.10 0.58 3.31 长石岩屑石英细砂岩
      下载: 导出CSV

      附表 1  黄流组砂岩主量元素含量(%)

      附表 1.   The concentrations of major element for the sandstones from Huangliu Formation (%)

      样号 Na2O MgO Al2O3 SiO2 P2O5 K2O CaO TiO2 MnO Fe2O3 FeO Fe2O3/ Total LOI SUM Al2O3/TiO2 SiO2/Al2O3
      1 1.24 2.17 12.20 65.72 0.15 2.69 3.51 0.74 0.06 1.54 3.60 5.54 5.76 99.38 16.49 5.39
      2 1.09 1.90 10.57 71.15 0.12 2.25 2.78 0.69 0.05 1.34 3.25 4.96 4.62 99.82 15.38 6.73
      3 0.98 1.23 7.93 77.40 0.12 1.78 2.74 0.53 0.04 0.98 2.20 3.43 3.86 99.80 15.00 9.76
      4 0.97 1.08 6.69 75.37 0.10 1.72 5.08 0.45 0.08 0.53 2.15 2.92 5.31 99.55 14.73 11.27
      5 1.10 1.56 8.81 75.08 0.11 2.11 2.31 0.58 0.04 0.95 3.10 4.39 3.74 99.49 15.25 8.52
      6 1.04 1.34 7.74 77.63 0.10 2.01 2.47 0.52 0.04 0.71 2.65 3.65 3.59 99.84 14.88 10.03
      7 0.90 1.11 6.84 82.42 0.10 1.77 0.99 0.62 0.02 0.64 2.20 3.08 2.31 99.92 11.03 12.05
      8 0.93 1.16 7.32 80.55 0.10 1.90 1.72 0.43 0.04 0.60 2.45 3.32 2.73 99.93 17.02 11.00
      9 0.82 1.03 6.70 82.79 0.09 1.77 1.07 0.50 0.03 0.65 2.05 2.93 2.14 99.64 13.40 12.36
      10 1.25 1.46 7.76 75.72 0.10 1.72 2.20 0.56 0.05 0.44 2.87 3.63 5.66 99.79 13.86 9.76
      11 1.28 1.59 8.08 73.33 0.10 1.78 2.86 0.58 0.07 0.70 2.90 3.92 6.20 99.47 13.93 9.08
      12 1.19 1.76 11.65 70.67 0.12 1.80 2.13 0.72 0.07 1.16 2.77 4.23 5.50 99.52 16.07 6.07
      13 1.42 1.57 10.43 73.05 0.12 1.80 2.12 0.71 0.03 0.99 2.50 3.77 4.92 99.66 14.69 7.00
      14 1.10 1.97 13.05 62.87 0.13 2.65 3.36 1.00 0.04 1.39 4.15 6.00 7.73 99.44 13.05 4.82
      15 0.97 1.74 12.35 62.80 0.13 2.18 5.96 0.78 0.05 1.26 3.15 4.76 8.49 99.86 15.83 5.09
      16 1.08 1.32 7.57 78.18 0.10 1.87 1.47 0.60 0.04 0.68 2.60 3.57 4.49 100.00 12.62 10.33
      17 1.32 1.68 8.86 73.13 0.10 2.10 2.23 0.60 0.04 0.67 3.20 4.23 5.93 99.86 14.77 8.25
      18 1.28 1.57 8.40 74.37 0.10 2.01 1.91 0.60 0.04 0.71 2.87 3.90 5.45 99.31 14.00 8.85
      19 1.30 1.61 8.51 74.15 0.10 2.02 1.99 0.60 0.03 0.68 2.90 3.90 5.62 99.52 14.17 8.72
      20 1.19 1.59 8.39 74.71 0.10 2.05 1.81 0.60 0.04 0.75 3.10 4.19 5.44 99.77 13.98 8.90
      21 1.18 1.51 8.19 75.76 0.10 1.98 1.65 0.59 0.04 0.67 2.83 3.81 5.05 99.55 13.88 9.25
      22 1.28 1.93 9.71 70.15 0.12 2.26 2.19 0.73 0.05 1.73 3.00 5.06 6.60 99.75 13.30 7.22
      23 1.29 1.76 8.73 72.30 0.10 1.99 2.40 0.63 0.05 0.92 3.10 4.36 6.26 99.53 13.86 8.28
      24 1.24 1.50 8.24 75.17 0.09 1.91 2.37 0.52 0.04 0.30 2.85 3.46 5.48 99.71 15.84 9.13
      25 1.10 1.43 7.86 76.30 0.11 1.87 2.07 0.60 0.04 0.69 2.65 3.63 5.17 99.89 13.10 9.71
      26 1.18 1.53 8.53 74.58 0.10 2.04 2.14 0.55 0.04 0.66 2.90 3.88 5.47 99.72 15.51 8.74
      27 1.21 1.49 8.45 74.98 0.10 2.04 1.80 0.57 0.04 0.78 2.85 3.95 5.27 99.58 14.82 8.87
      28 1.03 1.54 8.24 74.58 0.10 2.00 2.39 0.55 0.04 0.58 2.97 3.88 5.71 99.73 14.98 9.05
      下载: 导出CSV

      附表 2  黄流组砂岩主量、微量元素相关系数矩阵

      附表 2.   Correlation coefflcient matrix of chemical elements in the samples

      Na2O MgO Al2O3 SiO2 P2O5 K2O CaO TiO2 MnO Fe2O3 FeO CO2 Lost Sc Cu Rb Zr Hf Th U Ba Cr Ni Sr V B
      Na2O 1.00
      MgO 0.59 1.00
      Al2O3 0.29 0.84 1.00
      SiO2 -0.37 -0.86 -0.91 1.00
      P2O5 0.10 0.69 0.84 -0.76 1.00
      K2O 0.18 0.79 0.73 -0.73 0.69 1.00
      CaO -0.11 0.29 0.47 -0.67 0.53 0.30 1.00
      TiO2 0.26 0.75 0.88 -0.81 0.72 0.68 0.30 1.00
      MnO 0.11 0.26 0.22 -0.40 0.26 0.03 0.61 0.03 1.00
      Fe2O3 0.13 0.73 0.79 -0.71 0.86 0.70 0.33 0.76 0.21 1.00
      FeO 0.43 0.88 0.75 -0.81 0.53 0.86 0.29 0.72 0.14 0.52 1.00
      CO2 0.53 0.56 0.46 -0.69 0.16 0.31 0.40 0.51 0.27 0.20 0.58 1.00
      Lost 0.49 0.71 0.64 -0.87 0.41 0.47 0.61 0.62 0.40 0.39 0.69 0.93 1.00
      Sc 0.29 0.81 0.71 -0.75 0.73 0.84 0.30 0.75 0.12 0.75 0.76 0.44 0.58 1.00
      Cu 0.32 0.88 0.84 -0.87 0.74 0.88 0.44 0.75 0.17 0.67 0.88 0.49 0.67 0.81 1.00
      Rb 0.02 0.60 0.68 -0.64 0.50 0.76 0.23 0.65 -0.24 0.52 0.74 0.40 0.49 0.60 0.75 1.00
      Zr -0.07 0.34 0.58 -0.51 0.45 0.48 0.19 0.83 -0.15 0.44 0.52 0.34 0.37 0.50 0.48 0.56 1.00
      Hf -0.08 0.33 0.57 -0.49 0.44 0.46 0.18 0.83 -0.15 0.43 0.50 0.32 0.36 0.48 0.47 0.55 1.00 1.00
      Th -0.13 0.44 0.67 -0.61 0.58 0.63 0.33 0.82 -0.08 0.51 0.62 0.30 0.40 0.58 0.64 0.68 0.95 0.94 1.00
      U -0.06 0.55 0.77 -0.72 0.69 0.71 0.41 0.87 0.02 0.63 0.68 0.35 0.48 0.66 0.74 0.72 0.90 0.90 0.98 1.00
      Ba 0.42 0.18 0.03 -0.15 -0.13 -0.15 0.01 0.09 0.30 -0.14 0.20 0.42 0.33 0.01 0.09 -0.10 0.06 0.07 -0.00 0.02 1.00
      Cr -0.03 0.64 0.74 -0.66 0.73 0.77 0.28 0.85 -0.01 0.74 0.70 0.20 0.36 0.74 0.77 0.66 0.80 0.80 0.89 0.91 -0.02 1.00
      Ni 0.34 0.87 0.71 -0.74 0.65 0.86 0.25 0.66 0.10 0.75 0.83 0.41 0.57 0.85 0.86 0.70 0.35 0.33 0.48 0.59 -0.02 0.72 1.00
      Sr -0.06 0.31 0.50 -0.68 0.52 0.31 0.93 0.38 0.56 0.39 0.30 0.46 0.63 0.29 0.42 0.25 0.26 0.25 0.35 0.44 0.09 0.32 0.30 1.00
      V 0.21 0.85 0.86 -0.86 0.80 0.90 0.42 0.85 0.14 0.79 0.87 0.42 0.61 0.88 0.93 0.76 0.64 0.63 0.77 0.85 0.05 0.91 0.89 0.45 1.00
      B 0.57 0.73 0.54 -0.63 0.38 0.63 0.09 0.62 -0.08 0.48 0.70 0.66 0.67 0.63 0.69 0.60 0.35 0.34 0.37 0.43 0.07 0.44 0.69 0.16 0.64 1.00
      下载: 导出CSV

      附表 3  黄流组砂岩稀土元素含量(10-6)

      附表 3.   The concentrations of rare earth element for the sandstones from Huangliu Formation (10-6)

      样号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y SUM LREE HREE LREE/HREE Eu/Eu* (La/Yb)N (Gd/Yb)N
      1 41.35 77.82 9.11 33.99 6.26 1.20 5.25 0.89 4.76 0.94 2.69 0.41 2.50 0.36 25.19 212.71 169.72 17.80 9.53 0.64 11.15 1.69
      2 36.98 71.17 8.37 31.33 5.74 1.10 4.96 0.81 4.43 0.89 2.46 0.37 2.21 0.32 22.66 193.78 154.69 16.43 9.42 0.63 11.29 1.81
      3 29.84 58.47 6.78 25.69 4.76 0.98 4.18 0.69 3.71 0.72 2.02 0.30 1.78 0.26 18.74 158.91 126.52 13.65 9.27 0.67 11.29 1.89
      4 28.31 56.14 6.60 25.88 4.87 1.02 4.36 0.74 3.93 0.77 2.13 0.31 1.89 0.27 20.04 157.26 122.82 14.40 8.53 0.68 10.08 1.86
      5 28.90 56.11 6.62 25.21 4.45 0.92 4.00 0.66 3.52 0.69 1.92 0.29 1.73 0.26 17.91 153.18 122.21 13.06 9.36 0.67 11.24 1.86
      6 27.30 53.90 6.37 24.15 4.48 0.90 3.98 0.66 3.54 0.69 1.93 0.30 1.69 0.27 17.62 147.76 117.09 13.05 8.97 0.65 10.89 1.90
      7 38.18 74.92 8.66 32.32 5.90 1.02 4.97 0.78 4.12 0.80 2.29 0.36 2.11 0.30 20.96 197.69 161.00 15.73 10.23 0.57 12.19 1.90
      8 27.17 54.06 6.23 23.90 4.51 0.95 3.99 0.65 3.35 0.64 1.85 0.26 1.56 0.24 16.53 145.89 116.82 12.54 9.32 0.68 11.76 2.07
      9 27.59 58.86 6.27 23.93 4.61 0.79 4.32 0.72 4.04 0.83 2.45 0.41 2.60 0.41 25.17 163.00 122.05 15.78 7.73 0.54 7.15 1.34
      10 28.70 56.96 6.91 26.25 4.78 0.91 4.26 0.68 3.67 0.76 2.03 0.30 1.83 0.27 18.62 156.93 124.51 13.80 9.02 0.62 10.58 1.88
      11 29.53 58.02 6.96 26.54 4.92 0.95 4.13 0.67 3.65 0.72 2.00 0.30 1.69 0.26 18.16 158.50 126.92 13.42 9.46 0.65 11.79 1.97
      12 31.51 59.88 7.19 26.96 4.94 0.98 4.30 0.70 3.64 0.75 2.04 0.32 1.87 0.29 18.68 164.04 131.46 13.89 9.46 0.65 11.38 1.86
      13 36.58 69.38 8.25 31.09 5.51 1.06 4.67 0.74 4.05 0.80 2.26 0.34 2.00 0.29 20.44 187.44 151.87 15.13 10.03 0.64 12.36 1.89
      14 77.28 146.47 16.81 61.99 10.99 1.56 9.05 1.40 7.31 1.52 4.02 0.62 3.85 0.57 37.73 381.16 315.09 28.34 11.12 0.48 13.55 1.90
      15 40.67 78.87 9.19 34.45 6.29 1.12 5.36 0.87 4.66 0.97 2.69 0.41 2.51 0.38 24.66 213.10 170.59 17.85 9.56 0.59 10.94 1.73
      16 32.67 62.62 7.38 27.96 5.07 1.00 4.29 0.69 3.63 0.71 2.03 0.29 1.72 0.25 17.99 168.28 136.69 13.60 10.05 0.66 12.78 2.01
      17 31.15 58.76 7.17 27.18 4.84 0.99 4.20 0.69 3.63 0.73 2.04 0.30 1.97 0.27 19.21 163.14 130.10 13.83 9.41 0.67 10.64 1.72
      18 31.12 58.50 7.14 27.00 4.90 0.98 4.28 0.70 3.79 0.75 2.08 0.31 1.81 0.28 19.58 163.22 129.64 14.00 9.26 0.66 11.62 1.91
      19 30.81 59.03 7.10 27.15 4.92 0.99 4.17 0.70 3.76 0.74 2.02 0.33 1.96 0.27 19.09 163.05 130.00 13.95 9.32 0.67 10.60 1.72
      20 30.99 60.50 7.18 27.32 4.97 0.98 4.25 0.68 3.62 0.71 1.99 0.30 1.73 0.26 17.79 163.24 131.93 13.52 9.75 0.65 12.11 1.99
      21 31.40 60.56 7.26 27.22 5.08 1.01 4.24 0.71 3.79 0.72 2.06 0.31 1.86 0.28 19.06 165.55 132.53 13.96 9.50 0.67 11.36 1.83
      22 38.51 69.70 8.48 31.83 5.74 1.13 5.14 0.86 4.78 0.96 2.69 0.43 2.67 0.41 26.15 199.49 155.40 17.94 8.66 0.64 9.72 1.55
      23 31.41 57.19 7.15 27.25 5.30 1.02 4.81 0.84 4.59 0.91 2.60 0.40 2.53 0.37 23.24 169.62 129.32 17.05 7.58 0.62 8.36 1.53
      24 24.15 46.12 5.50 21.04 3.89 0.81 3.45 0.56 2.98 0.58 1.69 0.25 1.46 0.21 15.64 128.35 101.52 11.19 9.08 0.68 11.15 1.91
      25 36.05 61.28 7.89 29.54 5.46 1.04 4.68 0.84 4.51 0.87 2.58 0.43 2.47 0.38 23.11 181.12 141.27 16.74 8.44 0.63 9.85 1.53
      26 30.22 56.66 6.83 25.82 4.67 1.00 4.10 0.68 3.62 0.71 2.00 0.29 1.76 0.26 18.01 156.63 125.20 13.42 9.33 0.70 11.55 1.88
      27 27.38 52.71 6.28 23.84 4.24 0.91 3.89 0.61 3.28 0.64 1.83 0.28 1.75 0.25 16.83 144.72 115.36 12.53 9.21 0.69 10.54 1.79
      28 29.46 56.54 6.73 25.44 4.67 0.96 3.97 0.65 3.61 0.70 1.94 0.30 1.79 0.26 18.11 155.13 123.79 13.23 9.36 0.68 11.12 1.79
      下载: 导出CSV

      附表 4  黄流组砂岩微量元素含量(10-6)

      附表 4.   The concentrations of trace element for the sandstones from Huangliu Formation (10-6)

      样号 Sc Co Cu Rb Zr Hf Th U Ba Cr Ni Sr V B Cr/Ni Th/Sc Cr/Th La/Sc
      1 11.61 11.92 13.04 84.14 266.1 8.60 12.30 2.00 424.1 68.43 28.52 141.3 81.99 64.79 2.40 1.06 5.56 3.56
      2 9.45 11.76 10.70 76.26 280.9 9.57 12.14 1.80 454.1 71.72 27.85 129.0 77.44 58.57 2.58 1.28 5.91 3.91
      3 7.08 8.56 6.48 73.76 227.8 7.25 9.57 1.47 335.1 55.84 22.11 131.2 57.05 45.82 2.53 1.35 5.84 4.21
      4 6.35 5.83 5.14 42.32 187.5 6.23 7.93 1.23 320.7 48.27 15.18 179.9 47.86 35.81 3.18 1.25 6.09 4.46
      5 7.25 9.06 7.60 80.17 220.9 7.54 9.71 1.45 360.8 56.82 21.19 111.2 61.81 54.49 2.68 1.34 5.85 3.99
      6 6.63 7.27 6.38 74.87 204.9 6.78 8.50 1.33 394.9 51.87 18.70 118.4 54.78 43.24 2.77 1.28 6.10 4.12
      7 6.24 6.36 5.82 65.22 447.5 15.27 12.84 1.63 325.8 61.43 15.72 77.21 51.57 42.11 3.91 2.06 4.78 6.12
      8 6.16 7.79 6.02 74.74 168.0 5.42 8.11 1.33 365.3 49.76 19.21 94.75 49.88 33.33 2.59 1.32 6.13 4.41
      9 6.89 6.01 4.68 66.60 216.6 7.23 7.98 1.16 425.3 52.62 16.86 83.64 48.08 32.00 3.12 1.16 6.60 4.01
      10 7.03 8.39 7.51 67.07 240.5 8.27 8.56 1.32 1008 52.73 19.06 122.1 57.76 54.07 2.77 1.22 6.16 4.09
      11 7.34 8.53 7.14 65.66 254.1 8.75 9.05 1.41 1033 55.00 19.48 125.9 57.33 44.74 2.82 1.23 6.07 4.02
      12 7.03 8.47 7.50 68.19 300.4 10.09 9.50 1.54 513.2 54.28 19.56 114.6 58.02 45.35 2.78 1.35 5.72 4.48
      13 7.20 7.78 6.95 66.40 329.8 11.27 10.24 1.53 448.2 55.41 18.24 108.4 56.90 61.20 3.04 1.42 5.41 5.08
      14 11.43 13.36 12.84 110.5 887.8 29.35 25.73 3.39 533.4 83.09 28.67 149.2 91.33 75.64 2.90 2.25 3.23 6.76
      15 8.75 10.61 10.80 99.77 402.2 13.27 14.07 2.13 484.6 62.76 23.62 223.2 72.89 61.49 2.66 1.61 4.46 4.65
      16 6.85 6.66 5.80 63.31 307.7 10.14 8.14 1.26 519.3 53.86 18.71 115.6 54.28 57.70 2.88 1.19 6.62 4.77
      17 8.54 9.89 7.99 76.89 237.5 7.50 8.40 1.22 487.3 53.83 23.40 106.8 58.29 59.62 2.30 0.98 6.41 3.65
      18 8.05 8.65 7.75 64.55 261.6 8.40 9.61 1.48 704.3 53.98 21.35 118.1 58.24 57.57 2.53 1.19 5.62 3.87
      19 8.51 9.06 7.97 75.05 254.3 8.15 8.76 1.41 426.3 55.14 22.62 110.5 60.82 51.10 2.44 1.03 6.30 3.62
      20 7.26 8.94 6.98 74.86 272.3 8.87 9.07 1.34 460.6 54.23 22.39 108.2 57.63 61.07 2.42 1.25 5.98 4.27
      21 7.29 8.45 7.31 77.93 273.1 9.23 10.02 1.45 469.6 54.75 21.30 117.4 58.64 65.27 2.57 1.37 5.46 4.31
      22 10.28 11.80 9.72 83.33 290.9 9.36 9.26 1.65 463.9 60.45 27.56 113.6 69.70 81.79 2.19 0.90 6.53 3.75
      23 8.42 9.84 8.23 72.10 216.0 6.72 7.85 1.30 450.6 55.20 25.66 127.7 62.79 63.72 2.15 0.93 7.03 3.73
      24 6.50 7.85 9.42 74.86 176.0 5.84 8.20 1.26 569.8 48.54 19.55 101.5 54.14 66.47 2.48 1.26 5.92 3.71
      25 9.63 7.52 6.45 70.72 287.3 9.39 9.20 1.32 418.5 51.93 19.31 96.45 56.41 57.88 2.69 0.96 5.65 3.74
      26 7.93 8.37 8.16 76.57 198.7 6.84 8.29 1.19 373.8 52.93 21.54 98.16 59.05 54.68 2.46 1.05 6.38 3.81
      27 7.28 8.82 7.76 80.59 201.3 6.59 8.33 1.31 384.0 53.08 21.28 121.5 57.37 69.53 2.49 1.14 6.38 3.76
      28 7.34 9.47 8.01 86.61 217.4 7.25 10.28 1.51 343.8 54.53 21.02 98.16 59.63 60.61 2.59 1.40 5.30 4.01
      下载: 导出CSV

      表  2  黄流组浅海重力流砂岩微量元素与长英质源岩、铁镁质源岩以及上地壳对比

      Table  2.   Comparison of elemental ratio of sediments from Huangliu Formation, felsic sources, mafic sources and upper continental crust

      元素比值 黄流组 长英质源岩(据Amstrong-Altrin,2004) 铁镁质源岩(据Amstrong-Altrin,2004) 上地壳(据Rudnick and Gao, 2003)
      La/Sc 3.56~6.76(4.25*) 2.50~16.30 0.43~0.86 2.21
      Th/Sc 0.90~2.25(1.28*) 0.84~20.50 0.05~0.22 0.75
      Cr/Th 3.23~7.03(5.84*) 4.00~15.00 25.00~500.00 8.76
      δEu 0.48~0.70(0.64*) 0.40~0.94 0.71~0.95 0.72
      注:上标注*的为平均值.
      下载: 导出CSV

      表  3  黄流组浅海重力流砂岩微量元素与不同构造环境对比

      Table  3.   Comparison of trace and rare earth elements of sediments from different tectonic settings

      大洋岛弧 大陆岛弧 主动大陆边缘 被动大陆边缘 黄流组(平均值)
      微量元素(Bhatia, 1985)
      Th(10-6) 5.5 16.2 28.0 22.0 10.1
      U(10-6) 2.4 3.2 6.0 3.6 1.5
      La/Sc 1.0 1.8 2.5 1.9 4.3
      Ni(10-6) 15.0 18.0 26.0 36.0 21.4
      Sc/Ni 1.70 0.96 0.75 0.45 0.37
      稀土元素(Bhatia, 1985)
      La(10-6) 8.0 27.0 37.0 39.0 33.4
      Ce(10-6) 19.0 59.0 78.0 85.0 63.9
      ΣREE 58.0 146.0 186.0 210.0 175.5
      (La/Yb)N 2.8 7.5 8.5 10.8 11.0
      Eu/Eu* 1.04 0.78 0.60 0.56 0.64
      下载: 导出CSV
    • Akarish, A.I.M., El-Gohary, A.M., 2008.Petrography and Geochemistry of Lower Paleozoic Sandstones, East Sinai, Egypt:Implications for Provenance and Tectonic Setting.Journal of African Earth Sciences, 52(1-2):43-54. doi: 10.1016/j.jafrearsci.2008.04.002
      Armstrong-Altrin, J.S., Lee, Y.I., Verma, S.P., et al., 2004.Geochemistry of Sandstones from the Upper Miocene Kudankulam Formation, Southern India:Implications for Provenance, Weathering, and Tectonic Setting.Journal of Sedimentary Research, 74(2):285-297.doi: 10.1306/082803740285
      Bhatia, M.R., 1983.Plate Tectonics and Geochemical Composition of Sandstones.The Journal of Geology, 91(6):611-627.doi: 10.1086/628815
      Bhatia, M.R., 1985.Rare-Earth Element Geochemistry of Australian Paleozoic Greywackes and Mudrocks:Provenance and Tectonic Control.Sediment Geology, 45(1):97-113.doi: 10.1016/0037-0738(85)90025-9
      Bhatia, M.R., Crook, K.A.W., 1986.Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins.Contributions to Mineralogy and Petrology, 92(2):181-193.doi: 10.1007/bf00375292
      Carvajal, C., Steel, R., Petter, A., 2009.Sediment Supply:The Main Driver of Shelf-Margin Growth.Earth-Science Reviews, 96(4):221-248.doi: 10.1016/j.earscirev.2009.06.008
      Clark, M.K., Schoenbohm, L.M., Royden, L.H., et al., 2004.Surface Uplift, Tectonics, and Erosion of Eastern Tibet from Large-Scale Drainage Patterns.Tectonics, 23(1):1-20.doi: 10.1029/2002tc001402
      Clift, P.D., van Long, H.V., Hinton, R., et al., 2008.Evolving East Asian River Systems Reconstructed by Trace Element and Pb and Nd Isotope Variations in Modern and Ancient Red River-Song Hong Sediments.Geochemistry, Geophysics, Geosystems, 9(4):1-29.doi: 10.1029/2007gc001867
      Cullers, R.L., 2000.The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian—Permian Age, Colorado, USA:Implications for Provenance and Metamorphic Studies.Lithos, 51(3):181-203.doi: 10.1016/s0024-4937(99)00063-8
      Cullers, R.L., Berendsen, P., 1998.The Provenance and Chemical Variation of Sandstones Associated with the Mid-Continent Rift System, U.S.A..European Journal of Mineralogy, 10(5):987-1002.doi: 10.1127/ejm/10/5/0987
      Dickinson, W.R., 1985.Interpreting Provenance Relations from Detrital Modes of Sandstones.Provenance of Arenites, 325:333-361.doi: 10.1007/978-94-017-2809-6_15
      El-Bialy, M.Z., 2013.Geochemistry of the Neoproterozoic Metasediments of Malhaq and Um Zariq Formations, Kid Metamorphic Complex, Sinai, Egypt:Implications for Source-Area Weathering, Provenance, Recycling, and Depositional Tectonic Setting.Lithos, 175-176:68-85.doi: 10.1016/j.lithos.2013.05.002
      Feng, R., Kerrich, R., 1990.Geochemistry of Fine-Grained Clastic Sediments in the Archean Abitibi Greenstone Belt, Canada:Implications for Provenance and Tectonic Setting.Geochimica et Cosmochimica Acta, 54(4):1061-1081.doi: 10.1016/0016-7037(90)90439-r
      Folk, R.L., 1968.Petrology of Sedimentary Rocks.Hemphill, Austin, TX, 107. https://repositories.lib.utexas.edu/handle/2152/22930
      Fu, L., Guan, P., Zhao, W.Y., et al., 2013.Heavy Mineral Feature and Provenance Analysis of Paleogene Lulehe Formation in Qaidam Basin.Acta Petrologica Sinica, 29(8):2867-2875(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201308022.htm
      Guo, L.Z., Zhong, Z.H., Wang, L.S., et al., 2001.Regional Tectonic Evloution around Yinggehai Basin of South China Sea.Geological Journal of China Universities, 7(1):1-12(in Chinese with English abstract). https://www.researchgate.net/publication/313527601_Regional_tectonic_evolution_around_Yinggehai_Basin_of_South_China_Sea
      Hao, F., Dong, W.L., Zou, H.Y., et al., 2003.Overpressure Fluid Flow and Rapid Accumulation of Natural Gas in Yinggehai Basin.Acta Petrolei Sinica, 24(6):7-12(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200306002.htm
      Hayashi, K.I., Fujisawa, H., Holland, H.D., et al., 1997.Geochemistry of ~1.9 Ga Sedimentary Rocks from Northeastern Labrador, Canada.Geochimica et Cosmochimica Acta, 61(19):4115-4137.doi: 10.1016/s0016-7037(97)00214-7
      He, W.J., Xie, J.Y., Liu, X.Y., et al., 2011.Foraminiferal Biostratigraphy and Sedimentary Environment Reconstruction Based on Paleontological Data from Bore Hole DF1-1-11, Yinggehai Basin.Journal of Stratigraphy, 35(1):81-87 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0037073816303128
      He, X.H., Zhong Z.H., Dong G.N., et al., 2015.Neogene Ocean Current in Yingqiong Basin:Implication of Deep-Water Oil and Gas Exploration.Natural Gas Exploration and Development, 38(1):4-11(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200402008.htm
      Henderson, P., 1984.Rare Earth Element Geochemistry.Elsevier, Amsterdam, 52-71. http://ci.nii.ac.jp/ncid/BA03642755
      Li, L., Yao, G.Q., Liu, Y.H., et al., 2015.Major and Trace Elements Geochemistry and Geological Implications of Dolomite-Bearing Mudstones in Lower Part of Shahejie Formation in Tanggu Area, Eastern China.Earth Science, 40(9):1480-1496 (in Chinese with English abstract). https://www.researchgate.net/publication/283873592_Major_and_trace_elements_geochemistry_and_geological_implications_of_dolomite-bearing_mudstones_in_lower_part_of_Shahejie_Formation_in_Tanggu_Area_Eastern_China
      Liao, W.L., Xiao, L., Zhang, L., et al., 2015.Provenance and Tectonic Setting of Early Carboniferous Sedimentary Strata in Western Junggar, Xinjiang.Earth Science, 40(3):485-503 (in Chinese with English abstract). https://www.researchgate.net/publication/281993457_Provenance_and_tectonic_settings_of_early_carboniferous_sedimentary_strata_in_Western_Junggar_Xinjiang
      McLennan, S.M., 1989.Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes.Mineralogical Society of America Reviews in Mineralogy, 21:169-200. http://rimg.geoscienceworld.org/content/21/1/169.short
      McLennan, S.M., Hemming, S., McDaniel, D.K., et al., 1993.Geochemical Approaches to Sedimentation, Provenance and Tectonics.In:Johnson, M.J., Basu, A., eds., Processes Controlling the Composition of Clastic Sediments.The Geological Society of America, (Special Paper 284):21-40. http://www.scirp.org/reference/ReferencesPapers.aspx?ReferenceID=1551660
      Moosavirad, S.M., Janardhana, M.R., Sethumadhav, M.S., et al., 2012.Geochemistry of Lower Jurassic Sandstones of Shemshak Formation, Kerman Basin, Central Iran:Provenance, Source Weathering and Tectonic Setting.Journal of the Geological Society of India, 79(5):483-496.doi: 10.1007/s12594-012-0073-4
      Morley, C.K., 2002.A Tectonic Model for the Tertiary Evolution of Strike-Slip Faults and Rift Basins in SE Asia.Tectonophysics, 347(4):189-215.doi: 10.1016/s0040-1951(02)00061-6
      Morton, A.C., 1987.Influences of Provenance and Diagenesis on Detrital Garnet Suites in the Paleocene Forties Sandstone, Central North Sea.SEPM Journal of Sedimentary Research, 57(6):1027-1032.doi: 10.1306/212f8cd8-2b24-11d7-8648000102c1865d
      Morton, A.C., Whitham, A.G., Fanning, C.M., 2005.Provenance of Late Cretaceous to Paleocene Submarine Fan Sandstones in the Norwegian Sea:Integration of Heavy Mineral, Mineral Chemical and Zircon Age Data.Sedimentary Geology, 182(1-4):3-28.doi: 10.1016/j.sedgeo.2005.08.007
      Nesbitt, H.W., Young, G.M., 1996.Petrogenesis of Sediments in the Absence of Chemical Weathering:Effects of Abrasion and Sorting on Bulk Composition and Mineralogy.Sedimentology, 43(2):341-358.doi: 10.1046/j.1365-3091.1996.d01-12.x
      Pang, X., Peng, D.J., Chen, C.M., et al., 2007.Three Hierarchies "Source-Conduit-Sink" Coupling Analysis of the Pearl River Deep-Water Fan System.Acta Geologica Sinica, 81(6):857-864(in Chinese with English abstract). http://csb.scichina.com:8080/EN/abstract/abstract516995.shtml
      Pei, J.X., Yu, J.F., Wang, L.F., et al., 2011.Key Challenges and Strategies for the Success of Natural Gas Exploration in Mid-Deep Strata of the Yinggehai Basin.Acta Petrolei Sinica, 32(4):573-579(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201104004.htm
      Pettijohn, F.J., Potter, P.E., Siever, R., 1987.Sand and Sandstone.2nd ed..Springer, New York.553. doi: 10.1007/978-1-4615-9974-6_6
      Rahman, M.J.J., Suzuki, S., 2007.Geochemistry of Sandstones from the Miocene Surma Group, Bengal Basin, Bangladesh:Implications for Provenance, Tectonic Setting and Wealthering.Geochemical Journal, 41(6):415-428.doi: 10.2343/geochemj.41.415
      Roser, B.P., Korsch, R.J., 1986.Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio.The Journal of Geology, 94(5):635-650.doi: 10.1086/629071
      Rudnick, R.L., Gao, S., 2003.Composition of the Continental Crust.In:Holland, H.D., Turekian, K.K., eds., Treatise on Geochemistry.Pergamon, Oxford, 1-64. https://www.deepdyve.com/lp/elsevier/the-composition-of-the-continental-crust-b6Dpwl24Ik
      Saminpanya, S., Duangkrayom, J., Jintasakul, P., et al., 2014.Petrography, Mineralogy and Geochemistry of Cretaceous Sediment Samples from Western Khorat Plateau, Thailand, and Considerations on Their Provenance.Journal of Asian Earth Sciences, 83:13-34.doi: 10.1016/j.jseaes.2014.01.007
      Sun, Z., Zhong, Z.H., Zhou, D., et al., 2006.The Development Mechanism of the South China Sea.Science China(Series D), 36(9):797-810(in Chinese). doi: 10.1175/JCLI-D-14-00170.1
      Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.The Journal of Geology, 94(4):57-72. http://www.osti.gov/scitech/biblio/6582885
      Tong, C.X., Wang, Z.F., Li, X.S., 2012.Pooling Conditions of Gas Reservoirs in the Dongfang 1-1 Gas Field, Yinggehai Basin.Natural Gas Industry, 32(8):11-15, 26 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201208004.htm
      Wang, D.L., Al-Busaidi, S., Lee, D.N.H., 2009.Prediction of Sand Body Trend Based on Stratigraphic Dip Pattern from Microresistivity Images in Permian Sandstone Reservoir, Oman.SPE Saudi Arabia Section Technical Symposium, Saudi Arabia, 1-12.doi: 10.2118/126084-ms
      Wang, H., Chen, S., Gan, H.J., et al., 2015.Accumulation Mechanism of Large Shallow Marine Turbidite Deposits:A Case Study of Gravity Flow Deposits of the Huangliu Formation in Yinggehai Basin.Earth Science Frontiers, 22(1):21-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201501004.htm
      Wang, P.X., 1995.ODP and Qinghai/Xizang (Tibetan) Palteau.Advance in Earth Sciences, 10(3):254-257 (in Chinese with English abstract).
      Xie, Y.H., Fan, C.W., 2010.Some New Knowledge about the Origin of Huangliu Formation Reservoirs in Dongfang Area, Yinggehai Basin.China Offshore Oil and Gas, 22(6):355-359, 386 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD201006002.htm
      Xie, Y.H., Zhang, Y.Z., Li, X.S., et al., 2012.Main Controlling Factors and Formation Models of Natural Gas Reservoirs with High-Temperature and Overpressure in Yinggehai Basin.Acta Petrolei Sinica, 33(4):601-609 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201204010.htm
      Zaid, S.M., 2013.Provenance, Diagenesis, Tectonic Setting and Reservoir Quality of the Sandstones of the Kareem Formation, Gulf of Suez, Egypt.Journal of African Earth Sciences, 85:31-52.doi: 10.1016/j.jafrearsci.2013.04.010
      Zhang, H.L., Pei, J.X., Zhang, Y.Z., et al., 2013.Overpressure Reservoirs of the Huangliu Formation of the Dongfang Area, Yinggehai Basin, South China Sea.Petroleum Exploration and Development, 40(3):102-112 (in Chinese with English abstract). http://linkinghub.elsevier.com/retrieve/pii/S1876380413600373
      Zhang, Q.M., 1999.Evolution of Ying-Qiong Basin and Its Tectonic-Thermal System.Natural Gas Industry, 19(1):12-18 (in Chinese with English abstract). http://pub.chinasciencejournal.com/MarineGeology&QuaternaryGeology/42172.jhtml
      Zhao, M., Shao, L., Liang, J.S., et al., 2013.REE Character of Sediment from the Paleo-Red River and Its Implication of Provenance.Earth Science, 38(1):61-69 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX2013S1008.htm
      Zhong, Z.H., Liu, J.H., Zhang, D.J., et al., 2013.Origin and Sedimentary Reservoir Characteristics of a Large Submarine Fan in Dongfang Area, Yinggehai Basin.Acta Petrolei Sinica, 34(Suppl.2):284-293 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB2013S2013.htm
      Zimmermann, U., Bahlburg, H., 2003.Provenance Analysis and Tectonic Setting of the Ordovician Clastic Deposits in the Southern Puna Basin, NW Argentina.Sedimentology, 50(6):1079-1104.doi: 10.1046/j.1365-3091.2003.00595.x
      付玲, 关平, 赵为永, 等, 2013.柴达木盆地古近系路乐河组重矿物特征与物源分析.岩石学报, 29(8): 2867-2875. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201308022.htm
      郭令智, 钟志洪, 王良书, 等, 2001.莺歌海盆地周边区域构造演化.高校地质学报, 7(1): 1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200101000.htm
      郝芳, 董伟良, 邹华耀, 等, 2003.莺歌海盆地汇聚型超压流体流动及天然气晚期快速成藏.石油学报, 24(6): 7-12. doi: 10.7623/syxb200306002
      何卫军, 谢金有, 刘新宇, 等, 2011.莺歌海盆地DF1-1-11井有孔虫生物地层与沉积环境研究.地层学杂志, 35(1): 81-87. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201101015.htm
      何小胡, 钟泽红, 董贵能, 等, 2015.莺琼盆地新近纪海流的研究新进展及深水油气勘探的启示.天然气勘探与开发, 38(1): 4-11. http://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201501003.htm
      李乐, 姚光庆, 刘永河, 等, 2015.塘沽地区沙河街组下部含云质泥岩主微量元素地球化学特征及地质意义.地球科学, 40(9): 1480-1496. http://earth-science.net/WebPage/Article.aspx?id=3152
      廖婉琳, 肖龙, 张雷, 等, 2015.新疆西准噶尔早石炭世沉积地层的物源及构造环境.地球科学, 40(3): 485-503. http://earth-science.net/WebPage/Article.aspx?id=3031
      庞雄, 彭大钧, 陈长民, 等, 2007.三级"源-渠-汇"耦合研究珠江深水扇系统.地质学报, 81(6): 857-864. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200706015.htm
      裴健翔, 于俊峰, 王立锋, 等, 2011.莺歌海盆地中深层天然气勘探的关键问题及对策.石油学报, 32(4): 573-579. doi: 10.7623/syxb201104003
      孙珍, 钟志洪, 周蒂, 等, 2006.南海的发育机制研究:相似模拟证据.中国科学(D辑), 36(9): 797-810. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200609001.htm
      童传新, 王振峰, 李绪深, 2012.莺歌海盆地东方1-1气田成藏条件及其启示.天然气工业, 32(8): 11-15, 26. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201208004.htm
      王华, 陈思, 甘华军, 等, 2015.浅海背景下大型浊积扇研究进展及堆积机制探讨:以莺歌海盆地黄流组为例.地学前缘, 22(1): 21-34. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501004.htm
      汪品先, 1995.大洋钻探与青藏高原.地球科学进展, 10(3): 254-257. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ503.008.htm
      谢玉洪, 范彩伟, 2010.莺歌海盆地东方区黄流组储层成因新认识.中国海上油气, 22(6): 355-359, 386. http://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201502015.htm
      谢玉洪, 张迎朝, 李绪深, 等, 2012.莺歌海盆地高温超压气藏控藏要素与成藏模式.石油学报, 33(4): 601-609. doi: 10.7623/syxb201204009
      张伙兰, 裴健翔, 张迎朝, 等, 2013.莺歌海盆地东方区黄流组超压储集层特征.石油勘探与开发, 40(3): 102-112. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201303006.htm
      张启明, 1999.莺琼盆地的演化与构造-热体制.天然气工业, 19(1): 12-18. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG901.003.htm
      赵梦, 邵磊, 梁建设, 等, 2013.古红河沉积物稀土元素特征及其物源指示意义.地球科学, 38(1): 61-69. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2013S1008.htm
      钟泽红, 刘景环, 张道军, 等, 2013.莺歌海盆地东方区大型海底扇成因及沉积储层特征.石油学报, 34(增刊2): 284-293. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2013S2013.htm
    • 加载中
    图(8) / 表(7)
    计量
    • 文章访问数:  4552
    • HTML全文浏览量:  2732
    • PDF下载量:  55
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-01-16
    • 刊出日期:  2016-09-15

    目录

      /

      返回文章
      返回