• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏拿若斑岩型铜(金)矿含矿岩体年代学、地球化学及地质意义

    丁帅 唐菊兴 郑文宝 杨超 张志 王勤 王艺云

    丁帅, 唐菊兴, 郑文宝, 杨超, 张志, 王勤, 王艺云, 2017. 西藏拿若斑岩型铜(金)矿含矿岩体年代学、地球化学及地质意义. 地球科学, 42(1): 1-23. doi: 10.3799/dqkx.2017.001
    引用本文: 丁帅, 唐菊兴, 郑文宝, 杨超, 张志, 王勤, 王艺云, 2017. 西藏拿若斑岩型铜(金)矿含矿岩体年代学、地球化学及地质意义. 地球科学, 42(1): 1-23. doi: 10.3799/dqkx.2017.001
    Ding Shuai, Tang Juxing, Zheng Wenbao, Yang Chao, Zhang Zhi, Wang Qin, Wang Yiyun, 2017. Geochronology and Geochemistry of Naruo Porphyry Cu (Au) Deposit inDuolong Ore-Concentrated Area, Tibet, and Their Geological Significance. Earth Science, 42(1): 1-23. doi: 10.3799/dqkx.2017.001
    Citation: Ding Shuai, Tang Juxing, Zheng Wenbao, Yang Chao, Zhang Zhi, Wang Qin, Wang Yiyun, 2017. Geochronology and Geochemistry of Naruo Porphyry Cu (Au) Deposit in Duolong Ore-Concentrated Area, Tibet, and Their Geological Significance. Earth Science, 42(1): 1-23. doi: 10.3799/dqkx.2017.001

    西藏拿若斑岩型铜(金)矿含矿岩体年代学、地球化学及地质意义

    doi: 10.3799/dqkx.2017.001
    基金项目: 

    国土资源部公益性行业科研专项项目 201511017

    详细信息
      作者简介:

      丁帅(1987-),男,博士研究生,主要从事矿物学、岩石学、矿床学研究专业.ORCID:0000-0002-9837-9498.E-mail: 782628728@qq.com

      通讯作者: 唐菊兴,ORCID:0000-0002-9162-6986.E-mail:tangjuxing@126.com
    • 中图分类号: P597

    Geochronology and Geochemistry of Naruo Porphyry Cu (Au) Deposit in Duolong Ore-Concentrated Area, Tibet, and Their Geological Significance

    • 摘要: 多龙矿集区是班公湖-怒江成矿带最重要的组成部分,其成矿规模巨大、时间跨度较长、成矿过程复杂,因而人们对该区成岩成矿地质背景及岩石成因等问题一直争议不断,值得进一步明确.通过研究矿集区中部拿若斑岩型铜(金)矿与成矿相关的花岗闪长斑岩LA-ICP-MS锆石U-Pb年龄、全岩地球化学特征及Hf同位素组成,并与区域邻近矿床进行详细地对比研究,查明了多龙地区与成矿相关的岩浆岩形成构造背景、岩石成因及深部动力学过程.测试结果表明拿若铜(金)矿形成时代为早白垩世120Ma左右,与多龙地区其他矿床形成时代一致.这些岩浆岩均相对富集轻稀土(LREE)与大离子亲石元素(LILE: Rb, Ba, K等);亏损重稀土(HREE )与高场强元素(HFSE: Nb, Ta, Zr, Hf等).原位锆石εHf(t)均为正值,为1.38~7.37,Hf同位素两阶段模式年龄tDM2为707~1086Ma,表明多龙矿集区斑岩-浅成低温热液型铜(金)矿形成与早白垩世班公湖-怒江特提斯洋北向俯冲有关.当俯冲洋壳到达地壳50~70km深度时发生不同程度相变,从而导致角闪石等矿物脱水产生的熔体交代楔形地幔,进而诱发幔源物质部分熔融产生弧岩浆,其形成环境类似于南美安第斯成矿带洋陆俯冲背景之下的陆缘弧环境.
    • 图 1  研究区位置(a),西藏地区构造分区(b),班公湖-怒江结合带及邻区构造单元(c)

      Figure 1.  Geographic location(a),tectonic sketch in Tibet(b),tectonic units of the Bangong-Nujiang suture zone and its neighboring areas(c)

      图b根据Hou et al.(2004)修改;图c根据耿全如等(2011)修改

      图 2  多龙地区地质图(a),拿若铜(金)矿地质图(b),拿若矿区A-A'剖面(c)

      Figure 2.  Geological sketch of Duolong area(a)and Naruo porphyry Cu(Au)deposit(b),Section A-A' of the Naruo deposit(c)

      锆石U-Pb数据据Li et al.(2011a,2011b,2013)、方向等(2015)以及祝向平等(2015)

      图 3  拿若斑岩型铜(金)矿岩石、矿石脉体及蚀变照片

      Figure 3.  Photographs of rocks,ore minerals,veins and alterations in Naruo porphyry Cu(Au)deposit

      a.斑岩型矿体;b.花岗闪长斑岩中浸染状金属矿物;c.长石石英砂岩中脉-网脉状矿体;d.含硫化物石英脉;e.角砾岩型矿体;f.角砾之间填充的金属矿物;g.含矿花岗闪长斑岩;h.含矿花岗闪长斑岩,发育弱钾化(样品用于LA-ICP-MS锆石测年及Hf同位素测试);i.含矿花岗闪长岩斑岩镜下照片;j.含矿花岗闪长岩斑岩镜下照片;k.不含矿花岗闪长斑岩,发育弱青磐岩化(样品用于LA-ICP-MS锆石测年及Hf同位素测试).Py.黄铁矿;Mt.磁铁矿;Cp.黄铜矿;Bn.斑铜矿;Cov.铜蓝;Sup.硫化物;Q.石英;Kfs.钾长石;Pl.斜长石;Bi.黑云母;Ep.绿帘石;Rut.金红石

      图 4  拿若斑岩型铜(金)矿区锆石CL图像、测点、U-Pb年龄及Hf同位素测试结果

      Figure 4.  Zircon(CL)images with analysis spots,U-Pb ages and εHf(t)values from the Naruo porphyry Cu(Au)deposit

      图 5  拿若矿区花岗闪长斑岩锆石U-Pb谐和图及206Pb/238U加权平均年龄

      Figure 5.  Zircon U-Pb concordia diagrams and weighted mean 206Pb/238U ages of the granodiorite porphyry from the Naruo deposit

      图 6  拿若斑岩型铜(金)矿花岗闪长斑岩地球化学图解

      Figure 6.  Geochemical diagram of granodiorite porphyry from the Naruo porphyry Cu(Au)deposit

      a.A/CNK(摩尔)-A/NK(摩尔),底图据Peccerillo and Taylor(1976);b.稀土元素Cl球粒陨石标准化配分曲线;c.微量元素原始地幔标准化蛛网图;Cl球粒陨石及原始地幔值分别采用Boynton(1984)Sun and McDonough(1989);多龙地区含矿与不含矿花岗闪长斑岩数据李金祥等(2008)Li et al.(2013)以及陈华安等(2013);拿若矿区花岗闪长斑岩数据祝向平等(2015)

      图 7  拿若斑岩型铜(金)矿区锆石εHf(t)值频率分布

      Figure 7.  Frequency histogram of zircons εHf(t)value from Naruo porphyry Cu(Au)deposit

      以往研究数据祝向平等(2015)

      图 8  多龙地区主要岩浆活动

      Figure 8.  Age of main magmatic event in Duolong area

      图中包括多不杂、波龙、拿若、拿顿、荣那5个矿床共计35个数据;数据佘宏全等(2009)李金祥等(2008)Li et al.(2011a,2011b,2013)、方向等(2015)陈华安等(2013)祝向平等(2015)及王勤等(2015)

      图 9  拿若斑岩型铜(金)矿区花岗闪长斑岩地球化学图解

      Figure 9.  Geochemical discrimination diagrams of granodiorite porphyry from the Naruo porphyry Cu(Au)deposit

      a.Th/Ta-Yb,底图据Gorton and Schandl(2000);b.Th/Yb-Nb/Yb;底图据Pearce(1983);c.Th-Co-Zr/10;d.Th-Sc-Zr/10,底图据Bhatia and Crook(1986).A.洋岛弧;B.陆缘弧;C.活动大陆边缘;D.被动大陆边缘.图中符号同图 6a

      图 10  拿若矿区花岗闪长斑岩岩石性质及源区判别

      Figure 10.  Discriminant diagrams of rock properties and source region discrimination of Naruo granodiorite porphyry

      a.Y-Sr/Y,底图据Defant and Drummond(1990);b.YbN-(La/Yb)N图解,底图据Martin(1999);c.Th/Ce-Th/Sm图解,底图据Boztuet al.(2007);d.Al2O3+FeOT+MgO+TiO2-Al2O3/(FeOT+MgO+TiO2)图解,底图据PatioDouce(1999);图中符号同图 6a

      图 11  拿若矿区花岗闪长斑岩εHf(t)与U-Pb年龄关系

      Figure 11.  Plot of εHf(t)versus U-Pb ages of granodiorite porphyry from Naruo deposit

      部分数据祝向平等(2015);多龙地区数据李金祥等(2008)Li et al.(2013)以及陈华安等(2013)

      图 12  多龙地区岩浆活动及矿床形成动力学模型

      Figure 12.  Geodynamic model for the generation of the magma and the formation of the deposit in Duolong area

      Manning(2004)

      表 1  拿若矿区花岗闪长斑岩LA-ICP-MS锆石U-Pb同位素分析结果

      Table 1.  LA-ICP-MS zircon U-Pb isotopes analyzed data of the granodiorite porphyry from the Naruo deposite

      样品点Pb(10-6)Th(10-6)U(10-6)Th/U同位素比值年龄(Ma)
      206Pb/238U1σ207Pb/235U1σ207Pb/206Pb1σ206Pb/238U1σ207Pb/235U1σ207Pb/206Pb1σ
      Z01-0151622550.630.01870.00020.14430.01230.05600.0048119.341.0513712453189
      Z01-0292654690.570.01860.00010.15530.00760.06060.0030118.790.801477623105
      Z01-03102935050.580.01890.00010.12520.00630.04790.0024120.960.77120695118
      Z01-0472273210.710.01880.00010.13500.00980.05200.0038120.300.871299285165
      Z01-053821640.500.01870.00020.13950.02040.05400.0081119.591.4713319372336
      Z01-0661863040.610.01880.00010.14130.00770.05440.0029120.360.891347387121
      Z01-0751232330.530.01890.00010.16050.01310.06150.0050120.920.9315112656174
      Z01-0893084130.750.01900.00010.17520.00810.06690.0029121.240.94164883690
      Z01-0941132050.550.01900.00030.13000.03070.04960.0119121.351.7312429176558
      Z01-1051242290.540.01910.00020.12930.01760.04920.0068121.691.0812317157323
      Z01-1181933910.490.01910.00010.12670.01060.04820.0038121.820.8912110108188
      Z01-123981590.620.01910.00020.13800.01850.05230.0072122.101.1813118300313
      Z15-01103875030.770.01850.00010.14120.00580.05550.0022117.960.79134543188
      Z15-0262192970.740.01850.00010.14670.01060.05750.0042118.140.8813910512160
      Z15-0383014290.700.01850.00010.13040.00590.05100.0023118.330.781246243104
      Z15-0461702860.600.01880.00020.14000.01030.05400.0038120.020.9713310372159
      Z15-05101455210.280.01870.00030.21190.01930.08240.0064119.131.84195181255152
      Z15-06114505280.850.01880.00010.14080.00630.05420.0024120.310.79134638099
      Z15-0751502510.600.01900.00010.12700.01050.04850.0040121.210.9212110126193
      Z15-0841092140.510.01880.00020.12600.01860.04860.0074120.021.0712118130357
      Z15-093801590.500.01880.00020.13220.01740.05100.0070120.001.1212617242316
      Z15-1081794410.410.01860.00010.13420.00840.05230.0032118.870.791288299140
      Z15-11145656890.820.01870.00010.11460.00430.04440.0016119.630.901104-9090
      注:因测得年龄<1000Ma,故采用206Pb/238U年龄.
      下载: 导出CSV

      表 2  拿若斑岩型铜(金)矿区花岗闪长斑岩的主量元素(%)和微量元素(10-6)分析结果

      Table 2.  Major elements(%)and trace elements(10-6)analytic data of the granodiorite porphyry from the Naruo porphyry Cu(Au)deposit

      岩性样品编号含矿花岗闪长斑岩不含矿花岗闪长斑岩
      Z01-125Z01-278Z07-263Z07-301Z08-239Z15-179Z15-255
      SiO265.0165.1364.5365.5464.8563.9164.71
      Al2O315.1914.1615.9815.8715.4515.5014.96
      Fe2O31.662.752.892.832.192.332.22
      FeO4.293.173.022.443.824.193.84
      MgO1.571.651.711.621.661.741.73
      CaO3.002.002.821.483.053.863.60
      K2O3.014.602.643.442.802.612.25
      TiO20.370.360.370.320.380.390.38
      MnO0.140.190.070.070.090.080.09
      P2O50.130.120.140.100.120.150.13
      LOSS2.554.342.573.462.672.172.73
      Total99.4598.5799.4499.1799.3799.6499.34
      FeOT5.795.645.624.985.796.285.84
      Mg#32.634.2735.1536.6833.8433.0634.56
      ANK2.052.742.192.262.272.182.13
      ACNK1.181.611.291.631.251.121.08
      Bi0.702.210.220.520.480.220.10
      Li28.3025.0530.4623.7621.5124.5827.53
      Be1.461.091.361.251.301.171.33
      Sc8.977.078.257.818.037.167.71
      V81.6259.8876.1387.6182.0174.1983.80
      Cr7.344.785.775.056.036.187.23
      Co9.337.536.226.058.098.358.80
      Ni5.964.623.832.696.547.3313.19
      Cu602.005 733.00399.30357.301 422.002 528.50356.30
      Pb12.5710.449.446.0710.6710.758.76
      Zn110.0577.2560.8750.0564.8467.4138.05
      Ga18.0415.6218.2718.0917.5617.9918.16
      Rb72.32193.7075.71133.1090.1263.5190.49
      Sr421.40421.70402.70208.20379.30453.85480.90
      Y12.077.9912.5712.848.939.359.59
      Zr95.1876.8291.6184.0897.4197.9289.95
      Nb8.816.595.265.277.296.787.88
      Cs18.3217.7116.6215.9810.9910.9228.79
      Ba615.70791.20515.70591.30425.90414.60482.50
      La12.609.3310.6015.448.7410.6010.72
      Ce18.7215.4216.1925.6012.5915.3015.64
      Pr2.842.352.603.891.892.262.29
      Nd11.289.2710.8615.567.619.039.07
      Sm2.191.882.202.961.471.741.73
      Eu0.600.690.630.810.510.570.58
      Gd1.881.861.962.711.401.591.59
      Tb0.350.350.370.500.260.280.28
      Dy1.901.982.082.711.411.551.52
      Ho0.350.320.380.470.260.290.28
      Er1.181.091.261.560.840.920.90
      Tm0.190.170.200.270.130.140.14
      Yb1.311.111.381.620.860.900.90
      Lu0.210.170.220.260.140.150.14
      Hf12.077.9912.5712.848.939.359.59
      Ta0.760.570.481.000.520.530.71
      Tl0.841.650.881.081.090.851.31
      Th9.939.068.076.766.597.077.36
      U1.120.880.870.750.370.490.64
      ΣREE55.5745.9950.9374.3838.1045.3245.79
      LREE48.2238.9343.0764.2832.8139.5040.03
      HREE7.357.067.8610.105.295.825.76
      LREE/HREE6.565.525.486.376.206.796.95
      δEu0.911.140.930.881.091.051.07
      δCe0.770.810.760.810.760.770.77
      LaN/YbN6.916.045.536.847.288.418.54
      注:A/CNK=(Al2O3)/(CaO+K2O+Na2O)摩尔比值;A/NK=(Al2O3)/(K2O+Na2O)摩尔比值;δEu=EuN/[(SmN)×(GdN)]1/2;δCe=CeN/[(LaN)×(PrN)]1/2.
      下载: 导出CSV

      表 3  拿若斑岩型铜(金)矿区锆石Hf同位素分析结果

      Table 3.  Hf isotopes analyzed data of the zircons from the Naruo porphyry Cu(Au)deposit

      岩性样品编号年龄(Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf2σ(176Hf/177Hf)iεHf(0)εHf(t)2σtDM1(Ma)tDM2(Ma)fLu/Hf
      含矿花岗闪长斑岩Z01-01119.590.0625600.0018610.2828680.0000160.2828643.395.870.6558801-0.94
      Z01-02121.240.0355510.0010920.2828830.0000160.2828813.946.510.6524761-0.97
      Z01-03121.690.0594760.0016160.2828930.0000140.2828904.296.830.5517741-0.95
      Z01-04120.920.0471340.0014180.2828810.0000150.2828783.856.390.5532768-0.96
      Z01-05121.350.0525650.0014450.2828890.0000160.2828864.136.680.6521750-0.96
      Z01-06120.300.0344500.0010240.2828630.0000150.2828603.215.770.5553808-0.97
      Z01-07122.100.0262990.0007720.2829060.0000160.2829054.757.370.6487707-0.98
      Z01-08121.820.0316570.0009580.2828990.0000130.2828974.507.090.5500724-0.97
      Z01-09120.360.0542500.0016420.2828760.0000130.2828723.676.180.5543781-0.95
      不含矿花岗闪长斑岩Z15-01121.210.0295550.0008310.2828460.0000170.2828452.635.230.6573843-0.97
      Z15-02120.020.0195300.0005650.2828530.0000140.2828522.885.470.5559827-0.98
      Z15-03120.000.0472840.0012600.2828600.0000160.2828573.105.630.6561816-0.96
      Z15-04118.140.0323160.0008410.2827400.0000160.282738-1.151.380.67241086-0.97
      Z15-05120.020.0314310.0008790.2828300.0000150.2828282.054.620.5597881-0.97
      Z15-06120.310.0347900.0009990.2828440.0000150.2828422.545.100.5579851-0.97
      Z15-07118.330.0331190.0009800.2828290.0000160.2828272.014.530.6600885-0.97
      Z15-08119.130.0323670.0010210.2828350.0000150.2828332.234.770.5592871-0.97
      下载: 导出CSV
    • [1] Amelin,Y.,Lee,D.C.,Halliday,A.N.,et al.,1999.Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrital Zircons.Nature,399(6733):252-255.doi: 10.1038/20426
      [2] Andersen,T.,2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology,192(1-2):59-79.doi: 10.1016/s0009-2541(02)00195-x
      [3] Belousova,E.,Griffin,W.,O'Reilly,S.Y.,et al.,2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology,143(5):602-622.doi: 10.1007/s00410-002-0364-7
      [4] Beate,B.,Monzier,M.,Spikings,R.,et al.,2001.Mio-Pliocene Adakite Generation Related to Flat Subduction in Southern Ecuador:The Quimsacocha Volcanic Center.Earth and Planetary Science Letters,192(4):561-570.doi: 10.1016/s0012-821x(01)00466-6
      [5] Bhatia,M.R.,Crook,K.A.W.,1986.Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins.Contributions to Mineralogy and Petrology,92(2):181-193.doi: 10.1007/bf00375292
      [6] Bouvier,A.,Vervoort,J.D.,Patchett,P.J.,2008.The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets.Earth and Planetary Science Letters,273(1-2):48-57.doi: 10.1016/j.epsl.2008.06.010
      [7] Boynton,W.V.,1984.Cosmochemistry of the Rare Earth Elements:Meteorite Studies.Developments in Geochemistry,2:63-114.doi: 10.1016/b978-0-444-42148-7.50008-3
      [8] Boztu ,D.,Harlavan,Y.,Arehart,G.B.,et al.,2007.K-Ar Age,Whole-Rock and Isotope Geochemistry of A-Type Granitoids in the Divrii Sivas Region,Eastern-Central Anatolia,Turkey.Lithos,97(1-2):193-218.doi: 10.1016/j.lithos.2006.12.014
      [9] Cao,S.H.,Deng,S.Q.,Xiao,Z.J.,et al.,2006.The Archipelagic Arc Tectonic Evolution of the Meso-Tethys in the Western Part of the Bangong Lake-Nujiang Suture Zone.Sedimentary Geology and Tethyan Geology,26(4):25-32 (in Chinese with English abstract).
      [10] Chen,H.A.,Zhu,X.P.,Ma,D.F.,et al.,2013.Geochronology and Geochemistry of the Bolong Porphyry Cu-Au Deposit,Tibet and Its Mineralizing Significance.Acta Geologica Sinica,87(10):1593-1611 (in Chinese with English abstract). https://www.researchgate.net/publication/284686858_Geochronology_and_geochemistry_of_the_Bolong_porphyry_Cu-Au_deposit_Tibet_and_its_mineralizing_significance
      [11] Cooke,D.R.,Hollings,P.,Walshe,J.L.,2005.Giant Porphyry Deposits:Characteristics,Distribution,and Tectonic Controls.Economic Geology,100(5):801-818.doi: 10.2113/gsecongeo.100.5.801
      [12] Defant,M.J.,Drummond,M.S.,1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature,347(6294):662-665.doi: 10.1038/347662a0
      [13] Du,D.D.,Qu,X.M.,Wang,G.H.,et al.,2011.Bidirectional Subduction of the Middle Tethys Oceanic Basin in the West Segment of Bangonghu-Nujiang Suture,Tibet:Evidence from Zircon U-Pb LA-ICPMS Dating and Petrogeochemistry of Arc Granites.Acta Petrologica Sinica,27(7):1993 -2002 (in Chinese with English abstract). http://www.oalib.com/search?kw=Bidirectional%20subduction&searchField=keyword
      [14] Duan,Z.M.,Li,G.M.,Zhang,H.,et al.,2013a.The Formation and Its Geologic Significance of Late Triassic-Jurassic Accretionary Complexes and Constraints on Metallogenic and Geological Settings in Duolong Porphyry Copper Gold Ore Concentration Area,Northern Bangong Co-Nujiang Suture Zone,Tibet.Geological Bulletin of China,32(5):742-750 (in Chinese with English abstract). https://www.researchgate.net/publication/279895275_The_formation_and_its_geologic_significance_of_Late_Triassic-Jurassic_accretionary_complexes_and_constraints_on_metallogenic_and_geological_settings_in_Duolong_porphyry_copper_gold_ore_concentration_a
      [15] Duan,Z.M.,Li,G.M.,Zhang,H.,et al.,2013b.Zircon U-Pb Age & Geochemical Characteristics of the Quartz Monzobiorite and Metallogenic Background of the Sena Gold Deposit in Duolong Metallogenic Concentrated Area,Tibet.Journal of Jilin University (Earth Science Edition),43(6):1864-1877 (in Chinese with English abstract).
      [16] Drummond,M.S.,Defant,M.J.,Kepezhinskas,P.K.,1996.Petrogenesis of Slab-Derived Trondhjemite-Tonalite-Dacite/Adakite Magmas.Transactions of the Royal Society of Edinburgh:Earth Sciences,87(1-2):205-215.doi: 10.1017/s0263593300006611
      [17] Eliopoulos,D.,Economou-Eliopoulos,M.,Zelyaskova-Panayiotova,M.,2014.Critical Factors Controlling Pd and Pt Potential in Porphyry Cu-Au Deposits:Evidence from the Balkan Peninsula.Geosciences,4(1):31-49.doi: 10.3390/geosciences4010031
      [18] Fang,X.,Tang,J.X.,Song,Y.,et al.,2015.Formation Epoch of the South Tiegelong Superlarge Epithermal Cu (Au-Ag) Deposit in Tibet and Its Geological Implications.Acta Geoscientica Sinica,36(2):168-176 (in Chinese with English abstract). https://www.researchgate.net/publication/281996814_Formation_epoch_of_the_South_Tiegelong_supelarge_epithermal_Cu_Au-Ag_deposit_in_tibet_and_its_geological_implications
      [19] Fu,J.J.,Ding,L.,Xu,Q.,et al.,2015.Zircon U-Pb Geochronology and Hf Isotopic Composition of the Cretaceous Volcanic Rocks and Constraint of the Collision Age of Bangong-Nujiang Suture Zone in Dongco Area,Gaize,Tibet.Chinese Journal of Geology,50(1):182-202 (in Chinese with English abstract) https://www.researchgate.net/publication/281762727_Zircon_U-Pb_geochronology_and_Hf_isotopic_composition_of_the_Cretaceous_volcanic_rocks_and_constraint_of_the_collision_age_of_Bangong-Nujiang_suture_zone_in_Dongco_area_Gaize_Tibet?_sg=u1lZgfVOI6JeNwqrMS7vV03852_Xm5zn6kX4DNpLegbyT3cA9L28cdIOK0JOmLNkdUJfePP9ACYGAyQ8kr1H1Q
      [20] Fu,J.J.,Zhao,Y.Y.,Guo ,S.,2014.Geochemical Characteristics and Significance of Granodiorite Porphyry in the Duolong Ore Concentration Area,Tibet.Acta Petrologica et Mineralogica,33(6):1039-1051 (in Chinese with English abstract). http://www.oalib.com/paper/1560923
      [21] Geng,Q.R.,Pan,G.T.,Wang,L.Q.,et al.,2011.Tethyan Evolution and Metallogenic Geological Background of the Bangong Co-Nujiang Belt and the Qiangtang Massif in Tibet.Geological Bulletin of China,30(8):1261-1274 (in Chinese with English abstract). https://www.researchgate.net/publication/288704824_Tethyan_evolution_and_metallogenic_geological_background_of_the_Bangong_Co-Nujiang_belt_and_the_Qiangtang_massif_in_Tibet
      [22] Gorton,M.P.,Schandl,E.S.,2000.From Continents to Island Arcs:A Geochemical Index of Tectonic Setting for Arc-Related and Within-Plate Felsic to Intermediate Volcanic Rocks.The Canadian Mineralogist,38(5):1065-1073.doi: 10.2113/gscanmin.38.5.1065
      [23] Gustafson ,L.B.,1978.Some Major Factors of Porphyry Copper Genesis.Economic Geology,73(5):600-607.doi: 10.2113/gsecongeo.73.5.600
      [24] Gutscher,M.A.,Maury,R.,Eissen,J.P.,et al.,2000.Can Slab Melting be Caused by Flat Subduction?Geology,28(6):535-538.doi: 10.1130/0091-7613(2000)028<0535:csmbcb>2.3.co;2
      [25] Guynn,J.H.,Kapp,P.,Pullen,A.,et al.,2006.Tibetan Basement Rocks near Amdo Reveal“Missing”Mesozoic Tectonism along the Bangong Suture,Central Tibet.Geology,34(6):505.doi: 10.1130/g22453.1
      [26] Halter,W.E.,Heinrich,C.A.,Pettke,T.,2005.Magma Evolution and the Formation of Porphyry Cu-Au Ore Fluids:Evidence from Silicate and Sulfide Melt Inclusions.Mineral Deposits,39(8):845-863.doi: 10.1007/s00126-004-0457-5
      [27] Hildreth,W.,Moorbath,S.,1988.Crustal Contributions to Arc Magmatism in the Andes of Central Chile.Contributions to Mineralogy and Petrology,98(4):455-489.doi: 10.1007/bf00372365
      [28] Hgdahl,K.,Sjstrm,H.,Andersson,U.B.,et al.,2008.Continental Margin Magmatism and Migmatisation in the West-Central Fennoscandian Shield.Lithos,102(3-4):435-459.doi: 10.1016/j.lithos.2007.07.019
      [29] Hoskin,P.W.O.,Schaltegger,U.,2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.In:Manchar,J.M.,Hoskin,P.W.O.,eds..Reviews in Mineralogy and Geochemistry,53(1):27-62 doi:  10.2113/0530027
      [30] Hou,K.J.,Li,Y.H.,Zhou,T.J.,et al.,2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologlca Sinica,23(10):2595-2604 (in Chinese with English abstract). http://www.oalib.com/paper/1472292
      [31] Hou,Z.Q.,2003.The Himalayan Yulong Porphyry Copper Belt:Product of Large-Scale Strike-Slip Faulting in Eastern Tibet.Economic Geology,98(1):125-145.doi: 10.2113/98.1.125
      [32] Hou,Z.Q.,Gao,Y.F.,Qu,X.M.,et al.,2004.Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet.Earth and Planetary Science Letters,220(1-2):139-155.doi: 10.1016/s0012-821x(04)00007-x
      [33] Hou,Z.Q.,Lu,Q.T.,Wang,J.A.,et al.,2003.Continental Collision and Related Metallogeny:A Case Study of Mineralization in Tibetan Orogen.Mineral Deposits,22(4):319-333 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200304000.htm
      [34] Hou,Z.Q.,Xie,Y.L.,Xu,W.Y.,et al.,2007.Yulong Deposit,Eastern Tibet:A High-Sulfidation Cu-Au Porphyry Copper Deposit in the Eastern Indo-Asian Collision Zone.International Geology Review,49(3):235-258.doi: 10.2747/0020-6814.49.3.235
      [35] Hou,Z.Q.,Yang,Z.M.,Qu,X.M.,et al.,2009.The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen.Ore Geology Reviews,36(1-3):25-51.doi: 10.1016/j.oregeorev.2008.09.006
      [36] Hou,Z.Q.,Yang,Z.S.,Xu,W.Y.,et al.,2006.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅰ.Mineralization in Main Collisional Orogenic Setting.Mineral Deposits,25(4):337-358 (in Chinese with English abstract). http://www.oalib.com/references/17343420
      [37] Hou,Z.Q.,Zeng,P.S.,Gao,Y.F.,et al.,2006.Himalayan Cu-Mo-Au Mineralization in the Eastern Indo-Asian Collision Zone:Constraints from Re-Os Dating of Molybdenite.Mineralium Deposita,41(1):33-45.doi: 10.1007/s00126-005-0038-2
      [38] Hou,Z.Q.,Zheng,Y.C.,Yang,Z.M.,et al.,2012.Metallogenesis of Continental Collision Setting:Part Ⅰ.Gangdese Cenozoic Porphyry Cu-Mo Systems in Tibet.Mineral Deposits,31(4):647-670 (in Chinese with English abstract).
      [39] Jiang,Y.H.,Jiang,S.Y.,Dai,B.Z.,et al.,2006a.Comparison on Elemental and Isotopic Geochemistry of Ore-Bearing and Barren Porphyries from the Yulong Porphyry Cu Depsit,East Tibet.Acta Petrologica Sinica,22(10):2561-2566 (in Chinese with English abstract). https://www.researchgate.net/publication/286880895_Comparison_on_elemental_and_isotopic_geochemistry_and_ore-bearing_and_barren_poryphyries_from_the_Yulong_poryphyry_Cu_deposit_east_Tibet
      [40] Jiang,Y.H.,Jiang,S.Y.,Ling,H.F.,et al.,2006b.Petrogenesis of Cu-Bearing Porphyry Associated with Continent-Continent Collisional Setting:Evidence from the Yulong Porphyry Cu Ore-Belt,East Tibet.Acta Petrologica Sinica,22(3):697-706 (in Chinese with English abstract). http://www.oalib.com/references/17382653
      [41] John,D.A.,Ayuso,R.A.,Barton,M.D.,et al.,2010.Porphyry Copper Deposit Model.In:Survey,W.S.G.,ed.,Mineral Deposit Model for Resource Assessment.U.S.Geological Survey,Reston.
      [42] Kapp,P.,Murphy,M.A.,Yin,A.,et al.,2003.Mesozoic and Cenozoic Tectonic Evolution of the Shiquanhe Area of Western Tibet.Tectonics,22(4):253.doi: 10.1029/2001tc001332
      [43] Kay,R.W.,1978.Aleutian Magnesian Andesites:Melts from Subducted Pacific Ocean Crust.Journal of Volcanology and Geothermal Research,4(1-2):117-132.doi: 10.1016/0377-0273(78)90032-x
      [44] Kelemen,P.B.,1995.Genesis of High Mg# Andesites and the Continental Crust.Contributions to Mineralogy and Petrology,120(1):1-19.doi: 10.1007/bf00311004
      [45] Kesler,S.E.,Wilkinson,B.H.,2008.Earth's Copper Resources Estimated from Tectonic Diffusion of Porphyry Copper Deposits.Geology,36(3):255.doi: 10.1130/g24317a.1
      [46] Lang,X.H.,Tang,J.X.,Chen,Y.C.,et al.,2012.Neo-Tethys Mineralization on the Southern Margin of the Gangdise Metallogenic Belt,Tibet,China:Evidence from Re-Os Ages of Xiongcun Orebody No.1.Earth Science,37(3):515-525 (in Chinese with English abstract).
      [47] Leng,Q.F.,Tang,J.X.,Zheng,W.B.,et al.,2016.Geochronology,Geochemistry and Zircon Hf Isotopic Compositions of the Ore-Bearing Porphyry in the Lakang'e Porphyry Cu-Mo Deposit,Tibet.Earth Science,41(6):999-1015 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201606007.htm
      [48] Li,D.W.,2008.Three-Stage Tectonic Evolution and Metallogenic Evolution in the Qinghai-Tibet Plateau and Its Adjacent Area.Earth Science,33(6):723-742 (in Chinese with English abstract). http://d.wanfangdata.com.cn/NSTLQK_10.3799-dqkx.2008.089.aspx
      [49] Li,G.M.,Li,J.X.,Qin,K.Z.,et al.,2012.Geology and Hydrothermal Alteration of the Duobuza Gold-Rich Porphyry Copper District in the Bangongco Metallogenetic Belt,Northwestern Tibet.Resource Geology,62(1):99-118.doi: 10.1111/j.1751-3928.2011.00182.x
      [50] Li,G.M.,Duan,Z.M.,Liu,B.,et al.,2011.The Discovery of Jurassic Accretionary Complexes in Duolong Area,Northern Bangong Co-Nujiang Suture Zone,Tibet,and Its Geologic Significance.Geological Bulletin of China,30(8):1256-1260 (in Chinese with English abstract). https://www.researchgate.net/publication/279669870_The_discovery_of_Jurassic_accretionary_complexes_in_Duolong_area_northern_Bangong_Co-Nujiang_suture_zone_Tibet_and_its_geologic_significance
      [51] Li,G.M.,Zhang,X.N.,Qin,K.Z.,et al.,2015.The Telescoped Porphyry-High Sulfidation Epithermal Cu (Au) Mineralization of Rongna Deposit in Duolong Ore Cluster at the Southern Margin of Qiangtang Terrane,Central Tibet:Integrated Evidence from Geology.Acta Petrologica Sinica,31(8):2307-2324 (in Chinese with English abstract). https://www.researchgate.net/publication/282846858_The_telescoped_porphyry-high_sulfidation_epithermal_Cu-Au_mineralization_of_Rongna_deposit_in_Duolong_ore_cluster_at_the_southern_margin_of_Qiangtang_Terrane_Central_Tibet_Integrated_evidence_from_geo
      [52] Li,J.X.,Li,G.M.,Qin,K.Z.,et al.,2008.Geochemistry of Porphyries and Volcanic Rocks and Ore-Forming Geochronology of Duobuza Gold-Rich Porphyry Copper Deposit in Bangonghu Belt:Constraints on Metallogenic Tectonic Settings.Acta Petrologica Sinica,24(3):531-543 (in Chinese with English abstract). https://www.researchgate.net/publication/279598497_Geochemistry_of_porphyries_and_volcanic_rocks_and_ore-forming_geochronology_of_Duobuza_gold-rich_porphyry_copper_deposit_in_Bangonghu_belt_Tibet_Constraints_on_mettalogenic_tectonic_settings?_sg=5FEMvVMPFkkXdqXQtrpGtVftcwB5ZdbWEMe83pbJWu1ktNMPpN8cs62HqDcwFvFHAOyHViQ7PgA61H73S_SkKw
      [53] Li,J.X.,Li,G.M.,Qin,K.Z.,et al.,2011a.Mineralogy and Mineral Chemistry of the Cretaceous Duolong Gold-Rich Porphyry Copper Deposit in the Bangongco Arc,Northern Tibet.Resource Geology,62(1):19-41. doi: 10.1111/j.1751-3928.2011.00178.x
      [54] Li,J.X.,Qin,K.Z.,Li,G.M.,et al.,2011b.Magmatic-Hydrothermal Evolution of the Cretaceous Duolong Gold-Rich Porphyry Copper Deposit in the Bangongco Metallogenic Belt,Tibet:Evidence from U-Pb and 40Ar/39Ar Geochronology.Journal of Asian Earth Sciences,41(6):525-536. doi: 10.1016/j.jseaes.2011.03.008
      [55] Li,J.X.,Qin,K.Z.,Li,G.M.,et al.,2013.Petrogenesis of Ore-Bearing Porphyries from the Duolong Porphyry Cu-Au Deposit,Central Tibet:Evidence from U-Pb Geochronology,Petrochemistry and Sr-Nd-Hf-O Isotope Characteristics.Lithos,160-161:216-227.doi: 10.1016/j.lithos.2012.12.015
      [56] Li,J.X.,Qin,K.Z.,Li,G.M.,et al.,2014.Geochronology,Geochemistry,and Zircon Hf Isotopic Compositions of Mesozoic Intermediate-Felsic Intrusions in Central Tibet:Petrogenetic and Tectonic Implications.Lithos,198-199:77-91.doi: 10.1016/j.lithos.2014.03.025
      [57] Li,Y.L.,He,J.,Wang,C.S.,et al.,2015.Cretaceous Volcanic Rocks in South Qiangtang Terrane:Products of Northward Subduction of the Bangong-Nujiang Ocean?Journal of Asian Earth Sciences,104:69-83.doi: 10.1016/j.jseaes.2014.09.033
      [58] Liao,L.G.,Cao,S.H.,Xiao,Y.B.,et al.,2005.The Delineation and Significance of the Continental-Margin Volcanic-Magmatic Arc Zone in the Northern Part of the Bangong-Nujiang Suture Zone.Sedimentary Geology and Tethyan Geology,25(1-2):163-170 (in Chinese with English abstract). http://www.oalib.com/paper/4874137
      [59] Liang,H.Y.,Mo,J.H.,Sun,W.D.,et al.,2009.Study on Geochemical Composition and Isotope Ages of the Malasongduo Porphyry Associated with Cu-Mo Mineralization.Acta Petrologica Sinica,25(2):385-392 (in Chinese with English abstract). http://www.oalib.com/paper/1472205
      [60] Liang,H.Y.,Sun,W.D.,Su,W.C.,et al.,2009.Porphyry Copper-Gold Mineralization at Yulong,China,Promoted by Decreasing Redox Potential during Magnetite Alteration.Economic Geology,104(4):587-596.doi: 10.2113/gsecongeo.104.4.587
      [61] Liu,D.L.,Huang,Q.S.,Fan,S.Q.,et al.,2014.Subduction of the Bangong-Nujiang Ocean:Constraints from Granites in the Bangong Co Area,Tibet.Geological Journal,49(2):188-206.doi: 10.1002/gj.2510
      [62] Liu,S.,Hu,R.Z.,Gao,S.,et al.,2012.U-Pb Zircon Age,Geochemical and Sr-Nd Isotopic Data as Constraints on the Petrogenesis and Emplacement Time of Andesites from Gerze,Southern Qiangtang Block,Northern Tibet.Journal of Asian Earth Sciences,45:150-161.doi: 10.1016/j.jseaes.2011.09.025
      [63] Logan,J.M.,Mihalynuk,M.G.,2014.Tectonic Controls on Early Mesozoic Paired Alkaline Porphyry Deposit Belts (Cu-Au±Ag-Pt-Pd-Mo) within the Canadian Cordillera.Economic Geology,109(4):827-858.doi: 10.2113/econgeo.109.4.827
      [64] Ludwig,K.R.,2003.Isoplot/Ex Version 3.0:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication,Berkeley.
      [65] Manning,C.,2004.The Chemistry of Subduction-Zone Fluids.Earth and Planetary Science Letters,223(1-2):1-16.doi: 10.1016/j.epsl.2004.04.030
      [66] Martin,H.,1999.Adakitic Magmas:Modern Analogues of Archaean Granitoids.Lithos,46(3):411-429.doi: 10.1016/s0024-4937(98)00076-0
      [67] Martin,H.,Smithies,R.H.,Rapp,R.,et al.,2005.An Overview of Adakite,Tonalite-Trondhjemite-Granodiorite (TTG),and Sanukitoid:Relationships and Some Implications for Crustal Evolution.Lithos,79(1-2):1-24.doi: 10.1016/j.lithos.2004.04.048
      [68] Matte,P.,Tapponnier,P.,Arnaud,N.,et al.,1996.Tectonics of Western Tibet,between the Tarim and the Indus.Earth and Planetary Science Letters,142(3-4):311-330.doi: 10.1016/0012-821x(96)00086-6
      [69] Misra,K.C.2000.Understanding Mineral Deposits.Kluwer Academic,London,353-413. http://www.springer.com/gb/book/9780045530090
      [70] Patio Douce,A.E.,1999.What do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas?Geological Society,London,Special Publications,168(1):55-75.doi: 10.1144/gsl.sp.1999.168.01.05
      [71] Peacock,S.M.,Rushmer,T.,Thompson,A.B.,1994.Partial Melting of Subducting Oceanic Crust.Earth and Planetary Science Letters,121(1-2):227-244.doi: 10.1016/0012-821x(94)90042-6
      [72] Pearce,J.A.,1983.Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins.Journal of the Electrochemical Society,147(6):2162-2173 https://www.researchgate.net/publication/247434731_Role_of_the_sub-continental_lithosphere_in_magma_genesis_at_active_continental_margin
      [73] Peccerillo,A.,Taylor,S.R.,1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area,Northern Turkey.Contributions to Mineralogy and Petrology,58(1):63-81.doi: 10.1007/bf00384745
      [74] Qu,X.M.,Wang,R.J.,Dai,J.J.,et al.,2012a.Discovery of Xiongmei Porphyry Copper Deposit in Middle Segment of Bangonghu-Nujiang Suture Zone and Its Significance.Mineral Deposits,31(1):1-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201201002.htm
      [75] Qu,X.M.,Wang,R.J.,Xin,H.B.,et al.,2009.Geochronology and Geochemistry of Igneous Rocks Related to the Subduction of the Tethys Oceanic Plate along the Bangong Lake Arc Zone,the Western Tibetan Plateau.Geochimica,38(6):523-535 (in Chinese with English abstract). https://www.researchgate.net/publication/284324341_Geochronology_and_geochemistry_of_igneous_rocks_related_to_the_subduction_of_the_Tethys_oceanic_plate_along_the_Bangong_Lake_arc_zone_the_western_Tibetan_Plateau
      [76] Qu,X.M.,Xin,H.B.,2006.Ages and Tectonic Environment of the Bangong Co Porphyry Copper Belt in Western Tibet,China.Geological Bulletin of China,25(7):792-799 (in Chinese with English abstract). https://www.researchgate.net/publication/279695342_Ages_and_tectonic_environment_or_the_Bangong_Co_porphyry_copper_belt_in_western_Tibet_China
      [77] Qu,X.M.,Wang,R.J.,Xin,H.B.,et al.,2012.Age and Petrogenesis of A-Type Granites in the Middle Segment of the Bangonghu-Nujiang Suture,Tibetan Plateau.Lithos,146-147:264-275.doi: 10.1016/j.lithos.2012.05.006
      [78] Qu,X.M.,Xin,H.B.,Du,D.D.,et al.,2012b.Ages of Post-Collisional A-Type Granite and Constraints on the Closure of the Oceanic Basin in the Middle Segment of the Bangonghu-Nujiang Suture,the Tibetan Plateau.Geochimica,41(1):1-14 (in Chinese with English abstract). http://www.oalib.com/references/17342174
      [79] Qu,X.M.,Fan,S.F.,Ma,X.D.,et al.,2015.Post-Collisional Copper Ore Deposits along Bangong Co-Nujiang Metallogenic Belt,Tibetan Plateau.Mineral Deposits,34(3):431-448 (in Chinese with English abstract).
      [80] Rapp,R.P.,Shimizu,N.,Norman,M.D.,et al.,1999.Reaction betweens Lab Derived Melts and Peridotite in the Mantle Wedge:Experimental Constraints at 3.8GPa.Chemical Geology,160:335-356.doi:http://dx.doi.org/ 10.1016/S0009-2541(99)00106-0
      [81] Richards,J.P.,2003.Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation.Economic Geology,98:1515-1533.doi: 10.2113/98.8.1515
      [82] Richards,J.P.,2005.Cumulative Factors in the Generation of Giant Calc-Alkaline Porphyry Cu Deposits.In:Porter,T.M.,ed.,Super Porphyry Copper & Gold Deposits.PGC Publishing,Linden Park. http://www.oalib.com/references/19018622
      [83] Rollinson,H.P.,1993.Using Geochemical Date:Evaluation,Presentation,Interpretation.Longman Publishing Group,New York,174-206.
      [84] Schwab,M.,Ratschbacher,L.,Siebel,W.,et al.,2004.Assembly of the Pamirs:Age and Origin of Magmatic Belts from the Southern Tien Shan to the Southern Pamirs and Their Relation to Tibet.Tectonics,23(4):.doi: 10.1029/2003tc001583
      [85] Seedorff,E.,Dilles,J.H.,Proffett,J.M.,et al.,2005.Porphyry Deposit:Characteristics and Origin of Hypogene Features.Economic Geology 100th Anniversary Volume,Society of Economic Geologists,Inc.,Littleton.
      [86] She,H.Q.,Li,J.W.,Ma,D.F.,et al.,2009.Molybdenite Re-Os and SHRIMP Zircon U-Pb Dating of Duobuza Porphyry Copper Deposit in Tibet and Its Geological Implications.Mineral Deposits,28(6):737-746 (in Chinese with English abstract). http://www.oalib.com/references/17371111
      [87] Shi,R.D.,2007.SHRIMP Dating of the Bangong Lake SSZ-Type Ophiolite:Constraints on the Closure Time of Ocean in the Bangong Lake-Nujiang River,Northwestern Tibet.Chinese Science Bulletin,52(7):936-941.doi: 10.1007/s11434-007-0134-z
      [88] Sillitoe,R.H.,1972.A Plate Tectonic Model for the Origin of Porphyry Copper Deposits.Economic Geology,67(2):184-197.doi: 10.2113/gsecongeo.67.2.184
      [89] Sillitoe,R.H.,1979.Some Thoughts on Gold-Rich Porphyry Copper Deposits.Mineralium Deposita,14(2):161-174.doi: 10.1007/bf00202933
      [90] Sillitoe,R.H.,Perelló,J.,2005.Andean Copper Province:Tectonomagmatic Settings,Deposit Types,Metallogeny,Exploration,and Discovery.Economic Geology 100th Anniversary Volume,Society of Economic Geologists,Inc.,Littleton.
      [91] Sillitoe,R.H.,2010.Porphyry Copper Systems.Economic Geology,105(1):3-41.doi: 10.2113/gsecongeo.105.1.3
      [92] Sinclair,W.D.,2007.Porphyry Deposits.In:Goodfellow,W.D.,ed.,Mineral Deposits of Canada:A Synthesis of Major Deposit Types,District Metallogeny,the Evolution of Geological Provinces and Exploration Methods.Mineral Deposits Division,Special Publication,5:223-243.
      [93] Singer,D.A.,1995.World Class Base and Precious Metal Deposits:A Quantitative Analysis.Economic Geology,90(1):88-104.doi: 10.2113/gsecongeo.90.1.88
      [94] Singer,D.A.,Berger,V.I.,Moring,B.C.,2005a.Porphyry Copper Deposits of the World:Database,Map,and Grade and Tonnage Models.Open-File Report 2005-1060.U.S.Geological Survey,Melo Park. https://pubs.usgs.gov/of/2005/1060/of2005-1060.pdf
      [95] Singer,D.A.,Berger,V.I.,Menzie,W.D.,et al.,2005b.Porphyry Copper Deposit Density.Economic Geology,100(3):491-514.doi: 10.2113/gsecongeo.100.3.491
      [96] Singer,D.A.,Berger,V.I.,Moring,B.C.,2008.Porphyry Copper Deposits of the World:Database and Grade and Tonnage Models.Open-File Report 2008-1155.U.S.Geological Survey,Melo Park. https://pubs.usgs.gov/of/2008/1155/
      [97] Sisson,T.W.,1994.Hornblende-Melt Trace-Element Partitioning Measured by Ion Microprobe.Chemical Geology,117(1-4):331-344.doi: 10.1016/0009-2541(94)90135-x
      [98] Sderlund,U.,Patchett,P.J.,Vervoort,J.D.,et al.,2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters,219(3-4):311-324.doi: 10.1016/s0012-821x(04)00012-3
      [99] Stern,C.R.,Kilian,R.,1996.Role of the Subducted Slab,Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone.Contributions to Mineralogy and Petrology,123(3):263-281.doi: 10.1007/s004100050155
      [100] Stolz,A.J.,Jochum,K.P.,Spettel,B.,et al.,1996.Fluid- and Melt-Related Enrichment in the Subarc Mantle:Evidence from Nb/Ta Variations in Island-Arc Basalts.Geology,24(7):587-590.doi: 10.1130/0091-7613(1996)024<0587:famreitalic>2.3.co;2
      [101] Sun,S.S.,McDonough,W.F.,1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society,London,Special Publications,42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19
      [102] Sun,W.D.,Liang,H.Y.Ling,M.X.,et al.,2013.The Link between Reduced Porphyry Copper Deposits and Oxidized Magmas.Geochimica et Cosmochimica Acta,103:263-275.doi: 10.1016/j.gca.2012.10.054
      [103] Sun,W.D.,Hang,R.F.,Li,H.,et al.,2015.Porphyry Deposits and Oxidized Magmas.Ore Geology Reviews,65:97-131.doi: 10.1016/j.oregeorev.2014.09.004
      [104] Tang,J.X.,Dorji.,Liu,H.F.,et al.,2012.Minerogenetic Series of Ore Deposits in the East Part of the Gangdise Metallogenic Belt.Acta Geoscientica Sinica,33(4):393-410 (in Chinese with English abstract). http://www.oalib.com/paper/1559914
      [105] Tang,J.X.,Wang,L.Q.,Zheng,W.B.,et al.,2014a.Ore Deposits Metallogenic Regularity and Prospecting in the Eastern Section of the Gangdese Metallogenic Belt.Acta Geologica Sinica,88(12):2545-2555 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201412027.htm
      [106] Tang,J.X.,Sun,X.G.,Ding,S.,et al.,2014b.Discovery of the Epithermal Deposit of Cu (Au-Ag) in the Duolong Ore Concentrating Area,Tibet.Acta Geoscientica Sinica,35(1):6-10 (in Chinese with English abstract). https://www.researchgate.net/profile/Jilin_Duan/publication/277963808_The_Discovery_of_the_Cu_Au-Ag_Epithermal_Deposit_in_the_Duolong_Ore_Concentrating_Area_Northern_Tibet/links/56a76a4b08ae0fd8b3fe00f2.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
      [107] Tang,J.X.,Lang,X.H.,Xie,F.W.,et al.,2015.Geological Characteristics and Genesis of the Jurassic No.1 Porphyry Cu-Au Deposit in the Xiongcun District,Gangdese Porphyry Copper Belt,Tibet.Ore Geology Reviews,70(4):94-95.doi: 10.1016/j.oregeorev.2015.02.008
      [108] Taylor,S.R.,McLennan,S.M.,1995.The Geochemical Evolution of the Continental Crust.Reviews of Geophysics,33(2):241-265.doi: 10.1029/95rg00262
      [109] Wang,Q.,Tang,J.X.,Fang,X.,et al.,2015.Petrogenetic Setting of Andsites in Rongna Ore Block,Tiegelong Cu (Au-Ag) Deposit,Duolong Ore Concentration Area,Tibet:Evidence from Zircon U-Pb LA-ICP-MS Dating and Petrogeochemistry of Andsites.Geology in China,42(5):1324-1336 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201505011.htm
      [110] White,W.M.,Patchett,J.,1984.Hf-Nd-Sr Isotopes and Incompatible Element Abundances in Island Arcs:Implications for Magma Origins and Crust-Mantle Evolution.Earth and Planetary Science Letters,67:167-185.doi: 10.1016/0012-821x(84)90112-2
      [111] Xie,Y.L.,Hou,Z.Q.,Xu,J.H.,et al.,2005.Evolution of Multi-Stage Ore-Forming Fluid and Mineralization:Evidence from Fluid Inclusions in Yulong Porphyry Copper Deposit,East Tibet.Acta Petrologica Sinica,21(5):1409-1415 (in Chinese with English abstract). https://www.researchgate.net/publication/289359405_Evolution_of_multi-stage_ore-forming_fluid_and_mineralization_Evidence_form_fluid_inclusions_in_Yulong_porphyry_copper_deposit_East_Tibet
      [112] Xin,H.B.,Qu,X.M.,Wang,R.J.,et al.,2009.Geochemistry and Pb,Sr,Nd Isotopic Features of Ore-Bearing Porphyries in Bangong Lake Porphyry Copper Belt,Western Tibet.Mineral Deposits,28(6):785-792 (in Chinese with English abstract).
      [113] Xiong,X.L.,Xia,B.,Xu,J.F.,et al.,2006.Na Depletion in Modern Adakites via Melt/Rock Reaction within the Sub-Arc Mantle.Chemical Geology,229(4):273-292.doi: 10.1016/j.chemgeo.2005.11.008
      [114] Yang,C.,Tang,J.X.,Wang,Y.Y.,et al.,2014.Fluid and Geological Characteristics Researches of Southern Tiegelong Epithermal Porphyry Cu-Au Deposit in Tibet.Mineral Deposits,33(6):1287-1305 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201406010.htm
      [115] Yin,A.,Harrison,T.M.,2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences,28(1):211-280.doi: 10.1146/annurev.earth.28.1.211
      [116] Yogodzinski,G.M.,Lees,J.M.,Churikova,T.G.,et al.,2001.Geochemical Evidence for the Melting of Subducting Oceanic Lithosphere at Plate Edges.Nature,409(6819):500-504.doi: 10.1038/35054039
      [117] Zhang,S.,Shi,H.F.,Hao,H.J.,et al.,2014.Geochronology,Geochemistry and Tectonic Significance of Late Cretaceous Adakites in Bangong Lake,Tibet.Earth Science,39(5):509-524 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201405002.htm
      [118] Zhang,Z.,Chen,Y.C.,Tang,J.X.,et al.,2015.Zircon U-Pb Age and Geochemical Characteristics of Volcanic Rocks in Gaerqiong-Galale Cu-Au Ore District,Tibet.Earth Science,40(1):77-97 (in Chinese with English abstract). https://www.researchgate.net/publication/281959776_Zircon_U-Pb_age_and_geochemical_characteristics_of_volcanic_rocks_in_Gaerqiong-Galale_Cu-Au_ore_district_Tibet
      [119] Zhou,J.S.,Meng,X.J.,Zang,W.S.,et al.,2013.Zircon U-Pb Geochronology and Trace Element Geochemistry of the Ore-Bearing Porphyry in Qingcaoshan Porphyry Cu-Au Deposit,Tibet,and Its Geological Significance.Acta Petrologica Sinica,29(11):3755-3766 (in Chinese with English abstract). https://www.researchgate.net/publication/293486311_Zircon_U-Pb_geochronology_and_trace_element_geochemistry_of_the_ore-bearing_porphyry_in_Qingcaoshan_porphyry_Cu-Au_deposit_Tibet_and_its_geological_significance
      [120] Zhu,D.C.,Pan,G.T.,Mo,X.X.,et al.,2006.Identification for the Mesozoic OIB-Type Basalts in Central Qinghai-Tibetan Plateau:Geochronology,Geochemistry and Their Tectonic Setting.Acta Geologica Sinica,80(9):1312-1328 (in Chinese with English abstract). http://www.docin.com/p-1205414971.html
      [121] Zhu,X.P.,Chen,H.A.,Liu,H.F.,et al.,2015.Geochronology and Geochemistry of Porphyries from the Naruo Porphyry Copper Deposit,Tibet and Their Metallogenic Significance.Acta Geologica Sinica,89(1):109-128 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201501009.htm
      [122] Zhu,X.P.,Chen,H.A.,Ma,D.F.,et al.,2013.40Ar/39Ar Dating of Hydrothermal K-Feldspar and Hydrothermal Sericite from Bolong Porphyry Cu-Au Deposit in Tibet.Mineral Deposits,32(5):954-962 (in Chinese with English abstract).
      [123] Zhu,X.P.,Li,G.M.,Chen,H.A.,et al.,2015.Zircon U-Pb,Molybdenite Re-Os and K-Feldspar 40Ar/39Ar Dating of the Bolong Porphyry Cu-Au Deposit,Tibet,China.Resource Geology,65(2):122-135.doi: 10.1111/rge.12059
      [124] Zimmerman,A.,Stein,H.J.,Hannah,J.L.,et al.,2008.Tectonic Configuration of the Apuseni-Banat-Timok-Srednogorie Belt,Balkans-South Carpathians,Constrained by High Precision Re-Os Molybdenite Ages.Mineralium Deposita,43:1-21.doi: 10.1007/s00126-007-0149-z
      [125] 曹圣华,邓世权,肖志坚,等,2006.班公湖-怒江结合带西段中特提斯多岛弧构造演化.沉积与特提斯地质,26(4): 25-32. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200604003.htm
      [126] 陈华安,祝向平,马东方,等,2013.西藏波龙斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义.地质学报,87(10): 1593-1611. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201310009.htm
      [127] 杜德道,曲晓明,王根厚,等,2011.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb 年龄和元素地球化学的证据.岩石学报,27(7): 1993-2002. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107009.htm
      [128] 段志明,李光明,张晖,等,2013a.西藏班公湖-怒江缝合带北缘多龙矿集区晚三叠世-侏罗纪增生杂岩结构及其对成矿地质背景的约束.地质通报,32(5): 742-750. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201305007.htm
      [129] 段志明,李光明,张晖,等,2013b.色那金矿石英二长闪长岩锆石U-Pb年龄与地球化学特征及其对成矿背景的约束.吉林大学学报(地球科学版),43(6): 1864-1877. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306016.htm
      [130] 方向,唐菊兴,宋扬,等,2015.西藏铁格隆南超大型浅成低温热液铜(金、银)矿床的形成时代及其地质意义.地球学报,36(2): 168-176. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201502006.htm
      [131] 付佳俊,丁林,许强,等,2015.西藏改则洞错地区白垩纪火山岩锆石U-Pb年代学、Hf同位素组成及对班公-怒江洋俯冲闭合的制约.地质科学,50(1): 182-202. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201501011.htm
      [132] 符家骏,赵元艺,郭硕,2014.西藏多龙矿集区花岗闪长斑岩地球化学特征及其意义.岩石矿物学杂志,33(6): 1039-1051. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201406004.htm
      [133] 耿全如,潘桂棠,王立全,等,2011.班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景.地质通报,30(8): 1261-1274. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201108013.htm
      [134] 侯可军,李延河,邹天人,等,2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报,23(10): 2595-2604. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710026.htm
      [135] 侯增谦,吕庆田,王建安,等,2003.初论陆陆碰撞与成矿作用——以青藏高原造山带为例.矿床地质,22(4): 319-333. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200304000.htm
      [136] 侯增谦,杨竹森,徐文艺,等,2006.青藏高原碰撞造山带Ⅰ:主碰撞造山成矿作用.矿床地质,25(4): 337-358. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200604000.htm
      [137] 侯增谦,郑远川,杨志明,等,2012.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统.矿床地质,31(4): 647-670. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201204003.htm
      [138] 姜耀辉,蒋少涌,戴宝章,等,2006a.玉龙斑岩铜矿含矿与非含矿斑岩元素和同位素地球化学对比研究.岩石学报,22: 2561-2566. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200610016.htm
      [139] 姜耀辉,蒋少涌,凌洪琶,等,2006b.陆-陆碰撞造山环境下含铜斑岩岩石成因:以藏东玉龙斑岩铜矿带为例.岩石学报,22(3): 697-706. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603019.htm
      [140] 郎兴海,唐菊兴,陈毓川,等,2012.西藏冈底斯成矿带南缘新特提斯洋俯冲期成矿作用:来自雄村矿集区Ⅰ号矿体的Re-Os同位素年龄证据.地球科学,37(3): 515-525. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201203015.htm
      [141] 冷秋锋,唐菊兴,郑文宝,等,2016.西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成.地球科学,41(6): 999-1015. http://www.earth-science.net/WebPage/Article.aspx?id=3312
      [142] 李德威,2008.青藏高原及邻区三阶段构造演化与成矿演化.地球科学,33(6): 723-742. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200806000.htm
      [143] 李光明,段志明,刘波,等,2011.西藏班公湖-怒江结合带北缘多龙地区侏罗纪增生杂岩的特征及意义.地质通报,30(8): 1256-1260. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201108012.htm
      [144] 李光明,张夏楠,秦克章,等,2015.羌塘南缘多龙矿集区荣那斑岩-高硫型浅成低温热液Cu-(Au)套合成矿:综合地质、热液蚀变及金属矿物组合证据.岩石学报,31(8): 2307-2324. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201508013.htm
      [145] 李金祥,李光明,秦克章,等,2008.班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约.岩石学报,24(3): 531-543. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803013.htm
      [146] 廖六根,曹圣华,肖业斌,等,2005.班公湖-怒江结合带北侧陆缘火山-岩浆弧带的厘定及其意义,沉积与特提斯地质,25(1-2): 163-170. http://www.oalib.com/references/17350768
      [147] 梁华英,莫济海,孙卫东,等,2009.玉龙铜矿带马拉松多斑岩体岩石学及成岩成矿系统年代学分析.岩石学报,25(2): 385-392. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200902012.htm
      [148] 曲晓明,辛洪波,2006.藏西班公湖斑岩铜矿带的形成时代与成矿构造环境.地质通报,25(7): 792-799. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200607005.htm
      [149] 曲晓明,王瑞江,辛洪波,等,2009.西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学.地球化学,38(6): 523-535. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200906005.htm
      [150] 曲晓明,王瑞江,代晶晶,等,2012a.西藏班公湖-怒江缝合带中段雄梅斑岩铜矿的发现及意义.矿床地质,31(1): 1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201201002.htm
      [151] 曲晓明,辛洪波,杜德道,等,2012b.西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束.地球化学,41(1): 1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201201002.htm
      [152] 曲晓明,范淑芳,马旭东,等,2015.西藏班公湖-怒江成矿带上的碰撞后铜矿床.矿床地质,34(3): 431-448. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201503001.htm
      [153] 佘宏全,李进文,马东方,等,2009.西藏多不杂斑岩铜矿床辉钼矿Re-Os和锆石U-Pb SHRIMP测年及地质意义.矿床地质,28(6): 737-746. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200906002.htm
      [154] 唐菊兴,多吉,刘鸿飞,等,2012.冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究.地球学报,33(4): 393-410. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201204003.htm
      [155] 唐菊兴,孙兴国,丁帅,等,2014b.西藏多龙矿集区发现浅成低温热液型铜(金银)矿床.地球学报,35(1): 6-10. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201401002.htm
      [156] 唐菊兴,王立强,郑文宝,等,2014a.冈底斯成矿带东段矿床成矿规律及找矿预测.地质学报,88(12): 2545-2555. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201204003.htm
      [157] 王勤,唐菊兴,方向,等,2015.西藏多龙矿集区铁格隆南铜(金银)矿床荣那矿段安山岩成岩背景:来自锆石U-Pb年代学、岩石地球化学的证据.中国地质,42(5): 1324-1336. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201505011.htm
      [158] 谢玉玲,侯增谦,徐九华,等,2005.藏东玉龙斑岩铜矿床多期流体演化与成矿的流体包裹体证据.岩石学报,21: 1409-1415. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200505010.htm
      [159] 辛洪波,曲晓明,王瑞江,等,2009.藏西班公湖斑岩铜矿带成矿斑岩地球化学及Pb、Sr、Nd同位素特征.矿床地质,28(6): 785-792. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200906006.htm
      [160] 杨超,唐菊兴,王艺云,等,2014.西藏铁格隆南浅成低温热液型-斑岩型Cu-Au矿床流体及地质特征研究.矿床地质,33(6): 1287-1305. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201406010.htm
      [161] 张硕,史洪峰,郝海健,等,2014.青藏高原班公湖地区晚白垩世埃达克岩年代学、地球化学及构造意义.地球科学,39(5): 509-524. http://www.earth-science.net/WebPage/Article.aspx?id=2860
      [162] 张志,陈毓川,唐菊兴,等,2015.西藏尕尔穷-嘎拉勒铜金矿集区火山岩年代学及地球化学.地球科学,40(1): 77-97. http://www.earth-science.net/WebPage/Article.aspx?id=3024
      [163] 周金胜,孟祥金,臧文栓,等,2013.西藏青草山斑岩铜金矿含矿斑岩锆石 U-Pb 年代学、微量元素地球化学及地质意义.岩石学报,29(11): 3755-3766. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311009.htm
      [164] 朱弟成,潘桂棠,莫宣学,等,2006.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境.地质学报,80(9): 1312-1328. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200609008.htm
      [165] 祝向平,陈华安,刘鸿飞,等,2015.西藏拿若斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义.地质学报,89(1): 109-128. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201501009.htm
      [166] 祝向平,陈华安,马东方,等,2013.西藏波龙斑岩铜金矿床钾长石和绢云母40Ar/39Ar年龄及其地质意义.矿床地质,32(5): 954-962. http://d.wanfangdata.com.cn/Periodical/kcdz201305007
    • [1] 高顺宝, 郑有业, 田坎, 陈鑫, 姜晓佳, 顾艳荣.  西藏隆格尔铁矿床成岩成矿时代及对区域多期铁成矿作用的启示:地球化学、锆石U-Pb及金云母Ar-Ar同位素定年约束 . 地球科学, 2021, 46(6): 1941-1959. doi: 10.3799/dqkx.2020.216
      [2] 徐畅, 王岳军, 钱鑫, 张玉芝, 余小清.  苏门答腊岛北部Takengon早志留世S型花岗片麻岩年代学、地球化学特征及构造意义 . 地球科学, 2020, 45(6): 2077-2090. doi: 10.3799/dqkx.2020.030
      [3] 史兴俊, 张磊, 张辰光, 张建军, 丁自源, 张勇, 包峻帆, 周红升.  阿拉善北部亚干地区花岗岩锆石年代学、地球化学特征及其构造意义 . 地球科学, 2020, 45(7): 2469-2484. doi: 10.3799/dqkx.2020.164
      [4] 周皓, 裴福萍, 焦骥, 王枫, 许文良.  吉林通化赤柏松地区早白垩世花岗质岩脉(株)的成因:锆石U-Pb年代学、Hf同位素和地球化学证据 . 地球科学, 2020, 45(2): 519-533. doi: 10.3799/dqkx.2018.309
      [5] 王师捷, 徐仲元, 董晓杰, 王挽琼, 李鹏川.  华北板块北缘中段花岗闪长岩-苏长辉长岩的锆石U-Pb年代学、地球化学特征及其形成机制 . 地球科学, 2018, 43(9): 3267-3284. doi: 10.3799/dqkx.2017.585
      [6] 李敏, 任邦方, 滕学建, 张永, 段霄龙, 牛文超, 段连峰.  内蒙古北山造山带花岗岩地球化学、锆石U-Pb年龄和Hf同位素特征及地质意义 . 地球科学, 2018, 43(12): 4586-4605. doi: 10.3799/dqkx.2017.598
      [7] 赵浩, 廖群安, 罗婷, 田锦明, 张孟, 王良玉, 刘鸿飞.  东准噶尔南缘两套泥盆纪火山岩地球化学特征对比及其地质意义 . 地球科学, 2018, 43(2): 371-388. doi: 10.3799/dqkx.2018.021
      [8] 李良, 孙丰月, 李碧乐, 陈广俊, 许庆林, 张雅静, 钱烨, 王琳琳.  漠河地区黑云母花岗闪长岩地球化学、Hf同位素特征及其成因 . 地球科学, 2018, 43(2): 417-435. doi: 10.3799/dqkx.2018.022
      [9] 周放, 王保弟, 刘函, 闫国川, 李小波.  中甸弧阿热岩体锆石U-Pb年龄、地球化学特征及岩石成因 . 地球科学, 2018, 43(8): 2614-2627. doi: 10.3799/dqkx.2018.126
      [10] 赵菲菲, 孙丰月, 刘金龙.  东昆仑马尼特地区片麻状花岗闪长岩锆石U-Pb年代学、地球化学及其构造背景 . 地球科学, 2017, 42(6): 927-940. doi: 10.3799/dqkx.2017.073
      [11] 胡开明, 唐增才, 孟祥随, 周汉文, 董学发, 杜雄, 陈忠大.  浙西大铜坑斑岩型钨钼矿床成岩成矿年代学 . 地球科学, 2016, 41(9): 1435-1450. doi: 10.3799/dqkx.2016.502
      [12] 刘清泉, 邵拥军, 陈昕梦, 刘忠法, 张喆.  豫南新县岩体地球化学、年代学和Hf同位素特征及地质意义 . 地球科学, 2016, 41(8): 1275-1294. doi: 10.3799/dqkx.2016.507
      [13] 赵硕, 许文良, 唐杰, 李宇, 郭鹏.  额尔古纳地块新元古代岩浆作用与微陆块构造属性:来自侵入岩锆石U-Pb年代学、地球化学和Hf同位素的制约 . 地球科学, 2016, 41(11): 1803-1829. doi: 10.3799/dqkx.2016.550
      [14] 刘金龙, 孙丰月, 张雅静, 马芳, 刘峰旭, 曾乐.  辽宁省清原县南口前岩体锆石U-Pb年代学、地球化学及Hf同位素 . 地球科学, 2016, 41(1): 55-66. doi: 10.3799/dqkx.2016.004
      [15] 张延军, 孙丰月, 许成瀚, 禹禄.  柴北缘大柴旦滩间山花岗斑岩体锆石U-Pb年代学、地球化学及Hf同位素 . 地球科学, 2016, 41(11): 1830-1844. doi: 10.3799/dqkx.2016.127
      [16] 董增产, 辜平阳, 陈锐明, 查显锋, 张海迪.  柴北缘西端盐场北山二长花岗岩年代学、 地球化学及其Hf同位素特征 . 地球科学, 2015, 24(1): 130-144. doi: 10.3799/dqkx.2015.009
      [17] 杨堂礼, 蒋少涌.  江西九瑞矿集区东雷湾矿区中酸性侵入岩及其铁镁质包体的成因:锆石 U-Pb 年代学、地球化学与 Sr-Nd-Pb-Hf 同位素制约 . 地球科学, 2015, 24(12): 2002-2020. doi: 10.3799/dqkx.2015.179
      [18] 刘金龙, 孙丰月, 林博磊, 王英德, 胡安新, .  吉林延边地区棉田岩体锆石U-Pb年代学、 地球化学及Hf同位素 . 地球科学, 2015, 24(1): 49-60. doi: 10.3799/dqkx.2015.004
      [19] 杨德彬, 许文良, 裴福萍, 王清海.  蚌埠隆起区古元古代钾长花岗岩的成因:岩石地球化学-锆石U-Pb年代学与Hf同位素的制约(附表1) . 地球科学, 2009, 18(1): -.
      [20] 杨德彬, 许文良, 裴福萍, 王清海.  蚌埠隆起区古元古代钾长花岗岩的成因:岩石地球化学-锆石U-Pb年代学与Hf同位素的制约 . 地球科学, 2009, 18(1): -.
    • 加载中
    图(12) / 表 (3)
    计量
    • 文章访问数:  3706
    • HTML全文浏览量:  1804
    • PDF下载量:  14
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-07-15
    • 刊出日期:  2017-01-01

    西藏拿若斑岩型铜(金)矿含矿岩体年代学、地球化学及地质意义

      通讯作者: 唐菊兴, tangjuxing@126.com
      作者简介: 丁帅(1987-),男,博士研究生,主要从事矿物学、岩石学、矿床学研究专业.ORCID:0000-0002-9837-9498.E-mail: 782628728@qq.com
    • 1. 成都理工大学地球科学学院,四川 成都 610059
    • 2. 中国地质科学院矿产资源研究所,北京 100037
    • 3. 成都地质矿产研究所, 四川 成都 610081
    基金项目:  国土资源部公益性行业科研专项项目 201511017

    摘要: 多龙矿集区是班公湖-怒江成矿带最重要的组成部分,其成矿规模巨大、时间跨度较长、成矿过程复杂,因而人们对该区成岩成矿地质背景及岩石成因等问题一直争议不断,值得进一步明确.通过研究矿集区中部拿若斑岩型铜(金)矿与成矿相关的花岗闪长斑岩LA-ICP-MS锆石U-Pb年龄、全岩地球化学特征及Hf同位素组成,并与区域邻近矿床进行详细地对比研究,查明了多龙地区与成矿相关的岩浆岩形成构造背景、岩石成因及深部动力学过程.测试结果表明拿若铜(金)矿形成时代为早白垩世120Ma左右,与多龙地区其他矿床形成时代一致.这些岩浆岩均相对富集轻稀土(LREE)与大离子亲石元素(LILE: Rb, Ba, K等);亏损重稀土(HREE )与高场强元素(HFSE: Nb, Ta, Zr, Hf等).原位锆石εHf(t)均为正值,为1.38~7.37,Hf同位素两阶段模式年龄tDM2为707~1086Ma,表明多龙矿集区斑岩-浅成低温热液型铜(金)矿形成与早白垩世班公湖-怒江特提斯洋北向俯冲有关.当俯冲洋壳到达地壳50~70km深度时发生不同程度相变,从而导致角闪石等矿物脱水产生的熔体交代楔形地幔,进而诱发幔源物质部分熔融产生弧岩浆,其形成环境类似于南美安第斯成矿带洋陆俯冲背景之下的陆缘弧环境.

    English Abstract

    • 斑岩型矿床是全球有色金属资源具有重要经济意义的一类矿床类型(Gustafson,1978; Sillitoe, 1979,2010; Halter et al., 2005; Seedorff et al., 2005; John et al., 2010),同时也是世界上铜、钼、金资源的重要储库(Richards,2003; Singer et al., 2005a,2008; Cooke et al., 2005;Kesler and Wilkinson.,2008; Sillitoe,2010; Eliopoulos et al., 2014),拥有全世界80%的Cu、95%的钼和超过10%的Au(Singer,1995; Sinclair,2007; Sun et al., 2013,2015).它们大都平行岩浆弧或造山带成群产出,构成世界上著名斑岩成矿带(Richards,2003; Sillitoe,2010),如加拿大科迪勒拉铜矿带(Logan and Mihalynuk, 2014),南美安第斯铜矿带(Sillitoe and Perelló,2005)及中欧阿普塞尼-巴纳特-蒂莫克河铜矿带(Zimmerman et al., 2008)等.班公湖-怒江成矿带位于我国西藏中部(图 1a),是继玉龙(谢玉玲等,2005; 侯增谦等,2006; 姜耀辉等,2006a; Hou et al., 2007; Liang et al., 2009)和冈底斯(Hou et al., 2009; 郎兴海等,2012; 唐菊兴等, 2012,2014a; Tang et al., 2015)成矿带之后 “第3条”斑岩铜矿带(Li et al., 2011a,2011b,2012; 曲晓明等,2015)(图 1b),其南北两侧分布着众多与斑岩相关的铜、金、铁矿床.尤其在多龙地区,除早期发现的多不杂和波龙两个超大型斑岩铜(金)矿(合称多龙)外,近年来研究人员还陆续发现了拿若大型斑岩铜(金)矿和我国最大的荣那(也称铁格隆南)斑岩-浅成低温热液型铜(金、银)矿(唐菊兴等,2014b; 杨超等,2014; 方向等,2015; 李光明等,2015),这些发现不仅丰富了本区矿床类型,同时,蕴含了超过1500Mt的铜和近300t的金资源量(多龙,Cu>5.5Mt,Au>180t;荣那(铁格隆南),Cu:8.58Mt,Au:28t;拿若,Cu:2.51Mt,Au:82t),极大地提升了铜金资源,成为我国又一条可与南美安第斯铜矿带相媲美的巨型成矿带.

      图  1  研究区位置(a),西藏地区构造分区(b),班公湖-怒江结合带及邻区构造单元(c)

      Figure 1.  Geographic location(a),tectonic sketch in Tibet(b),tectonic units of the Bangong-Nujiang suture zone and its neighboring areas(c)

      然而,不同于玉龙及冈底斯成矿带内的矿床形成于后碰撞造山环境(Hou,2003;Hou et al., 2006,2007,2009; 侯增谦等, 2003,2012; 姜耀辉等,2006b; 梁华英等,2009;冷秋锋等,2016),多龙地区铜(金)矿形成构造背景及成因仍存在较大争议.前人对这些矿床开展了详细的年代学及地球化学研究,存在以下不同认识:(1)形成于班公湖-怒江洋盆闭合后的陆-陆碰撞环境,是加厚地壳熔融的产物(曲晓明等, 2006,2012a,2015; 辛洪波等,2009);(2)形成于班公湖-怒江特提斯洋俯冲带上的岛弧环境,含矿岩浆来源洋壳部分熔融(李金祥等,2008; 佘宏全等,2009; Li et al., 2011b,2013; 祝向平等, 2013,2015; 陈华安等,2013; Zhu et al., 2015; 方向等,2015);(3)发育于大陆边缘增生楔背景下的岛弧环境,洋壳及增生楔同时提供成矿物质(李光明等,2011; 段志明等, 2013a,2013b; 符家骏等,2014).

      为此,本文重点报道了拿若铜(金)矿与成矿相关的花岗闪长斑岩全岩地球化学、锆石U-Pb年龄及原位Hf同位素组成,同时结合多龙地区其他矿床研究数据,查明了本区与成矿相关岩浆事件、构造背景及深部动力学过程.

      • 多龙地区位于班公湖-怒江结合带北侧、羌塘地体南缘的扎普-多不杂岩浆弧内(图 1c).该岩浆弧西起日土,经羌塘至改则北部,近EW向展布于羌塘地体南缘,全长超过300km,其形成被认为与班公湖-怒江特提斯洋于晚侏罗世-早白垩世北向俯冲有关(廖六根等,2005; 耿全如等,2011; Li et al., 2014).多龙地区包含多个沿NE-SW向深大断裂(F10)分布的斑岩型-浅成低温热液型铜(金)矿(图 2a),这两种类型矿床形成均与早白垩世中酸性侵入岩相关,岩性以钙碱性-高钾钙碱性花岗岩为主,包括花岗闪长斑岩、石英闪长斑岩、石英斑岩、二长花岗斑岩等.区内地层主要为一套陆相火山岩和滨海相沉积建造,沉积岩包括上三叠统日干配组(T3r)灰岩;下侏罗统曲色组(J1q)长石石英砂岩、板岩;中下侏罗统色哇组(J1-2s)砂岩、粉砂岩及不整合覆盖于中生代沉积体系之上的渐新统康托组(E3k)紫红色砂砾岩(图 2a),这套沉积建造也被李光明等(2011)定义为羌塘南缘增生楔地体.火山岩主要为早白垩世美日切错组英安岩、安山岩,锆石U-Pb年龄为110.01±0.7Ma(王勤等,2015),明显晚于区内主要含矿斑岩,是矿体免遭剥蚀的重要保护层.构造表现为一系列断层,总体有近EW向、NE向和NW向3组断裂(图 2a),其中NE、EW向断裂是主要控岩、控矿构造,二者交汇部位是岩浆侵位及成矿的主要部位.

      • 拿若铜(金)矿位于多龙矿集区北东侧,距离南西多龙超大型斑岩铜金矿约8km(图 2a),是近年来又一个新探明的大型斑岩铜(金)矿(2.51Mt@0.38%Cu;82t@0.19g/tAu).区内地层单元相对单一,主要为早-中侏罗世色哇组长石石英砂岩、板岩和晚白垩世美日切错组安山岩、英安岩.另有少量花岗闪长斑岩出露于矿区北、北东及南西侧,呈枝状、岩脉状侵入到中下侏罗统色哇组长石石英砂岩中.其中花岗闪长斑岩根据是否含矿可划分两种类型,主要含矿斑岩分布于中部,不含矿斑岩体位于矿区北侧与南西侧,无明显矿化与蚀变(图 2b).构造方面,北东向F10和F11穿过本区,其中F10是主要控岩控矿构造.

        图  2  多龙地区地质图(a),拿若铜(金)矿地质图(b),拿若矿区A-A'剖面(c)

        Figure 2.  Geological sketch of Duolong area(a)and Naruo porphyry Cu(Au)deposit(b),Section A-A' of the Naruo deposit(c)

        拿若矿区共划分出3种矿体,包括花岗闪长斑岩中细脉浸染状、长石石英砂岩中脉-网脉状及隐爆角砾岩型矿体(图 2c).细脉浸染状矿体位于矿区中部,硫化物呈星点状分布于花岗闪长斑岩中,同时伴有石英硫化物细脉(图 3a,3b).砂岩中脉-网脉状矿体分布于斑岩体周围,是含矿热液沿裂隙充填交代的结果,脉体宽度在0.3~3.0cm不等,其内充填有黄铁矿、辉钼矿、黄铜矿等硫化物(图 3c,3d).隐爆角砾岩型矿体位于南西侧,呈直立筒状,长200m,宽约150m,厚度为30~150m(图 3e),其形成可能与深部岩浆活动相关.角砾成分主要为长石石英砂岩及花岗闪长斑岩,呈三角状、板状、椭圆状及不规则状,大小在0.5~10.0cm,占整个角砾岩体积的50%~70%,基质成分主要为石英、方解石、绿泥石、绿帘石、绢云母及黄铁矿、黄铜矿、赤铁矿和少量方铅矿与闪锌矿(图 3f).

        图  3  拿若斑岩型铜(金)矿岩石、矿石脉体及蚀变照片

        Figure 3.  Photographs of rocks,ore minerals,veins and alterations in Naruo porphyry Cu(Au)deposit

        矿区主要金属矿物为黄铜矿、黄铁矿、磁铁矿、赤铁矿和少量辉钼矿、方铅矿、闪锌矿、铜蓝、伴生金,这些矿化多与钾化、硅化、绢云母化、绿泥石化、绿帘石化有关;同时,不同蚀变以围绕斑岩体中心向外依次过渡到绢云母化、绿泥石+绿帘石化,泥化在本区不发育.根据这些矿物组合该区可被划分出4个成矿阶段,从早到晚依次为石英-钾长石-黑云母-黄铁矿-磁铁矿-黄铜矿、石英-黄铁矿-绢云母-黄铜矿、石英-绿泥石-绿帘石-黄铁矿-赤铁矿、石英-辉钼矿.

      • 用于本次研究的新鲜含矿花岗闪长斑岩样品采自于拿若矿区0线、7线和8线钻孔(编号Z01-125、Z01-278、Z07-263、Z07-301、Z08-239),不含矿花岗闪长斑岩采自15线钻孔(Z15-179、Z15-255;图 2c),并选择ZK01-278和ZK15-255作为含矿与不含矿花岗闪长斑岩斑岩代表,用于锆石U-Pb定年及Hf同位素分析.

        所有岩石样品均呈斑状结构(图 3a,3g),含矿花岗闪长斑岩斑晶含量在30%~40%,由石英(6%~10%)、斜长石(9%~15%)、及钾长石(2%~6%)、黑云母(4%~8%)、角闪石(1%~3%)等组成,基质主要为细粒长石、石英、绿泥石、绿帘石和少量绢云母等,副矿物可见为磷灰石、榍石、锆石、金红石、磁铁矿等,发育强钾化和弱绿泥石化(图 3h3j).与含矿花岗闪长斑岩不同,不含矿花岗闪长斑岩钾长石及磁铁矿少见(3%~5%),绿泥石化、绿帘石化强,钾化不发育(图 3k).

      • 全岩主、微量元素分析在西南冶金地质测试所完成.主量元素采用X射线荧光光谱仪测定:样品经破碎、缩分、称量后用无水四硼酸锂熔融,以硝酸铵为氧化剂,加氟化锂和少量溴化锂作助熔剂和脱模剂,制成玻璃样片.最后在荷兰帕纳科X射线分析仪器有限公司Axios X射线荧光光谱仪上进行测定,各元素精度小于1%.微量元素采用ICP-MS测定,将磨制好的样品用四酸消解,然后在美国PE公司NexION 300x等离子体质谱仪测定.各元素精度小于2%.

      • 将用于锆石U-Pb测年与Hf同位素分析的花岗闪长斑岩样品送至实验实进行锆石挑选、制靶.锆石单矿物挑选在河北省廊坊区域地质调查研究院完成,每件样品均在在双目镜下挑选出晶形较好的锆石,而后将其粘贴到双面胶上,用无色透明环氧树脂固定,待环氧树脂充分固化后,将锆石靶表面抛光使锆石内部得以充分暴露.然后将锆石靶送至中国地质科学院矿产资源研究所进行锆石阴极发光照相,所用仪器为JXA28800型电子探针,圈定晶形较好、环带发育的锆石(图 4).最后将挑选好的锆石送至天津地质矿产研究所同位素测试实验室采用LA-ICP-MS方法进行U-Pb同位素测年.所用仪器为Thermo Fisher公司制造Neptune型质谱仪和美国ESI公司生产的UP193-FX Ar F准分子激光器,激光束斑直径为35μm,频率为8~10Hz,激光器能量密度为13~14J/cm2.为保障可以同时接收质量数相差很大的U-Pb同位素实验过程中采用动态变焦扩大色散.采样方式为单点剥蚀,每完成4~5个待测样品测定、年龄计算时,采用TEMORA作为外部锆石年龄标准,同时利用Isoplot(Ludwig,2003)程序进行数据处理,采用Andersen(2002)数据处理方法进行普通铅校正.测试完成后再利用NIST612作为外标计算锆石样品的Pb、U、Th含量.保证了测试过程中精确可靠.

        图  4  拿若斑岩型铜(金)矿区锆石CL图像、测点、U-Pb年龄及Hf同位素测试结果

        Figure 4.  Zircon(CL)images with analysis spots,U-Pb ages and εHf(t)values from the Naruo porphyry Cu(Au)deposit

      • 锆石原位Hf同位素分析是基于U-Pb测年基础上,在相同测年点附近进行测试(图 4).分析测试是在中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室完成,仪器为Neptune激光剥蚀等离子体质谱仪,实验过程采用He作为剥蚀物质载气,激光斑束为55μm,采用国际GJ1标准锆石作为参考标样,相关仪器运行条件以及详细的测试分析过程见侯可军等(2007)文献.进行数据处理时,176Lu的衰变常数采用1.867×10-11a-1(Sderlund et al., 2004),εHf(t)值的计算利用Bouvier et al.(2008)推荐的球粒陨石n(176Hf)/n(177Hf)比值(0.282772)及n(176Lu)/n(177Hf)比值(0.0332),Hf模式年龄计算时采用当前亏损地幔的n(176Hf)/n(177Hf)比值(0.28325)和n(176Lu)/n(177Hf)比值(0.015)(Amelin et al., 1999).分析过程中锆石标准GJl的176Hf/177Hf测试加权平均值为0.282003±0.000018(n=7),与文献报道值(侯可军等,2007)在误差范围内完全一致.

      • 本次测年的花岗闪长斑岩锆石在CL图像上多呈长柱状,少数粒状和不规则状,粒度为50~150μm.多数颗粒自形程度较好,柱面和锥面比较发育,振荡环带清晰,且内部无残留核,边缘无变质边(图 4),同时具有较高的Th/U比值(表 1),表明为岩浆锆石(Belousova et al., 2002; Hoskin andSchaltegger,2003),因而其锆石U-Pb年龄能代表岩浆结晶年龄.

        对含矿花岗闪长斑岩(ZK01-374)锆石颗粒进行了12个点测定(表 1),获得206Pb/238U年龄为122.10~118.79Ma,加权平均年龄120.63±0.55Ma(MSWD=1.16)(图 5a,5b),与早期报道的锆石U-Pb年龄120.2±1.4Ma一致(祝向平等,2015).同时,获得不含矿花岗闪长斑岩11颗锆石点206Pb/238U年龄为117.96~121.21Ma(表 1),加权平均年龄为119.32±0.72Ma(MSWD=1.4)(图 5c,5d),与含矿花岗闪长斑岩属同期产物.

        图  5  拿若矿区花岗闪长斑岩锆石U-Pb谐和图及206Pb/238U加权平均年龄

        Figure 5.  Zircon U-Pb concordia diagrams and weighted mean 206Pb/238U ages of the granodiorite porphyry from the Naruo deposit

        样品点Pb(10-6)Th(10-6)U(10-6)Th/U同位素比值年龄(Ma)
        206Pb/238U1σ207Pb/235U1σ207Pb/206Pb1σ206Pb/238U1σ207Pb/235U1σ207Pb/206Pb1σ
        Z01-0151622550.630.01870.00020.14430.01230.05600.0048119.341.0513712453189
        Z01-0292654690.570.01860.00010.15530.00760.06060.0030118.790.801477623105
        Z01-03102935050.580.01890.00010.12520.00630.04790.0024120.960.77120695118
        Z01-0472273210.710.01880.00010.13500.00980.05200.0038120.300.871299285165
        Z01-053821640.500.01870.00020.13950.02040.05400.0081119.591.4713319372336
        Z01-0661863040.610.01880.00010.14130.00770.05440.0029120.360.891347387121
        Z01-0751232330.530.01890.00010.16050.01310.06150.0050120.920.9315112656174
        Z01-0893084130.750.01900.00010.17520.00810.06690.0029121.240.94164883690
        Z01-0941132050.550.01900.00030.13000.03070.04960.0119121.351.7312429176558
        Z01-1051242290.540.01910.00020.12930.01760.04920.0068121.691.0812317157323
        Z01-1181933910.490.01910.00010.12670.01060.04820.0038121.820.8912110108188
        Z01-123981590.620.01910.00020.13800.01850.05230.0072122.101.1813118300313
        Z15-01103875030.770.01850.00010.14120.00580.05550.0022117.960.79134543188
        Z15-0262192970.740.01850.00010.14670.01060.05750.0042118.140.8813910512160
        Z15-0383014290.700.01850.00010.13040.00590.05100.0023118.330.781246243104
        Z15-0461702860.600.01880.00020.14000.01030.05400.0038120.020.9713310372159
        Z15-05101455210.280.01870.00030.21190.01930.08240.0064119.131.84195181255152
        Z15-06114505280.850.01880.00010.14080.00630.05420.0024120.310.79134638099
        Z15-0751502510.600.01900.00010.12700.01050.04850.0040121.210.9212110126193
        Z15-0841092140.510.01880.00020.12600.01860.04860.0074120.021.0712118130357
        Z15-093801590.500.01880.00020.13220.01740.05100.0070120.001.1212617242316
        Z15-1081794410.410.01860.00010.13420.00840.05230.0032118.870.791288299140
        Z15-11145656890.820.01870.00010.11460.00430.04440.0016119.630.901104-9090
        注:因测得年龄<1000Ma,故采用206Pb/238U年龄.

        表 1  拿若矿区花岗闪长斑岩LA-ICP-MS锆石U-Pb同位素分析结果

        Table 1.  LA-ICP-MS zircon U-Pb isotopes analyzed data of the granodiorite porphyry from the Naruo deposite

      • 拿若矿区花岗闪长斑岩地球化学分析数据见表 2.这些岩浆岩总体表现出富硅(w(SiO2)=63.91%~65.54%)、铝(w(Al2O3)=14.16%~15.98%)、钾(w(K2O)=2.25%~4.6%),中等含量Mg(w(MgO)=1.57%~1.74%)和Fe(w(FeOT)=4.98%~6.28%),Mg#为32.6~36.68,贫钛磷(w(TiO)=0.32%~0.39%;w(P2O5)=0.10%~0.15%)、强过铝质(A/CNK=1.69~2.3)特征.在图 6a上,大部分样品均属于强过铝质岩石系列,但含矿花岗闪长斑岩较不含矿花岗闪长斑岩具有更高的SiO2、K2O和A/CNK值,这与多龙、拿若早期研究数据一致,暗示矿化可能与后期钾、硅化密切相关.微量元素方面,所有岩石相对富集轻稀土(∑LREE/∑HREE=5.48~6.95)和大离子亲石元素(LILE:如Rb、K、Sr);亏损重稀土(LaN/YbN=5.53~8.54)和高场强元素(HFSE: Nb、Ta、Ti、P);Ce呈弱负异常,Eu无异常(图 6b,6c).与早期多龙和拿若早期研究相比,本次获得拿若矿区含矿花岗闪长斑岩斑岩较不含矿花岗闪长斑岩斑岩具有更高的HREE,但是均显示出俯冲背景下弧岩浆地球化学特征(Rollinson,1993; Stolz et al., 1996).

        岩性样品编号含矿花岗闪长斑岩不含矿花岗闪长斑岩
        Z01-125Z01-278Z07-263Z07-301Z08-239Z15-179Z15-255
        SiO265.0165.1364.5365.5464.8563.9164.71
        Al2O315.1914.1615.9815.8715.4515.5014.96
        Fe2O31.662.752.892.832.192.332.22
        FeO4.293.173.022.443.824.193.84
        MgO1.571.651.711.621.661.741.73
        CaO3.002.002.821.483.053.863.60
        K2O3.014.602.643.442.802.612.25
        TiO20.370.360.370.320.380.390.38
        MnO0.140.190.070.070.090.080.09
        P2O50.130.120.140.100.120.150.13
        LOSS2.554.342.573.462.672.172.73
        Total99.4598.5799.4499.1799.3799.6499.34
        FeOT5.795.645.624.985.796.285.84
        Mg#32.634.2735.1536.6833.8433.0634.56
        ANK2.052.742.192.262.272.182.13
        ACNK1.181.611.291.631.251.121.08
        Bi0.702.210.220.520.480.220.10
        Li28.3025.0530.4623.7621.5124.5827.53
        Be1.461.091.361.251.301.171.33
        Sc8.977.078.257.818.037.167.71
        V81.6259.8876.1387.6182.0174.1983.80
        Cr7.344.785.775.056.036.187.23
        Co9.337.536.226.058.098.358.80
        Ni5.964.623.832.696.547.3313.19
        Cu602.005 733.00399.30357.301 422.002 528.50356.30
        Pb12.5710.449.446.0710.6710.758.76
        Zn110.0577.2560.8750.0564.8467.4138.05
        Ga18.0415.6218.2718.0917.5617.9918.16
        Rb72.32193.7075.71133.1090.1263.5190.49
        Sr421.40421.70402.70208.20379.30453.85480.90
        Y12.077.9912.5712.848.939.359.59
        Zr95.1876.8291.6184.0897.4197.9289.95
        Nb8.816.595.265.277.296.787.88
        Cs18.3217.7116.6215.9810.9910.9228.79
        Ba615.70791.20515.70591.30425.90414.60482.50
        La12.609.3310.6015.448.7410.6010.72
        Ce18.7215.4216.1925.6012.5915.3015.64
        Pr2.842.352.603.891.892.262.29
        Nd11.289.2710.8615.567.619.039.07
        Sm2.191.882.202.961.471.741.73
        Eu0.600.690.630.810.510.570.58
        Gd1.881.861.962.711.401.591.59
        Tb0.350.350.370.500.260.280.28
        Dy1.901.982.082.711.411.551.52
        Ho0.350.320.380.470.260.290.28
        Er1.181.091.261.560.840.920.90
        Tm0.190.170.200.270.130.140.14
        Yb1.311.111.381.620.860.900.90
        Lu0.210.170.220.260.140.150.14
        Hf12.077.9912.5712.848.939.359.59
        Ta0.760.570.481.000.520.530.71
        Tl0.841.650.881.081.090.851.31
        Th9.939.068.076.766.597.077.36
        U1.120.880.870.750.370.490.64
        ΣREE55.5745.9950.9374.3838.1045.3245.79
        LREE48.2238.9343.0764.2832.8139.5040.03
        HREE7.357.067.8610.105.295.825.76
        LREE/HREE6.565.525.486.376.206.796.95
        δEu0.911.140.930.881.091.051.07
        δCe0.770.810.760.810.760.770.77
        LaN/YbN6.916.045.536.847.288.418.54
        注:A/CNK=(Al2O3)/(CaO+K2O+Na2O)摩尔比值;A/NK=(Al2O3)/(K2O+Na2O)摩尔比值;δEu=EuN/[(SmN)×(GdN)]1/2;δCe=CeN/[(LaN)×(PrN)]1/2.

        表 2  拿若斑岩型铜(金)矿区花岗闪长斑岩的主量元素(%)和微量元素(10-6)分析结果

        Table 2.  Major elements(%)and trace elements(10-6)analytic data of the granodiorite porphyry from the Naruo porphyry Cu(Au)deposit

        图  6  拿若斑岩型铜(金)矿花岗闪长斑岩地球化学图解

        Figure 6.  Geochemical diagram of granodiorite porphyry from the Naruo porphyry Cu(Au)deposit

      • 拿若矿区花岗闪长斑岩锆石Hf同位素分析结果见图 7表 3,其中含矿花岗闪长斑岩(Z01)9个测点176Hf/177Hf初始值变化于0.282863~0.282906,εHf(t)值为5.77~7.37(图 7a),两阶段模式年龄(tDM2)为707~808Ma;不含矿花岗闪长斑岩较含矿花岗闪长斑岩具有更低的176Hf/177Hf和εHf(t)值,分别为0.28274~0.28286与1.38~5.63(图 7b),两阶段模式年龄(tDM2)为816~1086Ma,这与早期报道的成果一致(祝向平等,2015),表明晚期不含矿花岗闪长斑岩形成过程中有更多的地壳物质混入.

        图  7  拿若斑岩型铜(金)矿区锆石εHf(t)值频率分布

        Figure 7.  Frequency histogram of zircons εHf(t)value from Naruo porphyry Cu(Au)deposit

        岩性样品编号年龄(Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf2σ(176Hf/177Hf)iεHf(0)εHf(t)2σtDM1(Ma)tDM2(Ma)fLu/Hf
        含矿花岗闪长斑岩Z01-01119.590.0625600.0018610.2828680.0000160.2828643.395.870.6558801-0.94
        Z01-02121.240.0355510.0010920.2828830.0000160.2828813.946.510.6524761-0.97
        Z01-03121.690.0594760.0016160.2828930.0000140.2828904.296.830.5517741-0.95
        Z01-04120.920.0471340.0014180.2828810.0000150.2828783.856.390.5532768-0.96
        Z01-05121.350.0525650.0014450.2828890.0000160.2828864.136.680.6521750-0.96
        Z01-06120.300.0344500.0010240.2828630.0000150.2828603.215.770.5553808-0.97
        Z01-07122.100.0262990.0007720.2829060.0000160.2829054.757.370.6487707-0.98
        Z01-08121.820.0316570.0009580.2828990.0000130.2828974.507.090.5500724-0.97
        Z01-09120.360.0542500.0016420.2828760.0000130.2828723.676.180.5543781-0.95
        不含矿花岗闪长斑岩Z15-01121.210.0295550.0008310.2828460.0000170.2828452.635.230.6573843-0.97
        Z15-02120.020.0195300.0005650.2828530.0000140.2828522.885.470.5559827-0.98
        Z15-03120.000.0472840.0012600.2828600.0000160.2828573.105.630.6561816-0.96
        Z15-04118.140.0323160.0008410.2827400.0000160.282738-1.151.380.67241086-0.97
        Z15-05120.020.0314310.0008790.2828300.0000150.2828282.054.620.5597881-0.97
        Z15-06120.310.0347900.0009990.2828440.0000150.2828422.545.100.5579851-0.97
        Z15-07118.330.0331190.0009800.2828290.0000160.2828272.014.530.6600885-0.97
        Z15-08119.130.0323670.0010210.2828350.0000150.2828332.234.770.5592871-0.97

        表 3  拿若斑岩型铜(金)矿区锆石Hf同位素分析结果

        Table 3.  Hf isotopes analyzed data of the zircons from the Naruo porphyry Cu(Au)deposit

      • 本次研究获得了拿若矿区含矿花岗闪长斑岩锆石U-Pb年龄为120.63±0.55Ma(MSWD=1.16),不含矿花岗闪长斑岩U-Pb年龄119.32±0.72Ma(MSWD=1.4),另外测得两件辉钼矿Re-Os模式年龄分别为116.6±2.6Ma和118.5±2.2Ma(内部资料),成岩与成矿年龄具有很好的对应,说明拿若Cu(Au)矿体的形成与花岗闪长斑岩侵位引发的岩浆热液活动相关,同时,对比多龙地区早期锆石U-Pb、辉钼矿Re-Os、40Ar-39Ar研究成果(李金祥等,2008; 佘宏全等,2009; 陈华安等,2013; Li et al., 2011a,2011b,2013; 方向等,2015; 祝向平等,2015; Zhu et al., 2015; 王勤等,2015),结果显示该地区岩浆活动集中在3个阶段(图 8),其中第1阶段(124~114Ma)花岗闪长斑岩和石英闪长斑岩是与成矿相关的主要侵入岩.第2与第3阶段岩浆活动以后期大面积火山岩(包括安山岩、玄武质安山岩)覆盖在早期侵入岩之上为标志,时间分别为113~108Ma和107~104Ma.这些数据表明,多龙地区大规模的中酸性岩浆活动是导致本区斑岩-浅成低温热液型Cu-Au矿形成的主要因素,时代集中于早白垩世124~104Ma.

        图  8  多龙地区主要岩浆活动

        Figure 8.  Age of main magmatic event in Duolong area

        尽管多龙地区大规模岩浆活动与班公湖-怒江特提斯洋俯冲作用相关的观点已得到大多数学者认同(廖六根等,2005; 曹圣华等,2006; 耿全如等,2011; Qu et al., 2012; Li et al., 2014),但其是形成于俯冲阶段(Li et al., 2011a,2011b,2013; 方向等,2015)还是发生在拉萨与羌塘地体完成对接之后的碰撞阶段(曲晓明等, 2006,2012b,2015; 辛洪波等,2009; Qu et al., 2012),是岛弧环境还是洋陆俯冲之上的陆缘弧环境至今仍存在较大争议(Li et al., 2011a,2011b,2013,2014; 周金胜等,2013).制约这一问题的关键因素在于班公湖-怒江特提斯洋在早白垩时期的演化过程.以往研究工作表明班公湖-怒江特提斯洋在中-晚侏罗(177.1~150.0Ma)开始北向俯冲(Shi,2007; 曲晓明等,2009; 杜德道等,2011),并同时伴有洋内和洋陆俯冲,分别形成班公湖-怒江结合带内的洋岛岩浆岩(Matte et al., 1996; Liu et al., 2014)和羌塘南缘的陆缘弧岩浆岩(Schwab et al., 2004; Guynn et al., 2006; Liu et al., 2012; Li et al., 2014).但有关班公湖-怒江特提斯洋闭合时限却存在多种认识.Qu et al.(2012)获得班公湖-怒江结合带中部A型花岗岩年龄为109.6~113.7Ma,并把洋盆闭合时间定义在早白垩初期约145Ma,这与前人早期报道成果相一致(Yin and Harrison, 2000; Kapp et al., 2003),因而部分学者认为多龙地区岩浆岩形成属于拉萨和羌塘地体对接之后的碰撞环境(辛洪波等,2009; 曲晓明等, 2006,2012a,2012b,2015).然而,近年来越来越多学者针对羌塘地体南缘地层结构与岩浆活动开展了大量卓越有效的研究,认为班公湖-怒江特提斯洋闭合时限可能延伸至早白垩世晚期.如朱弟成等(2006)根据班公湖-怒江缝合带多玛枕状玄武岩及塔仁本洋岛性质玄武岩指出,班公湖-怒江洋壳在早白垩世中晚期约110Ma尚未彻底消亡;李德威(2008)将上白垩统竟柱山组和玉多组等砂砾岩角度不整合在蛇绿岩及老地层之上作为中特提斯的洋陆转换标志.此外,张硕等(2014)付佳俊等(2015)在班公湖-怒江结合带南北两侧发现代表碰撞后环境的中酸性侵入岩,形成时代在75~100Ma,这些数据同样表明了班公湖-怒江特提斯洋闭合时限更可能延伸至早白垩晚期100Ma之后(Liu et al., 2014; Li et al., 2015;张志等,2016).因而,多龙地区大量早白垩世晚期岩浆活动不应该形成在拉萨与羌塘地体碰撞后环境.另外,本文测得拿若矿区花岗闪长斑岩相对富集轻稀土(∑LREE/∑HREE=5.48~6.95)和大离子亲石元素(LILE:如Rb、K、Sr);亏损重稀土(LaN/YbN=5.53~8.54)和高场强元素(HFSE: Nb、Ta、Ti、P)(图 6c,6d),显示出俯冲带之上的弧岩浆特征(Rollinson,1993; Stolz et al., 1996),同样支持该地区岩浆岩形成与班公湖怒江特提斯洋俯冲有关.在图 9a9b中,多龙地区主要侵入岩均位于活动大陆边缘;而在图 9c9d中,大部分样品落在陆缘弧区域,更多地体现出陆缘弧而非洋岛弧岩浆性质.同时,本区岩石类型以花岗闪长斑岩+花岗斑岩+安山岩(下白垩美日切错组)为主,不同于洋内弧岩石组合以石英闪长岩+岛弧玄武岩+安山岩为主(Singer et al., 2005b),洋岛弧环境下的斑岩成分更偏酸性,是大洋板片俯冲至大陆地体之下后又有部分陆壳成分参与岩浆作用的结果(Misra,2000),类似于南美安第斯成矿带洋陆俯冲背景下的陆缘弧环境(Hgdahl et al., 2008).

      • 多龙地区与成矿相关斑岩岩浆成因及源区存在多种解释.早期研究表明岩浆来源于浅源地壳部分熔融(辛洪波等,2009; 曲晓明等, 2006,2012a,2015),或是起源于大陆边缘增生楔及洋壳熔融(李光明等,2011; 段志明等,2013a).Li et al.(2011a,2011b,2013)根据多龙地区岩石地球化学及同位素研究认为俯冲板片交代地幔楔是岩浆形成的主要因素.

        前文讨论了多龙地区花岗闪长斑岩富集轻稀土和大离子亲石元素;亏损重稀土和Nb、Ta高场强元素地球化学特征指示其形成于俯冲带之上的陆缘弧环境.弧岩浆一般源于俯冲洋壳、地幔脱水熔融(Sillitoe,1972; Defant and Drummond, 1990; Peacock et al., 1994; Yogodzinski et al., 2001)、或是熔体/流体交代楔形地幔区(Richards, 2003,2005).多龙地区主要岩浆岩总体富硅(SiO2平均值为64.81%,>56%)、铝(Al2O3平均值为15.3%,>15%),高Sr(平均值为395.44×10-6~400×10-6)、低Y(平均值为10.48×10-6,<18×10-6),具有埃达克质岩石特征(Defant and Drummond, 1990).在图 10b中,它们大多位于埃达克岩和经典岛弧火山岩的过渡区域,兼有两种岩石端元特征.已有研究证明,洋壳俯冲至一定深度会发生角闪岩-榴辉岩等不同程度相变,进而导致俯冲洋壳板片部分熔融,产生埃达克质熔体,成为这种含水、高氧逸度、富硫岩浆的理想源区(Defant and Drummond, 1990; Drummond et al., 1996; Gutscher et al., 2000; Beate et al., 2001; Martin et al., 2005).在图 10c中,多龙地区岩石样品均落在俯冲沉积物曲线上,显示岩浆形成有近15%沉积物发生熔融(Boztu et al., 2007),铈弱的负异常也表现出大洋沉积物加入的特征.然而,多龙地区岩石具有Nb、Ta及Ti的亏损同样体现出了俯冲带幔源印记岩石的成分特点(Sun and Mcdonough, 1989).但通常来源于地幔的岩浆常具有较高的Mg#值,一般大于50(Rapp et al., 1999),矿区花岗闪长斑岩Mg#值含量中等(32.6~36.68,平均值为34.31),显然不可能直接来自于地幔.但是由俯冲洋壳板片部分熔融产生的熔体在上升穿过楔形地幔区时势必与地幔物质发生相互作用,这种作用包括熔体交代地幔楔或熔体与幔源熔体发生混合(Kay,1978; Defant and Drummond, 1990; Kelemen,1995;Stern and Kilian, 1996),后者往往表现出更高的Mg#值(Kay,1978; Kelemen,1995).矿区岩浆岩Mg#均低于40,似乎更为支持熔体与地幔岩石发生交代.近年来实验研究表明,俯冲板片产生的熔体与地慢岩石发生平衡反应会导致Cr、Co、Ni等过渡元素含量的增高(Yogodzinski et al., 2001; Xiong et al., 2006),矿区岩石富集Cr(4.78×10-6~7.34×10-6,平均值为6.05×10-6)、Co(6.05×10-6~ 9.33×10-6,平均值为7.77×10-6)、Ni(2.69×10-6~13.19×10-6,平均值为6.31×10-6)的特征,也证实笔者上述的推断.另外,当岩石Nb、Ta元素出现亏损时,其Y/Yb值和重稀土配分模式能够指示岩浆源区残留相.本次测试的Y/Yb值接近于10(Y/Yb=7.21~10.64,平均值为9.26),且具有平缓状的重稀土配分模式,表明角闪石为源区主要残留相(Sisson,1994).且在图 10d中,所有样品均落入角闪岩区域,同样说明角闪石是源区主要熔融矿物(Patio Douce,1999).更为重要的是,本文获得拿若矿区花岗闪长斑岩锆石εHf(t)值具有相对均一的正值,其中含矿花岗闪长斑岩、176Hf/177Hf初始值变化于0.282863~0.282906,εHf(t)值为5.77~7.37(图 7a);不含矿花岗闪长斑岩较含矿花岗闪长斑岩具有更低的176Hf/177Hf和εHf(t)值,分别为0.28274~0.28286与1.38~5.63(图 7b),表明不含矿花岗闪长斑岩经历了更多地壳物质的混入.在图 11中,数据点均落在球粒陨石与亏损地幔之间,且地壳模式年龄相对年轻(小于1Ga),与多龙地区主要侵入岩一致(图 11),同样体现出了幔源成分加入的特征,指示了班公湖-怒江特提斯洋壳可能俯冲至50~70km发生相变,从而导致类似角闪石等矿物脱水产生的熔体交代楔形地幔进而部分熔融产生弧岩浆(图 12a).

        图  9  拿若斑岩型铜(金)矿区花岗闪长斑岩地球化学图解

        Figure 9.  Geochemical discrimination diagrams of granodiorite porphyry from the Naruo porphyry Cu(Au)deposit

        图  10  拿若矿区花岗闪长斑岩岩石性质及源区判别

        Figure 10.  Discriminant diagrams of rock properties and source region discrimination of Naruo granodiorite porphyry

      • 包括多龙矿集区在内的南羌塘早白垩世岩浆弧被认为是班公湖-怒江特提斯洋北向俯冲的产物.在早白垩(124~104Ma)时期,班公湖-怒江洋壳俯冲作用仍在持续,板片下插至羌塘地体之下的地幔区.这种俯冲板片由于自身温度较周围环境低,自身并不发生熔融,但由于板块间摩擦及高温地幔热传递,加之上覆岩水静压力随深度逐渐增强,洋壳沉积物发生角闪岩-榴辉岩等不同程度相变,导致含水矿物的脱水(图 11a,11b),并促使板片发生部分熔融.这种分离出来的熔体以扩散和交代方式进人温度较高的上覆地幔楔内,与原来温度高但缺水而不能熔融的地幔岩石发生交代作用;而高场强元素也因俯冲大洋板片脱水产生的熔体和地幔楔发生交代作用而驻留下来(图 12a),产生富集轻稀土和大离子亲石元素,亏损重稀土和Nb、Ta高场强元素弧岩浆,因而其岩浆往往表现出弱的铈负异常(White and Patchett, 1984).同时由于水的加入,有效地减少地幔黏度,触发地幔楔里的对流,使得地幔楔上部大范围岩石圈快速减薄,为岩浆上涌减少阻力.

        图  11  拿若矿区花岗闪长斑岩εHf(t)与U-Pb年龄关系

        Figure 11.  Plot of εHf(t)versus U-Pb ages of granodiorite porphyry from Naruo deposit

        图  12  多龙地区岩浆活动及矿床形成动力学模型

        Figure 12.  Geodynamic model for the generation of the magma and the formation of the deposit in Duolong area

        经地幔楔部分熔融产生的岩浆由于和地幔岩石存在密度差而向上运移,上升过程中经历MASH过程(M熔融、A同化、S存储、H均一)(Hildreth and Moorbath, 1988),同时遭受地壳物质不同程度的混染,因而表现出部分壳源的特征,如Rb/Sr值为0.05~0.50(Taylor and McLennan, 1995),进而形成富水、金属和硫的中酸性岩浆,并在地壳浅部形成岩浆房,后经冷凝结晶分离出高氧逸度流体对斑岩体自身和接触带附近的长石石英砂岩进行充填和交代,由于大气降水的加入以及温度、压力的降低,导致硫化物的沉淀,最终形成多龙地区斑岩型-浅成低温热液型铜(金)矿床(图 12b).

      • (1) 拿若矿区花岗闪长斑岩锆石U-Pb年龄在119.32~120.63Ma,与多龙地区其他斑岩-浅成低温热液型铜(金)矿成矿时代一致,均集中在120Ma左右,表明早白垩世124~104Ma期间大规模的岩浆活动是形成本区矿床主要因素.

        (2) 全岩地球化学显示,这些岩石相对富集轻稀土和大离子亲石元素(LILE:如Rb、K、Sr);亏损重稀土和高场强元素(HFSE: Nb、Ta、Ti、P),在微量元素图解中均表现出活动大陆边缘岩浆弧特征,表明多龙地区主要岩浆岩形成于俯冲带之上的陆缘弧环境.

        (3) 矿区岩石同时具有埃达克岩及经典岛弧岩石特征,原位锆石Hf同为素体现出幔源岩浆印记,暗示了多龙地区岩浆来源与班公湖-怒江特提斯洋俯冲洋壳经角闪石等矿物脱水产生的熔体交代地幔楔引发的部分熔融有关.

    参考文献 (166)

    目录

      /

      返回文章
      返回