• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    漠河盆地二十二站组砂岩形成时代及物源区构造环境判别

    李良 孙丰月 李碧乐 许庆林 张雅静 兰理实

    李良, 孙丰月, 李碧乐, 许庆林, 张雅静, 兰理实, 2017. 漠河盆地二十二站组砂岩形成时代及物源区构造环境判别. 地球科学, 42(1): 35-52. doi: 10.3799/dqkx.2017.003
    引用本文: 李良, 孙丰月, 李碧乐, 许庆林, 张雅静, 兰理实, 2017. 漠河盆地二十二站组砂岩形成时代及物源区构造环境判别. 地球科学, 42(1): 35-52. doi: 10.3799/dqkx.2017.003
    Li Liang, Sun Fengyue, Li Bile, Xu Qinglin, Zhang Yajing, Lan Lishi, 2017. Geochronology of Ershi'erzhan Formation Sandstone in Mohe Basin and Tectonic Environment of Its Provenance. Earth Science, 42(1): 35-52. doi: 10.3799/dqkx.2017.003
    Citation: Li Liang, Sun Fengyue, Li Bile, Xu Qinglin, Zhang Yajing, Lan Lishi, 2017. Geochronology of Ershi'erzhan Formation Sandstone in Mohe Basin and Tectonic Environment of Its Provenance. Earth Science, 42(1): 35-52. doi: 10.3799/dqkx.2017.003

    漠河盆地二十二站组砂岩形成时代及物源区构造环境判别

    doi: 10.3799/dqkx.2017.003
    基金项目: 

    中国地质调查局项目 1212011085485

    国家自然科学基金项目 41272093

    详细信息
      作者简介:

      李良(1986-),男,博士研究生,主要从事矿床成矿理论与预测方面的研究.OCRID: 0000-0002-0898-306X.E-mail: liliangjlu2011@163.com

      通讯作者:

      孙丰月,OCRID: 0000-0001-9408-7298.E-mail: sunfeng0669@sina.com

    • 中图分类号: P581;P597.3

    Geochronology of Ershi'erzhan Formation Sandstone in Mohe Basin and Tectonic Environment of Its Provenance

    • 摘要: 大兴安岭北部的漠河盆地广泛发育中生界二十二站组砂岩,其形成时代一直备受争议.首次利用碎屑锆石LA-ICP-MS U-Pb法测年对其形成时代作出较为精确的限定,并结合地球化学特征对其物源区及大地构造背景进行了探讨.研究结果表明,二十二站组砂岩碎屑物磨圆度较低、分选差,表现出源区相对不稳定,快速剥蚀、搬运及沉积的特征.锆石颗粒粗大,具有清晰的震荡环带,Th/U值为0.35~1.07,为典型的岩浆锆石.测年结果显示,90个测点年龄主要分布在3个群落:152~170Ma,峰值年龄约为158Ma,这一年龄区间揭示了二十二站组沉积成岩的下限为晚侏罗世;179~193Ma,峰值年龄约为190Ma;205~214Ma,峰值年龄约为210Ma.3个年龄峰值为蒙古-鄂霍茨克洋演化过程中一系列岩浆活动的地质记录,其中210Ma与190Ma峰值年龄与盆地南缘额尔古纳地块晚三叠世、早侏罗世的岩浆事件相吻合,而158Ma峰值年龄则对应于盆地北缘晚侏罗世的岩浆事件.主、微量元素构造判别图解揭示其物源区具有活动大陆边缘的特征,同时锆石定年数据显示其没有任何前中生代的碎屑物,暗示了该3期岩浆岩均形成于额尔古纳地块北缘的中生代活动大陆边缘环境,并为二十二站组的形成提供了主要碎屑物质.由此说明,二十二站组砂岩形成于晚侏罗世蒙古-鄂霍茨克洋闭合后的造山过程中,漠河盆地南北两侧物源区快速剥蚀、快速搬运与快速沉积的环境.

       

    • 漠河盆地(MHB)位于大兴安岭北段的黑龙江省漠河县境内,大地构造位置处于额尔古纳地块北东端,东侧为布列亚地块,北部为蒙古-鄂霍茨克造山带.该盆地是大庆外围油气勘探的战略展开目标(吴河勇等,2003a),也是中国学者直接了解蒙古-鄂霍茨克造山带中生代地质状况的唯一窗口(和政军等,2003).漠河盆地一直是大兴安岭地区的研究热区,众多金属矿床产于其中,其沉积序列、物源区、盆地的形成与演化等对蒙古-鄂霍茨克造山带的演化具有“探针”作用,其中二十二站组是该盆地最重要的地层之一,其形成时代、物源区及其大地构造背景等对盆地的形成与演化具有很强的约束作用.

      关于二十二站组的属性,众多学者先后作过相关的研究,形成了不同的观点,争论的焦点主要集中于沉积时代,其中有3种主要观点:中侏罗世(其和日格,1995;和政军等,2003;侯伟,2006;王骞,2007;和钟铧等, 2008a,2008b),晚侏罗世(孙广瑞等,2002;吴河勇等,2003b;辛仁臣等,2003;张顺等,2003;杨建国等,2006;李春雷,2007;侯伟等, 2010a,2010b,2010c;孙求实,2013),中-晚侏罗世(孙广瑞等,2002).此外,该地层的物源区至今仍未取得统一认识,和政军等(2003)侯伟(2006)李春雷(2007)和钟铧等(2008a,2008b)、侯伟等(2010a,2010b,2010c)认为二十二站组的物源来自北部的蒙古-鄂霍茨克造山带与南部的额尔古纳地块;和钟铧等(2008a)认为盆地沉积物主要来自南侧的陆块抬升基底,即古元古界兴华渡口群与寒武系兴隆群、古生代同碰撞和后碰撞花岗质岩石及早中生代中酸性火成岩;而孙求实(2013)认为盆地的物源除来自南北两侧外,盆地内部也提供了部分物源.

      近年来,碎屑锆石的年龄已经成为确定物源区组成、沉积时代和形成构造环境的一种有效的新途径(Bruguier et al., 1997;Becker et al., 2005;万渝生等, 2003,李碧乐等,2016;王键等,2016),碎屑锆石含有物源区地质体组成和时代的信息,同时也可以用来确定碎屑岩沉积时代的下限(李亚萍等,2007).砂岩岩石地球化学特征对沉积盆地形成时期构造背景具有很强的“示踪”作用,已成为地质构造复杂地区的重要研究对象.由此,本文在前人的研究基础上运用碎屑锆石LA-ICP-MS U-Pb测年法对二十二站组的形成时代进行约束,并结合岩相学、主微量地球化学特征探讨其沉积物来源及物源区大地构造环境.

      漠河盆地位于蒙古-鄂霍茨克造山带南缘,长约300km,宽约80km,呈近EW向展布(图 1).盆地的前中生代基底主要由古元古界兴华渡口群、下泥盆统及前中生代各期侵入岩组成,盖层主要由侏罗系陆源碎屑岩和白垩系火山岩组成,为晚侏罗世南北挤压的前陆盆地叠加早白垩世伸展的火山断陷盆地(李春雷,2007;孙求实,2013;李良等,2015),NE、SN及EW向的深大断裂控制了盆地的边界与火山岩的分布,在蒙古-鄂霍茨克造山带形成过程中漠河盆地经历了原型盆地形成、挤压回返、火山断陷盆地形成和抬升萎缩4个演化阶段(张顺等,2003).侏罗纪是漠河盆地的重要形成时期,该盆地在整个大兴安岭北部地区形成了巨厚的陆源碎屑沉积,总厚度为3000~8000m,地层有绣峰组、二十二站组、额木尔河组和开库康组,其中二十二站组是该盆地最重要的地层(黑龙江省地质矿产局,1993).

      二十二站组最先由黑龙江省第二区调大队于1983年在塔河县卫东林场建组,代表剖面在二十二站后山(黑龙江省地质矿产局,1993),主要分布在呼玛、塔河、漠河县的二十二站、马林、瓦拉干林场、河湾林场等地.岩性以灰黑色、灰绿色粉、细、中、粗粒长石岩屑砂岩、泥质粉砂岩互层为主,局部夹含砾砂岩、泥岩及煤线;属于河流冲积相、河漫滩相、沼泽相沉积建造(李春雷,2007).从岩石组构来看,该地层为近源快速沉积成岩,岩屑含量多在30%左右,磨圆度中等.水平层理发育,河流边缘相韵律混合序列式堆积特点清晰,产植物和孢粉化石,最大厚度达4400.6m,与下伏的绣峰组、上覆额木尔河组之间均为整合接触,显示了统一背景条件下快速堆积的特点(李春雷,2007).

      图  1  漠河盆地区域构造分区(a)、漠河盆地及邻区上阿穆尔盆地区域地质图(b)和砂宝斯金矿区地质图(c)
      图a据和钟铧等(2008a)修改;图b据和政军等(2003)修改;图c据齐金忠等(2000)
      Fig.  1.  Regional tectonic subdivisions of the Mohe basin(a),regional geological sketch of the Mohe basin and Amur basin(b)and Shabaosi gold deposit(c)

      本文样品采自砂宝斯金矿区新鲜无蚀变的二十二站组砂岩,地理坐标为121°52′46″E,53°12′24″N.测年样品编号为SBS-N1,配套的全岩分析样品编号为SBS-N1-B1~B10.岩石具块状构造和陆源碎屑结构(图 2),颗粒支撑,孔隙式胶结,碎屑颗粒之间多为点-线接触,部分为线-线接触和点接触.碎屑物的磨圆度很差,成分成熟度较差,分选也很差,颗粒大小比较悬殊.碎屑物约占70%~85%,填隙物约占15%~30%.碎屑物主要由石英(40%~60%)、长石(20%~30%)和少量的黑云母和白云母(<5%)、岩屑(<5%)组成.其中石英碎屑以单晶石英为主,Qm/Q(单晶石英碎屑/总石英碎屑)约为0.9,呈棱角状,具双锥形特征,粒度大小为0.5~1.0mm.长石碎屑分为斜长石和碱性长石(包括条纹长石和微斜长石),碱性长石含量高于斜长石,K/F(碱性长石/长石总量)约为0.7;斜长石形态呈他形或板柱状,表面轻微绢云母化,聚片双晶清晰可见;碱性长石多呈他形,棱角状,粒度多在0.2~1.8mm,条纹长石的格子双晶明显.黑云母呈片状产出,少数见于碎屑颗粒之间.岩屑碎屑含量较少,且以火成岩岩屑为主(图 2b),Lv/L(火成岩岩屑/岩屑)约为0.8,粒度为1~2mm.填隙物由胶结物和基质组成,其中胶结物约占填隙物总量的70%.胶结物主要为硅质胶结物(~80%)、碳酸盐胶结物(~20%),显晶质结构.硅质胶结物呈细小的石英充填于碎屑物颗粒之间,呈他形产出,偶见石英加大边,以次生加大或微晶石英生长于石英碎屑的边缘.基质主要由泥质碎屑和细粉砂构成.

      图  2  二十二站组砂岩显微镜下照片(正交偏光)
      Q.石英;Pl.斜长石;Pth.条纹长石;Mic.微斜长石;Lv.火成岩岩屑;Bt.黑云母;Cal.方解石;Mus.白云母
      Fig.  2.  Micrographs of the Ershi'erzhan Formation sandstone
      2.2.1   锆石LA-ICP-MS U-Pb测年

      锆石挑选由河北省廊坊区域地质调查研究所实验室利用标准重矿物分离技术分选完成.经过双目镜下仔细挑选,将不同特征的锆石粘在双面胶上,并用无色透明的环氧树脂固定;待其固化之后,将表面抛光至锆石中心.在测试前,通过反射光和CL图像仔细研究锆石的晶体形态与内部结构特征,以选择最佳测试点.锆石制靶、反射光、阴极发光以及锆石U-Pb年龄测定和痕量元素分析均在西北大学大陆动力学国家重点实验室进行(表 1).本次测试采用的激光剥蚀束斑直径为32μm,激光剥蚀样品的深度为20~40μm;实验中采用He作为剥蚀物质的载气.锆石年龄采用国际标准锆石91500作为外标,元素含量采用NIST SRM610作为外标,Si作为内标元素(锆石中SiO2的质量分数为32.8%),分析方法见文献Yuan et al.(2004);普通铅校正采用Andersen(2002)推荐的方法;样品的同位素比值及元素含量计算采用ICP-MS-DATECAL程序(Liu et al., 2008,2010),年龄计算及谐和图的绘制采用Isoplot程序.

      表  1  二十二站组砂岩碎屑锆石LA-ICP-MS U-Pb测年分析结果
      Table  Supplementary Table   Detrital zircon LA-ICP-MS U-Pb analytical results of the Ershi'erzhan Formation sandstones
      编号Pb(10-6)Th(10-6)U(10-6)Th/U207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ年龄(Ma)
      207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ208Pb/232Th1σ
      SBS-N1-016.11041890.550.050210.003470.164860.011040.023820.000412051581551015231512
      SBS-N1-029.92243290.680.052280.002650.173200.007340.024030.0004029866162615331503
      SBS-N1-034.8831530.540.046270.002750.155680.008890.024400.0004012130147815531574
      SBS-N1-048.81582580.610.047420.003350.159350.010890.024370.00043701571501015531563
      SBS-N1-058.82062810.730.051270.002530.171930.006940.024320.0003825364161615521573
      SBS-N1-067.11272330.550.052240.002370.175770.006340.024400.0003829654164515521693
      SBS-N1-0724.67787940.980.057350.002050.192460.004450.024340.0003550527179415521042
      SBS-N1-084.61291300.990.049260.003080.166850.009240.024560.0004316094157815631664
      SBS-N1-0910.01993070.650.049890.002470.168730.006920.024530.0004019065158615631433
      SBS-N1-108.71972780.710.049730.002110.168020.005450.024500.0003718248158515621533
      SBS-N1-116.71342220.610.050070.002390.169450.006580.024540.0003919861159615621523
      SBS-N1-128.31642690.610.052480.002310.178680.006050.024690.0003730650167515721543
      SBS-N1-137.81442420.590.052310.002580.178100.007240.024690.0004029963166615731674
      SBS-N1-147.41512350.640.048830.002170.166400.005820.024710.0003814053156515721703
      SBS-N1-156.81352100.640.051950.002840.176540.008280.024640.0004228376165715731524
      SBS-N1-169.61792980.600.051030.002660.173990.007640.024730.0004124270163715731544
      SBS-N1-1711.52803570.780.050160.002040.172040.005180.024880.0003720243161415821502
      SBS-N1-1811.12073530.590.049660.002120.170420.005540.024880.0003717948160515821613
      SBS-N1-195.71001750.570.052270.003100.178380.009270.024750.0004429786167815831645
      SBS-N1-2011.32593170.820.050700.002700.173010.007790.024750.0004122773162715831564
      SBS-N1-217.61932180.880.047520.002640.162900.007810.024860.000427575153715831513
      SBS-N1-227.81402420.580.047970.002670.163720.007900.024750.000419878154715831484
      SBS-N1-2311.52603580.730.048600.001980.166080.005020.024780.0003712943156415821522
      SBS-N1-247.21312270.580.049080.002660.167580.007770.024770.0004115277157715831474
      SBS-N1-259.11592740.580.049360.002730.168930.008000.024820.0004216579158715831614
      SBS-N1-268.11392560.540.053820.002380.183780.006330.024760.0003836450171515821874
      SBS-N1-2711.32203260.680.049040.002770.168820.008230.024960.0004315081158715931604
      SBS-N1-289.11892720.700.050890.002450.174970.006870.024940.0004023661164615931523
      SBS-N1-2914.02914280.680.049550.002020.170580.005140.024960.0003717443160415921613
      SBS-N1-309.52342880.810.047100.002230.161950.006240.024940.000395456152515921443
      SBS-N1-3111.82543630.700.047620.002000.163920.005240.024960.000378048154515921593
      SBS-N1-3210.41833170.580.052030.002630.178690.007490.024910.0004128766167615931734
      SBS-N1-3310.71883290.570.051010.002250.175810.006020.024990.0003824151164515921793
      SBS-N1-3411.02253490.650.050990.002100.175240.005340.024920.0003724043164515921543
      SBS-N1-3518.24365200.840.048410.002040.166910.005280.025000.0003711947157515921603
      SBS-N1-366.91561920.810.045750.003060.157570.009500.024980.000451595149815931544
      SBS-N1-3710.42103290.640.048770.002090.167840.005490.024960.0003713749158515921573
      SBS-N1-3812.92084210.490.048400.001900.167190.004690.025050.0003611939157415921613
      SBS-N1-398.71932500.770.047880.002760.164600.008300.024930.000439381155715931564
      SBS-N1-407.41462220.660.050000.003160.173030.010560.025100.00041195145162916031602
      SBS-N1-4112.22773770.740.051380.002100.177790.005330.025090.0003725842166516021563
      SBS-N1-4211.23093081.000.048780.003580.168630.012030.025070.000431371661581016031602
      SBS-N1-4310.51873130.600.049260.002670.170550.007870.025110.0004216076160716031734
      SBS-N1-449.11172950.400.053220.002410.186790.006620.025450.0003933853174616221944
      SBS-N1-456.81232010.610.051720.002550.189300.007670.026540.0004227364176716931814
      SBS-N1-4611.12133300.640.051300.002240.188820.006320.026690.0004025449176517031653
      SBS-N1-476.4991900.520.051050.004300.198390.015520.028180.000612431381841317941848
      SBS-N1-4810.11672980.560.052070.002650.207630.008750.028920.0004728866192718431764
      SBS-N1-496.81441970.730.049500.003030.199100.010740.029170.0005117292184918531875
      SBS-N1-5023.95696050.940.051750.002110.208960.006260.029280.0004327442193518631943
      SBS-N1-5110.81563010.520.051240.002350.207720.007590.029400.0004625255192618731994
      SBS-N1-5220.8386010.510.048980.002300.199160.007590.029490.0004714759184618731814
      SBS-N1-538.11281970.650.046340.002730.188580.010710.029510.0004615129175918731894
      SBS-N1-546.61331850.720.050430.003260.205190.011860.029510.000542151001901018731745
      SBS-N1-5517.12334530.510.051620.002170.210530.006630.029580.0004426945194618831974
      SBS-N1-568.51052290.460.050640.002270.208020.007340.029790.0004622453192618931954
      SBS-N1-5714.21803850.470.049450.002180.203000.008420.029770.00044169102188718931892
      SBS-N1-5813.52513920.640.049790.002260.203800.007360.029690.0004618555188618932165
      SBS-N1-5911.31732920.590.050890.002610.209100.010240.029800.00046236120193918931892
      SBS-N1-608.61342280.590.050630.002260.209330.007330.029980.0004622453193619031814
      SBS-N1-618.81852360.780.049830.002440.205900.008320.029960.0004818764190719031814
      SBS-N1-629.81972710.730.048740.002350.201300.007950.029960.0004813563186719031964
      SBS-N1-6311.92732900.940.067200.002870.277640.009000.029960.0004784442249719032184
      SBS-N1-6410.01912600.730.062200.002610.257100.008140.029970.0004668142232719032194
      SBS-N1-6515.12364230.560.055810.002190.230400.006470.029940.0004444537211519032094
      SBS-N1-6623.23106250.500.050060.001750.208090.004540.030140.0004219826192419131903
      SBS-N1-6724.83396710.510.051760.001780.214650.004500.030070.0004227524197419132003
      SBS-N1-6819.22855360.530.049140.001840.203660.005240.030060.0004315534188419131913
      SBS-N1-693.351850.600.052130.004610.215710.017860.030010.000672911471981519142088
      SBS-N1-7028.74347670.570.049380.001690.205050.004340.030110.0004216625189419131923
      SBS-N1-7113.91953680.530.048440.002100.200740.006760.030060.0004612151186619131854
      SBS-N1-7211.41943020.640.049760.002080.205830.006530.030000.0004518446190519131853
      SBS-N1-7312.42173380.640.051080.002160.211620.006790.030040.0004524446195619131903
      SBS-N1-7419.23055030.610.052270.001960.217320.005610.030150.0004429733200519131853
      SBS-N1-7523.43646310.580.051800.001890.214560.005160.030040.0004327730197419132003
      SBS-N1-766.71631521.070.050500.002810.211540.010130.030380.0005121880195819332004
      SBS-N1-7719.54114500.910.050790.003110.225860.013370.032250.000512321422071120532042
      SBS-N1-7820.12855190.550.051380.001960.229200.006150.032350.0004725836210520532033
      SBS-N1-7917.52114530.470.050820.002020.227730.006500.032500.0004823339208520632224
      SBS-N1-806.81371610.850.052400.003130.236540.012380.032730.00058303872161020842075
      SBS-N1-8115.22493810.660.050730.001920.230680.006070.032970.0004822935211520932143
      SBS-N1-8231.02918210.350.051620.001810.234430.005070.032930.0004626926214420932143
      SBS-N1-8321.92935500.530.053880.002440.244840.010450.032950.00050366105222920932073
      SBS-N1-8417.92614390.600.050590.001920.230300.006060.033010.0004822235210520932233
      SBS-N1-8514.71623970.410.050610.002130.231240.007310.033130.0005022345211621032255
      SBS-N1-8611.61303030.430.048640.001990.222530.006830.033180.0005013144204621031944
      SBS-N1-8720.12995170.580.051250.002050.234140.006780.033130.0004925240214621032084
      SBS-N1-8824.63905850.670.055800.002020.255010.006080.033140.0004744429231521032273
      SBS-N1-8928.34216860.610.050260.001800.231830.005290.033450.0004720728212421232183
      SBS-N1-9017.82693570.750.050600.002590.235090.010040.033690.0005522368214821432245
      下载: 导出CSV 
      | 显示表格
      2.2.2   岩石地球化学分析

      本次实验主量及微量元素的分析在核工业北京地质研究院分析测试研究中心测试完成,主量元素使用X-射线荧光光谱仪(飞利浦PW2404)完成,其中Al2O3、SiO2、MgO、Na2O检测限为0.015%,CaO、K2O、TiO2检测限为0.01%,Fe2O3T、MnO、P2O5检测限为0.005%;FeO用容量法完成(检测限为0.1%).微量元素及稀土元素使用电感耦合等离子体质谱Finingan MAT HR-ICP-MS(Element I型)完成(表 2).

      表  2  二十二站组砂岩主量元素、微量元素及稀土元素分析结果
      Table  Supplementary Table   Major, trace and rare earth elements compositions of the Ershi'erzhan Formation sandstones
      样品号SBS-N1-B1SBS-N1-B2SBS-N1-B3SBS-N1-B4SBS-N1-B5SBS-N1-B6SBS-N1-B7SBS-N1-B8SBS-N1-B9SBS-N1-B10
      SiO273.9472.0865.8570.1971.3972.0771.5067.2670.9868.28
      TiO20.190.270.400.330.180.230.250.430.240.40
      Al2O314.2213.9613.9613.9612.7313.5514.2015.1113.8813.50
      Fe2O31.911.793.733.132.061.702.473.402.262.90
      FeO0.961.362.982.821.661.441.002.751.921.95
      MnO0.070.090.130.110.120.090.090.110.090.10
      MgO0.220.410.910.410.480.510.220.970.410.64
      CaO0.280.752.590.982.631.421.321.991.332.88
      Na2O4.474.423.664.254.764.824.333.604.343.71
      K2O3.434.393.613.542.542.783.023.663.232.89
      P2O50.060.060.110.080.060.070.070.110.070.08
      LOI1.131.704.842.842.922.642.423.222.994.37
      Total100.88101.28102.77102.65101.53101.31100.89102.61101.74101.70
      Fe2O3T2.983.307.046.263.903.303.586.464.395.07
      K2O/Na2O0.770.990.990.830.530.580.701.020.740.78
      Fe2O3/K2O0.560.411.030.880.810.610.820.930.701.00
      F1-1.42-3.02-0.82-1.010.09-0.82-0.05-0.97-0.90-0.24
      F20.461.77-0.010.21-0.08-0.150.09-0.150.22-0.41
      La18.143.737.765.518.624.128.538.436.778.4
      Ce37.082.275.4123.034.946.951.975.168.8151.0
      Pr4.038.708.3012.703.795.055.688.127.2516.20
      Nd14.528.828.741.713.817.919.929.124.954.3
      Sm2.484.324.305.372.532.973.094.443.557.83
      Eu0.580.640.710.640.480.490.570.800.591.17
      Gd1.872.903.743.941.752.122.713.972.895.49
      Tb0.360.540.560.660.360.400.440.590.510.80
      Dy1.852.593.373.161.692.062.283.342.314.14
      Ho0.340.520.640.600.350.380.480.680.470.80
      Er0.811.271.681.610.941.001.191.741.261.98
      Tm0.160.250.290.280.180.190.230.340.230.38
      Yb1.001.471.901.731.061.221.352.061.462.42
      Lu0.140.210.280.280.150.170.220.290.210.36
      Eu/Eu*0.830.550.540.420.690.590.600.580.560.55
      Ce/Ce*1.061.031.051.051.021.041.001.041.031.04
      ∑REE83.2178.0168.0261.080.6105.0119.0169.0151.0325.0
      LREE/HREE11.717.312.520.311.512.912.312.015.218.9
      (La/Yb)N13.021.314.227.212.614.215.113.418.023.2
      (Eu/Eu*)UCC1.270.840.830.651.060.910.920.900.860.83
      (La/Yb)UCC1.332.181.462.781.291.451.551.371.842.38
      Li4.453.245.004.5617.94.054.6253.15.127.11
      Be2.021.832.461.981.321.371.811.921.801.80
      Sc2.963.716.355.873.053.215.136.273.766.12
      V15.517.737.729.417.816.822.737.720.634.7
      Cr15.2019.0027.5019.5023.907.508.7016.5015.8012.40
      Co2.183.895.904.223.633.372.985.553.634.49
      Ni4.916.607.485.666.424.263.956.735.145.65
      Ga15.621.022.727.913.615.317.523.021.032.4
      Rb90.5113.0106.096.870.172.582.5103.0100.091.3
      Sr176140196147178177184225143179
      Y9.0614.1017.7017.1010.4011.1013.2019.2013.1022.00
      Ba500703438515490481456625560331
      Pb17.515.814.412.016.116.716.819.316.811.3
      Th4.759.8910.8015.204.685.477.3911.109.0418.40
      U1.072.311.981.941.181.031.562.151.312.62
      Nb5.227.629.559.605.046.036.1810.506.7012.70
      Ta0.360.580.610.770.370.400.480.710.481.30
      Zr46.454.987.869.739.043.254.692.356.7121.0
      Hf1.451.872.742.341.331.371.832.861.793.81
      Rb/Sr0.510.810.540.660.390.410.450.460.700.51
      Rb/Nb17.3014.8011.1010.1013.9012.0013.309.8114.907.19
      注:主量元素单位为%,稀土、微量元素单位为10-6;F1=-1.773w(TiO2)+0.607w(Al2O3)+0.76w(Fe2O3)-1.5w(MgO)+0.616w(CaO)+0.509w(Na2O)-1.224w(K2O)-9.09;F2=-0.445w(TiO2)+0.07w(Al2O3)-0.25w(Fe2O3)-1.142w(MgO)+0.438w(CaO)+0.475w(Na2O)+1.426w(K2O)-6.861,据Roser,and Korsch(1988).
      下载: 导出CSV 
      | 显示表格

      图 3所示,所有碎屑锆石均无色透明,金刚光泽,粒度粗大,粒径多为150~250μm,部分为完整的长柱状,部分为锆石碎片,锆石的棱角分明,磨圆差,反映搬运距离较近.锆石晶体具有清晰的震荡生长环带,无明显变质边.岩浆锆石具有较高的Th、U含量,Th/U比值较大(>0.4);而变质锆石的Th/U比值则多小于0.1(李亚萍等,2007).所测定的锆石的Th/U比值均大于0.1,落在0.35~1.07区域,显示其为典型的岩浆锆石,表明岩石未经过强烈的变质作用或热液活动的改造.打点位置均为岩浆结晶幔,所有样品分析点数据均落在谐和线及其附近(图 4),呈现出很好的谐和性,表明岩石没有经历过Pb丢失事件,反映了原生岩浆锆石的特点.阴极发光特征和Th/U比值显示二十二站组碎屑锆石绝大部分都类似于中-酸性深成岩的锆石.

      图  3  二十二站组砂岩碎屑锆石阴极发光照片
      Fig.  3.  CL images of detrital zircons from the Ershi'erzhan Formation sandstone
      图  4  二十二站组砂岩碎屑锆石的U-Pb年龄谐和图(a)和年龄概率分布(b)
      Fig.  4.  Diagrams of U-Pb concordia ages of zircons for the Ershi'erzhan Formation sandstone(a),and probability density distribution(b)

      本次测定的90个碎屑锆石U-Pb表面年龄均属于中生代,可分为以下3个年龄段(图 4b).

      (1) 205~214Ma:该组共14粒锆石,占总数的16%,Th、U含量分别变化于130.0×10-6~421.0×10-6与303.3×10-6~820.5×10-6,Th/U比值为0.35~0.91,该组年龄的范围为205±3Ma~214±3Ma,峰值年龄为210Ma,属于晚三叠世.

      (2) 184~193Ma:该组共30粒锆石,占总数的33%,Th、U含量分别变化于51.3×10-6~569.2×10-6与85.0×10-6~767.2×10-6,Th/U比值为0.46~1.07,该组年龄的范围为179±4Ma~193±3Ma,峰值年龄为190Ma,属于早侏罗世.

      (3) 152~162Ma:该组共46粒锆石,占总数的51%.Th、U含量分别变化于82.8×10-6~777.7×10-6与129.5×10-6~794.1×10-6,Th/U比值为0.40~1.00,该组年龄的范围为152±3Ma~170±3Ma,峰值年龄为158Ma,属于晚侏罗世.

      3个年龄峰值分别代表了区域上3次强烈的岩浆活动事件.不同时代的碎屑锆石所占的比例也各不相同,其中以晚侏罗世为最多,早侏罗世次之,晚三叠世最少,这一时间跨度较窄的碎屑锆石年龄分布结构反映了碎屑物搬运距离较短的特征.

      3.2.1   主量元素

      二十二站组砂岩的岩石地球化学分析结果表明砂岩的SiO2的含量较高,为65.85%~73.94%,平均为70.35%,变化范围较小,属于酸性岩系列.Al2O3含量为12.73%~15.11%,变化较稳定.而Fe2O3、FeO、MgO的含量普遍较低,说明二十二站组碎屑岩为长英质岩石.各氧化物的含量与活动大陆边缘环境的碎屑岩比较接近.岩石的K2O/Na2O平均值为0.39,显示出典型杂砂岩的特征(和政军等,2003).在图 5a5b中,大部分样品落入杂砂岩范围,与镜下及野外观察所获得的结果一致.岩石的Fe2O3/K2O值(平均0.78)较高,反映砂岩中含有相对较多的富铁矿物(镜下可见黑云母),这些易风化矿物的保存,暗示二十二站组是近源或较快速成岩过程的产物(Herron,1988).

      图  5  二十二站组砂岩岩石地球化学分类图解
      Fig.  5.  Geochemical classification diagrams of the Ershi'erzhan Formation sandstone
      3.2.2   稀土和微量元素

      二十二站组砂岩的稀土元素总量变化范围较大(ΣREE=80.6×10-6~325.0×10-6),平均为164.0×10-6,反映源区的多样性.在图 6a上,大部分样品曲线变化趋势非常一致,表明物源区可能具有相似的构造背景,而个别样品的不一致曲线则反映了其来自于其他源区.样品总体表现为轻稀土元素富集,重稀土相对亏损的特征,LREE/HREE=11.46~20.31,(La/Yb)N=12.98~27.16.样品的Eu/Eu*值为0.42~0.83,具有微弱-中等的负Eu异常.样品的稀土曲线处于南部与北部砂岩的曲线范围之内(和政军等,2003),但更为接近盆地南部砂岩的曲线.不同构造背景下形成的砂岩具有不同的稀土元素特征(Bhatia,1985;Floyd et al., 1991),二十二站组砂岩与活动大陆边缘背景下的稀土元素特征非常接近,稀土元素球粒陨石标准化曲线与活动大陆边缘的曲线高度吻合(图 6a;Bhatia,1985).样品全球平均大陆上地壳(UCC)标准化稀土元素配分曲线较为平缓,总体表现出轻微的轻稀土富集,(La/Yb)UCC=1.29~2.78;大部分呈现出轻微的Eu负异常,(Eu/Eu*)UCC=0.65~1.27,与全球平均大陆上地壳的稀土元素含量非常接近(图 6b;Bhatia,1985).图 6c中,样品亏损高场强元素(Ta和Nb)和大离子亲石元素(Ba和Sr),富集高场强元素(Th、La、Ce、Nd和Sm)和大离子亲石元素(Rb、K).

      图  6  二十二站组砂岩球粒陨石(a)、全球平均大陆上地壳(b)标准化稀土元素配分曲线和原始地幔标准化微量元素蛛网图(c)
      Fig.  6.  Chondrite-normalized(a),UCC-normalized(b)rare earth element patterns and primitive mantle-normalized trace element spider diagram(c)of the Ershi'erzhan Formation sandstone

      二十二站组的形成时代一直是个悬而未决的问题,也是众多学者争论的焦点.建组之初其和日格(1995)依据其中发育的淡水底栖无脊椎动物(蠕虫)的生活遗迹化石将该地层置于中侏罗世,但是吴河勇等(2003b)发现并系统研究了包括二十二站组在内的额木尔河群中的孢粉化石组合,认为二十二站组应形成于晚侏罗世.而孙广瑞等(2002)依据1∶5万区域地质调查过程中在该地层中发现的双壳类、介形类动物群化石将原中侏罗统二十二站组的时代重新厘定为中-晚侏罗世Bajocian-Tithonian期,并改称为二十二站群.但二十二站组的形成时代一直未见其他年龄数据报导,本文试图采用碎屑锆石LA-ICP-MS U-Pb定年法对其进行约束.

      由于地层的沉积时代一定比沉积物形成的时代年轻,因此碎屑锆石的年龄常被用来制约地层沉积时代的下限(Williams,2001;Fedo,2003).本次所测的锆石年龄均属于中生代,早三叠世至中侏罗世时期研究区处于蒙古-鄂霍茨克大洋板块同时向南北双向(额尔古纳地块与西伯利亚地台)俯冲的构造背景(Tomurtogoo et al., 2005;Orolmaa et al., 2008;陈志广等,2010;Wu et al., 2011;许文良等,2013;Tang et al., 2014),而晚侏罗世时蒙古-鄂霍茨克洋东段已经闭合(Zorin,1999;Sorokin et al., 2004;许文良等,2013),测年的结果应为蒙古-鄂霍茨克洋演化过程中一系列岩浆活动的地质记录.二十二站组砂岩碎屑锆石测年结果主要分布在3个群落,分别代表了物源区的3次岩浆事件.其中第一组205~214Ma(峰值年龄210Ma)与第二组179~193Ma(峰值年龄190Ma)分别对应于盆地南缘额尔古纳地块中晚三叠世与早侏罗世的两次岩浆事件(Wu et al., 2011),这两次岩浆事件形成的岩浆岩作为二十二站组物源之一.此外,一组最年轻的年龄152~170Ma(峰值年龄158Ma)表明了二十二站组的最大沉积时代不早于152Ma的晚侏罗世,代表了沉积成岩时间的下限.漠河盆地在前中生代基底上发育一套具有典型的二元结构特点的侏罗系陆源碎屑岩地层和白垩系火山岩地层的盖层.侏罗系陆源碎屑岩地层自下而上划分为绣峰组、二十二站组、额木尔河组和开库康组,相邻地层均为整合接触关系.白垩系火山岩地层自下而上划分为上库力组和依列克得组(黑龙江省地质矿产局,1993).上库力组主要由酸、中酸性火山碎屑沉积岩构成(黑龙江省地质矿产局,1993),主体形成年龄为116~148Ma及其建组剖面的流纹岩年龄为119Ma(锆石LA-ICP-MS U-Pb法;张吉衡,2005),属早白垩世.上库力组与下伏的开库康组为不整合接触关系,表明二十二站组的形成时间早于上库力组.由此可知,二十二站组的沉积成岩时代应为晚侏罗世.

      漠河盆地与俄罗斯境内的上阿穆尔盆地连为一体,上阿穆尔盆地堆积了三叠纪至侏罗纪的以陆源碎屑岩为主的海相-陆相沉积地层.而漠河盆地仅发育一套陆相碎屑岩,底部不整合覆盖在前晚侏罗世花岗岩之上,顶部被“大兴安岭火山岩”不整合覆盖.部分学者认为额尔古纳地块北缘的新元古代和古生代侵入岩(黑龙江省地质矿产局,1993)或古生代增生带(和钟铧等, 2008a,2008b)为漠河盆地上侏罗统的主要物源区,同时也有部分学者持南北双向物源区(和政军等,2003;李锦轶等,2004;侯伟,2006;李春雷,2007;侯伟等, 2010a,2010b,2010c)及盆地内部物源区(孙求实,2013)的观点.但盆地南缘具体是何时代的侵入岩为其提供碎屑物则尚未取得统一认识.本文研究结果表明漠河地区的早中生代花岗岩应为南部的物源.

      砂岩的地球化学是源区岩石经历各种表生作用的结果,其中的一些元素会发生迁移和再分配,但是稀土元素和微量元素(如Cr、Th、Sc、Co、Zr)在沉积成岩过程中相对稳定且最难溶解,因此可以反映物源区的地球化学性质,而被广泛运用于源区岩石类型的恢复及构造环境的判别(Bhatia,1985).沉积盆地中砂岩的地球化学特征主要受物源区母岩控制,二十二站组砂岩的稀土元素球粒陨石配分曲线呈现轻稀土富集,重稀土相对亏损且曲线较为平缓的右倾模式,Eu负异常明显,∑REE含量为80.6×10-6~325.0×10-6,具有较大的LREE/HREE值(图 6a),与壳源岩石的稀土元素特征相同(邵磊等,1998),暗示碎屑物的母岩岩浆与上地壳有关.Eu/Eu*的变化完全取决于碎屑物母岩的组成,中酸性斜长岩一般具有Eu正异常(1.01<Eu/Eu*<2.33),玄武岩Eu异常不明显(0.90<Eu/Eu*<1.0),而花岗岩多为Eu负异常(Eu/Eu*<0.9),样品具有中等的Eu负异常(Eu/Eu*=0.42~0.83),表明二十二站组的碎屑源岩为花岗岩类等酸性火成岩.如图 6b所示,样品具有显著的“TNT”效应,即亏损Ta、Nb和Hf等高场强元素和富集Rb、K等大离子亲石元素,与活动大陆边缘背景下的花岗岩类具有相似的特征.但近年来的研究表明,沉积过程不仅可能对元素产生分异作用,而且还能分异同位素.与形成于活动大陆边缘的钙碱性中-酸性侵入岩相比,二十二站组砂岩相对富集高场强元素(Th、La、Ce、Nd和Sm),应为碎屑物在搬运、沉积过程中大离子亲石元素等易溶组分发生迁移而使得高场强元素等难溶组分相对富集.此外,样品的Rb/Sr比值(0.39~0.69,平均值为0.54)明显高于地幔和下地壳相应元素的比值,而与上地壳平均值大致一致,表明物源区母岩的岩浆起源于地壳.此外,图 7a显示物源区母岩具有地壳的特征,图 7b显示碎屑物来源于长英质火成岩区,阴极发光特征和Th/U比值显示其碎屑锆石绝大部分都类似于中-酸性深成岩的锆石.由此可知,二十二站组碎屑岩的碎屑物母岩应为花岗岩类岩石,母岩的岩浆起源于地壳.

      图  7  二十二站组砂岩源区母岩性质判别图解
      Fig.  7.  Discrimination diagrams of mother rock for the Ershi'erzhan Formation sandstone

      本文测得的二十二站组砂岩碎屑锆石年龄均属于中生代,没有携带任何结晶基底的信息,前中生代的碎屑物几乎没有贡献.该地层的碎屑锆石年龄与额尔古纳地块北缘中生代锆石年龄谱线图显示两者在峰值约210Ma、190Ma处高度一致(图 8),表明漠河地区中晚三叠世与早侏罗世形成的花岗岩类为二十二站组提供部分碎屑物,碎屑锆石的年龄峰值(210Ma与190Ma)为花岗质岩浆侵入事件的地质记录,而非前人认为的新元古代(和钟铧等,2008b).但对于峰值年龄为158Ma的碎屑锆石,笔者在盆地南缘的额尔古纳地块北缘并未能找到与之年龄相匹配的岩浆活动记录(图 8),而在距离漠河盆地较远的满洲里地区发育着一套同时期的亚碱性-碱性的过渡类型火山岩(158~166Ma;Wang et al., 2006;Yang and Li, 2008;Zhang et al., 2008;孟恩等,2011;徐美君等,2011;张超等,2014).但二十二站组杂砂岩较差的成分和结构成熟度、较多的黑云母及较高的Fe2O3/K2O比值反映其形成于快速剥蚀、快速搬运、近源沉积的环境,因此,该火山岩经过远距离搬运至漠河盆地的可能性不大,而是就近搬运至海拉尔盆地.此外,侯伟(2006)依据地层的沉积标志及地球物理特征等恢复出的漠河地区晚侏罗世时期的古水流方向为南北双向,表明该时期的物源来自南北两个方向,而南部物源已被证明为盆地南缘晚三叠世和早侏罗世形成的花岗岩类.因此,碎屑锆石峰值年龄为158Ma的碎屑物只能来自的盆地北缘的物源区(图 1a).

      图  8  二十二站组碎屑锆石年龄与额尔古纳地块岩浆锆石年龄对比
      额尔古纳地块中生代花岗岩锆石年龄数据引自Wu et al.(2011)
      Fig.  8.  Probability curves of ages for detrital zircons from the Ershi'erzhan Formation sandstone and magmatic zircons from the Erguna massif

      碎屑沉积岩的地球化学特征主要取决于其组成成分,而成分与其物源则和大地构造环境密切相关.成岩构造背景对物源同样具有一定的控制作用,沉积物的化学组成记录了沉积成岩过程中构造活动变化情况.部分元素特别是Th、La、Sc、Zr等微量元素在搬运、沉积成岩过程中的化学性质非常稳定,对物源区的构造背景具有很好的限制作用.因此,沉积岩的成分对恢复物源区构造背景发挥了重要作用.

      关于额尔古纳地块北东缘早三叠世至中侏罗世时期的大地构造背景,过去大多数学者认为其为被动陆缘环境;蒙古-鄂霍茨克洋向北俯冲(Zorin 1999),但是否还存在向南俯冲则一直存在争议(Wu et al., 2011).近年来,越来越多的研究显示该地区处于蒙古-鄂霍茨克洋南北双向俯冲的构造背景(Tomurtogoo et al., 2005;Orolmaa et al., 2008;陈志广等,2010;Wu et al., 2011;许文良等,2013;Tang et al., 2014).不同构造背景下形成的砂岩具有不同的稀土元素特征(Bhatia,1985;Floyd et al., 1991),二十二站组砂岩与形成于活动大陆边缘背景下的岩石稀土元素特征最为接近,稀土元素球粒陨石标准化曲线与活动大陆边缘的曲线高度吻合,这种稀土元素配分模式反映了沉积物母岩与板块俯冲有关的弧火成岩的亲缘性,表明其物源区母岩形成的构造背景具有活动大陆边缘的特征(Bhatia,1985).微量元素中的Th、Sc、Zr、Co和La等元素最难溶,相对稳定,不受搬运过程和沉积过程的影响,即具有非迁移性,能准确反映物源区的地球化学性质及构造背景(Bhatia,1985).相关的主、微量元素构造环境判别图解显示样品主要落入活动大陆边缘的区域(图 9),进一步支持了该大洋板块同时向南北俯冲的观点.同时,锆石定年数据显示二十二站组砂岩没有携带任何前中生代碎屑物的信息,暗示了该3期岩浆岩形成于额尔古纳地块北缘的中生代活动大陆边缘环境,并且为二十二站组的形成提供了几乎所有的碎屑物质.俄罗斯境内的地质资料表明,北部的上阿穆尔盆地始于晚三叠世,止于侏罗纪末,该盆地在中-晚侏罗世期间有明显向南超覆和沉积中心向南迁移的演化特点:在北部俄罗斯境内,沉积物时代为三叠纪至侏罗纪晚期,下部为海相,上部为陆相;在中国境内,仅沉积了中-上侏罗统,且均为陆相地层.在T3-J1期间,盆地的沉积中心主要位于北部的俄罗斯境内,该时期形成的是海相地层(图 10a).杂砂岩形成于快速剥蚀与沉积的环境,表明在晚侏罗世(不早于152Ma)盆地北缘快速抬升,由此可知此时蒙古-鄂霍茨克洋已经闭合并开始造山(Zorin,1999;Sorokin et al., 2004;许文良等,2013).随后在J2-J3期间,随着蒙古-鄂霍茨克洋逐渐关闭而迫使盆地的沉积中心由北往南逐渐迁移,盆地北缘快速抬升和快速剥蚀,并于晚侏罗世(不早于152Ma)盆地南北两侧大量的花岗岩类碎屑物(T3-J3)被快速搬运至盆地的南部并形成了巨厚的陆相碎屑岩(图 10b).

      图  9  二十二站组砂岩物源区主量元素(a,b)和微量元素(c,d,e)构造环境判别图解
      Fig.  9.  Tectonic setting discrimination diagrams of the major elements(a,b)and trace elements(c,d,e)for the provenance from the Ershi'erzhan Formation sandstone
      图  10  二十二站组砂岩形成构造背景示意
      Fig.  10.  Sketch showing the forming tectonic setting of the Ershi'erzhan Formation

      (1) 二十二站组砂岩碎屑锆石均为岩浆锆石,测年结果可分为以下3个年龄区间:152~170Ma,峰值年龄为158Ma;179~193Ma,峰值年龄为190Ma;205~214Ma,峰值年龄为210Ma.二十二站组形成的时间下限为152Ma,为晚侏罗世.

      (2) 该三期岩浆岩均为蒙古-鄂霍茨克洋板块向南面额尔古纳地块俯冲的产物,形成的岩浆岩为二十二站组的形成提供了主要物质来源,具有南北双向物源的特征.二十二站组砂岩形成于晚侏罗世蒙古-鄂霍茨克洋闭合造山过程中漠河盆地南北两侧花岗岩类物源区快速剥蚀、快速搬运并快速沉积成岩的环境.

      致谢: 野外工作得到了漠河县砂宝斯金矿区工作人员的大力支持,锆石LA-ICP-MS U-Pb定年工作得到了西北大学大陆动力学国家重点实验室同仁的鼎力帮助,岩石地球化学分析得到了核工业北京地质矿产研究院测试研究中心的大力支持,两位审稿专家对本文提出了许多建设性的意见和建议,笔者在此一并表示衷心的感谢!
    • 图  1  漠河盆地区域构造分区(a)、漠河盆地及邻区上阿穆尔盆地区域地质图(b)和砂宝斯金矿区地质图(c)

      图a据和钟铧等(2008a)修改;图b据和政军等(2003)修改;图c据齐金忠等(2000)

      Fig.  1.  Regional tectonic subdivisions of the Mohe basin(a),regional geological sketch of the Mohe basin and Amur basin(b)and Shabaosi gold deposit(c)

      图  2  二十二站组砂岩显微镜下照片(正交偏光)

      Q.石英;Pl.斜长石;Pth.条纹长石;Mic.微斜长石;Lv.火成岩岩屑;Bt.黑云母;Cal.方解石;Mus.白云母

      Fig.  2.  Micrographs of the Ershi'erzhan Formation sandstone

      图  3  二十二站组砂岩碎屑锆石阴极发光照片

      Fig.  3.  CL images of detrital zircons from the Ershi'erzhan Formation sandstone

      图  4  二十二站组砂岩碎屑锆石的U-Pb年龄谐和图(a)和年龄概率分布(b)

      Fig.  4.  Diagrams of U-Pb concordia ages of zircons for the Ershi'erzhan Formation sandstone(a),and probability density distribution(b)

      图  5  二十二站组砂岩岩石地球化学分类图解

      Fig.  5.  Geochemical classification diagrams of the Ershi'erzhan Formation sandstone

      图  6  二十二站组砂岩球粒陨石(a)、全球平均大陆上地壳(b)标准化稀土元素配分曲线和原始地幔标准化微量元素蛛网图(c)

      Fig.  6.  Chondrite-normalized(a),UCC-normalized(b)rare earth element patterns and primitive mantle-normalized trace element spider diagram(c)of the Ershi'erzhan Formation sandstone

      图  7  二十二站组砂岩源区母岩性质判别图解

      Fig.  7.  Discrimination diagrams of mother rock for the Ershi'erzhan Formation sandstone

      图  8  二十二站组碎屑锆石年龄与额尔古纳地块岩浆锆石年龄对比

      额尔古纳地块中生代花岗岩锆石年龄数据引自Wu et al.(2011)

      Fig.  8.  Probability curves of ages for detrital zircons from the Ershi'erzhan Formation sandstone and magmatic zircons from the Erguna massif

      图  9  二十二站组砂岩物源区主量元素(a,b)和微量元素(c,d,e)构造环境判别图解

      Fig.  9.  Tectonic setting discrimination diagrams of the major elements(a,b)and trace elements(c,d,e)for the provenance from the Ershi'erzhan Formation sandstone

      图  10  二十二站组砂岩形成构造背景示意

      Fig.  10.  Sketch showing the forming tectonic setting of the Ershi'erzhan Formation

      表  1  二十二站组砂岩碎屑锆石LA-ICP-MS U-Pb测年分析结果

      Table  1.   Detrital zircon LA-ICP-MS U-Pb analytical results of the Ershi'erzhan Formation sandstones

      编号Pb(10-6)Th(10-6)U(10-6)Th/U207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ年龄(Ma)
      207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ208Pb/232Th1σ
      SBS-N1-016.11041890.550.050210.003470.164860.011040.023820.000412051581551015231512
      SBS-N1-029.92243290.680.052280.002650.173200.007340.024030.0004029866162615331503
      SBS-N1-034.8831530.540.046270.002750.155680.008890.024400.0004012130147815531574
      SBS-N1-048.81582580.610.047420.003350.159350.010890.024370.00043701571501015531563
      SBS-N1-058.82062810.730.051270.002530.171930.006940.024320.0003825364161615521573
      SBS-N1-067.11272330.550.052240.002370.175770.006340.024400.0003829654164515521693
      SBS-N1-0724.67787940.980.057350.002050.192460.004450.024340.0003550527179415521042
      SBS-N1-084.61291300.990.049260.003080.166850.009240.024560.0004316094157815631664
      SBS-N1-0910.01993070.650.049890.002470.168730.006920.024530.0004019065158615631433
      SBS-N1-108.71972780.710.049730.002110.168020.005450.024500.0003718248158515621533
      SBS-N1-116.71342220.610.050070.002390.169450.006580.024540.0003919861159615621523
      SBS-N1-128.31642690.610.052480.002310.178680.006050.024690.0003730650167515721543
      SBS-N1-137.81442420.590.052310.002580.178100.007240.024690.0004029963166615731674
      SBS-N1-147.41512350.640.048830.002170.166400.005820.024710.0003814053156515721703
      SBS-N1-156.81352100.640.051950.002840.176540.008280.024640.0004228376165715731524
      SBS-N1-169.61792980.600.051030.002660.173990.007640.024730.0004124270163715731544
      SBS-N1-1711.52803570.780.050160.002040.172040.005180.024880.0003720243161415821502
      SBS-N1-1811.12073530.590.049660.002120.170420.005540.024880.0003717948160515821613
      SBS-N1-195.71001750.570.052270.003100.178380.009270.024750.0004429786167815831645
      SBS-N1-2011.32593170.820.050700.002700.173010.007790.024750.0004122773162715831564
      SBS-N1-217.61932180.880.047520.002640.162900.007810.024860.000427575153715831513
      SBS-N1-227.81402420.580.047970.002670.163720.007900.024750.000419878154715831484
      SBS-N1-2311.52603580.730.048600.001980.166080.005020.024780.0003712943156415821522
      SBS-N1-247.21312270.580.049080.002660.167580.007770.024770.0004115277157715831474
      SBS-N1-259.11592740.580.049360.002730.168930.008000.024820.0004216579158715831614
      SBS-N1-268.11392560.540.053820.002380.183780.006330.024760.0003836450171515821874
      SBS-N1-2711.32203260.680.049040.002770.168820.008230.024960.0004315081158715931604
      SBS-N1-289.11892720.700.050890.002450.174970.006870.024940.0004023661164615931523
      SBS-N1-2914.02914280.680.049550.002020.170580.005140.024960.0003717443160415921613
      SBS-N1-309.52342880.810.047100.002230.161950.006240.024940.000395456152515921443
      SBS-N1-3111.82543630.700.047620.002000.163920.005240.024960.000378048154515921593
      SBS-N1-3210.41833170.580.052030.002630.178690.007490.024910.0004128766167615931734
      SBS-N1-3310.71883290.570.051010.002250.175810.006020.024990.0003824151164515921793
      SBS-N1-3411.02253490.650.050990.002100.175240.005340.024920.0003724043164515921543
      SBS-N1-3518.24365200.840.048410.002040.166910.005280.025000.0003711947157515921603
      SBS-N1-366.91561920.810.045750.003060.157570.009500.024980.000451595149815931544
      SBS-N1-3710.42103290.640.048770.002090.167840.005490.024960.0003713749158515921573
      SBS-N1-3812.92084210.490.048400.001900.167190.004690.025050.0003611939157415921613
      SBS-N1-398.71932500.770.047880.002760.164600.008300.024930.000439381155715931564
      SBS-N1-407.41462220.660.050000.003160.173030.010560.025100.00041195145162916031602
      SBS-N1-4112.22773770.740.051380.002100.177790.005330.025090.0003725842166516021563
      SBS-N1-4211.23093081.000.048780.003580.168630.012030.025070.000431371661581016031602
      SBS-N1-4310.51873130.600.049260.002670.170550.007870.025110.0004216076160716031734
      SBS-N1-449.11172950.400.053220.002410.186790.006620.025450.0003933853174616221944
      SBS-N1-456.81232010.610.051720.002550.189300.007670.026540.0004227364176716931814
      SBS-N1-4611.12133300.640.051300.002240.188820.006320.026690.0004025449176517031653
      SBS-N1-476.4991900.520.051050.004300.198390.015520.028180.000612431381841317941848
      SBS-N1-4810.11672980.560.052070.002650.207630.008750.028920.0004728866192718431764
      SBS-N1-496.81441970.730.049500.003030.199100.010740.029170.0005117292184918531875
      SBS-N1-5023.95696050.940.051750.002110.208960.006260.029280.0004327442193518631943
      SBS-N1-5110.81563010.520.051240.002350.207720.007590.029400.0004625255192618731994
      SBS-N1-5220.8386010.510.048980.002300.199160.007590.029490.0004714759184618731814
      SBS-N1-538.11281970.650.046340.002730.188580.010710.029510.0004615129175918731894
      SBS-N1-546.61331850.720.050430.003260.205190.011860.029510.000542151001901018731745
      SBS-N1-5517.12334530.510.051620.002170.210530.006630.029580.0004426945194618831974
      SBS-N1-568.51052290.460.050640.002270.208020.007340.029790.0004622453192618931954
      SBS-N1-5714.21803850.470.049450.002180.203000.008420.029770.00044169102188718931892
      SBS-N1-5813.52513920.640.049790.002260.203800.007360.029690.0004618555188618932165
      SBS-N1-5911.31732920.590.050890.002610.209100.010240.029800.00046236120193918931892
      SBS-N1-608.61342280.590.050630.002260.209330.007330.029980.0004622453193619031814
      SBS-N1-618.81852360.780.049830.002440.205900.008320.029960.0004818764190719031814
      SBS-N1-629.81972710.730.048740.002350.201300.007950.029960.0004813563186719031964
      SBS-N1-6311.92732900.940.067200.002870.277640.009000.029960.0004784442249719032184
      SBS-N1-6410.01912600.730.062200.002610.257100.008140.029970.0004668142232719032194
      SBS-N1-6515.12364230.560.055810.002190.230400.006470.029940.0004444537211519032094
      SBS-N1-6623.23106250.500.050060.001750.208090.004540.030140.0004219826192419131903
      SBS-N1-6724.83396710.510.051760.001780.214650.004500.030070.0004227524197419132003
      SBS-N1-6819.22855360.530.049140.001840.203660.005240.030060.0004315534188419131913
      SBS-N1-693.351850.600.052130.004610.215710.017860.030010.000672911471981519142088
      SBS-N1-7028.74347670.570.049380.001690.205050.004340.030110.0004216625189419131923
      SBS-N1-7113.91953680.530.048440.002100.200740.006760.030060.0004612151186619131854
      SBS-N1-7211.41943020.640.049760.002080.205830.006530.030000.0004518446190519131853
      SBS-N1-7312.42173380.640.051080.002160.211620.006790.030040.0004524446195619131903
      SBS-N1-7419.23055030.610.052270.001960.217320.005610.030150.0004429733200519131853
      SBS-N1-7523.43646310.580.051800.001890.214560.005160.030040.0004327730197419132003
      SBS-N1-766.71631521.070.050500.002810.211540.010130.030380.0005121880195819332004
      SBS-N1-7719.54114500.910.050790.003110.225860.013370.032250.000512321422071120532042
      SBS-N1-7820.12855190.550.051380.001960.229200.006150.032350.0004725836210520532033
      SBS-N1-7917.52114530.470.050820.002020.227730.006500.032500.0004823339208520632224
      SBS-N1-806.81371610.850.052400.003130.236540.012380.032730.00058303872161020842075
      SBS-N1-8115.22493810.660.050730.001920.230680.006070.032970.0004822935211520932143
      SBS-N1-8231.02918210.350.051620.001810.234430.005070.032930.0004626926214420932143
      SBS-N1-8321.92935500.530.053880.002440.244840.010450.032950.00050366105222920932073
      SBS-N1-8417.92614390.600.050590.001920.230300.006060.033010.0004822235210520932233
      SBS-N1-8514.71623970.410.050610.002130.231240.007310.033130.0005022345211621032255
      SBS-N1-8611.61303030.430.048640.001990.222530.006830.033180.0005013144204621031944
      SBS-N1-8720.12995170.580.051250.002050.234140.006780.033130.0004925240214621032084
      SBS-N1-8824.63905850.670.055800.002020.255010.006080.033140.0004744429231521032273
      SBS-N1-8928.34216860.610.050260.001800.231830.005290.033450.0004720728212421232183
      SBS-N1-9017.82693570.750.050600.002590.235090.010040.033690.0005522368214821432245
      下载: 导出CSV

      表  2  二十二站组砂岩主量元素、微量元素及稀土元素分析结果

      Table  2.   Major, trace and rare earth elements compositions of the Ershi'erzhan Formation sandstones

      样品号SBS-N1-B1SBS-N1-B2SBS-N1-B3SBS-N1-B4SBS-N1-B5SBS-N1-B6SBS-N1-B7SBS-N1-B8SBS-N1-B9SBS-N1-B10
      SiO273.9472.0865.8570.1971.3972.0771.5067.2670.9868.28
      TiO20.190.270.400.330.180.230.250.430.240.40
      Al2O314.2213.9613.9613.9612.7313.5514.2015.1113.8813.50
      Fe2O31.911.793.733.132.061.702.473.402.262.90
      FeO0.961.362.982.821.661.441.002.751.921.95
      MnO0.070.090.130.110.120.090.090.110.090.10
      MgO0.220.410.910.410.480.510.220.970.410.64
      CaO0.280.752.590.982.631.421.321.991.332.88
      Na2O4.474.423.664.254.764.824.333.604.343.71
      K2O3.434.393.613.542.542.783.023.663.232.89
      P2O50.060.060.110.080.060.070.070.110.070.08
      LOI1.131.704.842.842.922.642.423.222.994.37
      Total100.88101.28102.77102.65101.53101.31100.89102.61101.74101.70
      Fe2O3T2.983.307.046.263.903.303.586.464.395.07
      K2O/Na2O0.770.990.990.830.530.580.701.020.740.78
      Fe2O3/K2O0.560.411.030.880.810.610.820.930.701.00
      F1-1.42-3.02-0.82-1.010.09-0.82-0.05-0.97-0.90-0.24
      F20.461.77-0.010.21-0.08-0.150.09-0.150.22-0.41
      La18.143.737.765.518.624.128.538.436.778.4
      Ce37.082.275.4123.034.946.951.975.168.8151.0
      Pr4.038.708.3012.703.795.055.688.127.2516.20
      Nd14.528.828.741.713.817.919.929.124.954.3
      Sm2.484.324.305.372.532.973.094.443.557.83
      Eu0.580.640.710.640.480.490.570.800.591.17
      Gd1.872.903.743.941.752.122.713.972.895.49
      Tb0.360.540.560.660.360.400.440.590.510.80
      Dy1.852.593.373.161.692.062.283.342.314.14
      Ho0.340.520.640.600.350.380.480.680.470.80
      Er0.811.271.681.610.941.001.191.741.261.98
      Tm0.160.250.290.280.180.190.230.340.230.38
      Yb1.001.471.901.731.061.221.352.061.462.42
      Lu0.140.210.280.280.150.170.220.290.210.36
      Eu/Eu*0.830.550.540.420.690.590.600.580.560.55
      Ce/Ce*1.061.031.051.051.021.041.001.041.031.04
      ∑REE83.2178.0168.0261.080.6105.0119.0169.0151.0325.0
      LREE/HREE11.717.312.520.311.512.912.312.015.218.9
      (La/Yb)N13.021.314.227.212.614.215.113.418.023.2
      (Eu/Eu*)UCC1.270.840.830.651.060.910.920.900.860.83
      (La/Yb)UCC1.332.181.462.781.291.451.551.371.842.38
      Li4.453.245.004.5617.94.054.6253.15.127.11
      Be2.021.832.461.981.321.371.811.921.801.80
      Sc2.963.716.355.873.053.215.136.273.766.12
      V15.517.737.729.417.816.822.737.720.634.7
      Cr15.2019.0027.5019.5023.907.508.7016.5015.8012.40
      Co2.183.895.904.223.633.372.985.553.634.49
      Ni4.916.607.485.666.424.263.956.735.145.65
      Ga15.621.022.727.913.615.317.523.021.032.4
      Rb90.5113.0106.096.870.172.582.5103.0100.091.3
      Sr176140196147178177184225143179
      Y9.0614.1017.7017.1010.4011.1013.2019.2013.1022.00
      Ba500703438515490481456625560331
      Pb17.515.814.412.016.116.716.819.316.811.3
      Th4.759.8910.8015.204.685.477.3911.109.0418.40
      U1.072.311.981.941.181.031.562.151.312.62
      Nb5.227.629.559.605.046.036.1810.506.7012.70
      Ta0.360.580.610.770.370.400.480.710.481.30
      Zr46.454.987.869.739.043.254.692.356.7121.0
      Hf1.451.872.742.341.331.371.832.861.793.81
      Rb/Sr0.510.810.540.660.390.410.450.460.700.51
      Rb/Nb17.3014.8011.1010.1013.9012.0013.309.8114.907.19
      注:主量元素单位为%,稀土、微量元素单位为10-6;F1=-1.773w(TiO2)+0.607w(Al2O3)+0.76w(Fe2O3)-1.5w(MgO)+0.616w(CaO)+0.509w(Na2O)-1.224w(K2O)-9.09;F2=-0.445w(TiO2)+0.07w(Al2O3)-0.25w(Fe2O3)-1.142w(MgO)+0.438w(CaO)+0.475w(Na2O)+1.426w(K2O)-6.861,据Roser,and Korsch(1988).
      下载: 导出CSV
    • Andersen,T.,2002.Correction of Common Lead in U-Pb Analyses That do not Report Pb.Chemical Geology,192(1-2):59-79.doi: 10.1016/s0009-2541(02)00195-x
      Becker,T.P.,Thomas,W.A.,Samson,S.D.,et al.,2005.Detrital Zircon Evidence of Laurentian Crustal Dominance in the Lower Pennsylvanian Deposits of the Alleghanian Clastic Wedge in Eastern North America.Sedimentary Geology,182(1-4):59-86.doi: 10.1016/j.sedgeo.2005.07.014
      Bhatia,M.R.,1985.Rare Earth Element Geochemistry of Australian Paleozoic Graywackes and Mudrocks:Provenance and Tectonic Control.Sedimentary Geology,45(1-2):97-113.doi: 10.1016/0037-0738(85)90025-9
      Bruguier,O.,Lancelot,J.R.,Malavieille,J.,1997.U-Pb Dating on Single Detrital Zircon Grains from the Triassic Songpan-Ganze Flysch (Central China):Provenance and Tectonic Correlations.Earth and Planetary Science Letters,152:217-231.doi: 10.1016/s0012-821x(97)00138-6
      Bureau of Geology and Mineral Resources of Heilongjiang Province (BGMRH),1993.Regional Geology of Heilongjiang Province.Geological Publishing House,Beijing (in Chinese).
      Chen,Z.G.,Zhang,L.C.,Lu,B.Z.,et al.,2010.Geochronology and Geochemistry of the Taipingchuan Copper-Molybdenum Deposit in Inner Mongolia,and Its Geological Significances.Acta Petrologica Sinica,26(5):1437-1449 (in Chinese with English abstract). http://www.oalib.com/paper/1476127
      Fedo,C.M.,2003.Detrital Zircon Analysis of the Sedimentary Record.Reviews in Mineralogy and Geochemistry,53(1):277-303.doi: 10.2113/0530277
      Floyd,P.A.,Shail,R.,Leveridge,B.E.,et al.,1991.Geochemistry and Provenance of Rhenohercynian Synorogenic Sandstones:Implications for Tectonic Environment Discrimination.Geological Society,London,Special Publications,57(1):173-188.doi: 10.1144/gsl.sp.1991.057.01.14
      He,Z.H.,Liu,Z.J.,Guo,H.W.,et al.,2008a.Provenance Analysis of Middle Jurassic Sediments and Its Geological Significance in Mohe Basin.Journal of Jilin University (Earth Science Edition),38(3):398-404 (in Chinese with English abstract).
      He,Z.H.,Wang,Y.F.,Hou,W.,2008b.Geochemisry and Provenance Analysis of the Middle Jurassic Sandstones in the Mohe Basin,Heilongjiang.Sedimentary Geology and Tethyan Geology,28(4):93-100 (in Chinese with English abstract). doi: 10.1360%2F02yd0376
      He,Z.J.,Li,J.Y.,Mo,S.G.,et al.,2003.Geochemistry,Tectonic Background and Provenance Analysis of the Sandstones from the Mohe Foreland Basin.Science in China (Series D),33(12):1219-1226 (in Chinese). doi: 10.1360%2F02yd0376
      Herron,M.M.,1988.Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data.Journal of Sedimentary Research,58:820-883.doi: 10.1306/212f8e77-2b24-11d7-8648000102c1865d
      Hou,W.,2006.Evolution of Sedimentary and Provenance Analysis in Middle Jurassic of Mohe Basin (Dissertation).Jilin University,Changchun (in Chinese with English abstract).
      Hou,W.,Liu,Z.J.,He,Y.P.,et al.,2010a.Provenance Analysis of Upper Jurassic and Its Geological Significances in Mohe Basin.Geological Review,56(1):71-81 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200604014.htm
      Hou,W.,Liu,Z.J.,He,Y.P.,et al.,2010b.Sedimentary Characteristics and Tectonic Setting of the Upper Jurassic Mohe Basin.Journal of Jilin University (Earth Science Edition),40(2):286-297 (in Chinese with English abstract). https://www.researchgate.net/publication/287168307_Sedimentary_characteristics_and_tectonic_setting_of_the_Upper_Jurassic_Mohe_Basin
      Hou,W.,Liu,Z.J.,He,Y.P.,et al.,2010c.Application of REE Geochemical Characteristics of Sandstone to Study on Provenance:A Case from the Middle Jurassic of Mohe Basin in Northeast China.Acta Sedimentologica Sinica,28(2):285-293 (in Chinese with English abstract).
      Li,B.L.,Sun,Y.G.,Chen,G.J.,et al.,2016.Zircon U-Pb Geochronology,Geochemistry and Hf Isotopic Composition and Its Geological Implication of the Fine-Grained Syenogranite in Dong'an Goldfield from the Lesser Xing'an Mountains.Earth Science,41(1):1-16 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201601001.htm
      Li,C.L.,2007.Structural Characteristic,Tectonic Evolution and Basin Dynamics of Mohe Basin (Dissertation).China University of Geosciences,Beijing (in Chinese with English abstract).
      Li,J.Y.,He,Z.J.,Mo,S.G.,et al.,2004.The Age of Conglomerates in the Lower Part of the Xiufeng Formation in the Northern Da Hinggan Mountains,NE China,and Their Tectonic Implications.Geological Bulletin of China,23(2):120-129 (in Chinese with English abstract). http://www.oalib.com/references/17381607
      Li,L.,Sun,F.Y.,Li,B.L.,et al.,2015.Ore-Forming Fluid Features and Genesis of Shabaosi Gold Deposit in Mohe County,Heilongjiang Province.Earth Science,40(7):1163-1176 (in Chinese with Englishabstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201507005.htm
      Li,Y.P.,Li,J.Y.,Sun,G.H.,et al.,2007.Basement of Junggar Basin:Evidence from Detrital Zircons in Sandstone of Previous Devonian Kalamaili Formation.Acta Petrologica Sinica,23(7):1577-1590 (in Chinese with English abstract). http://www.oalib.com/paper/1492690
      Liu,Y.S.,Gao,S.,Hu,Z.C.,et al.,2010.Continental and Oceanic Crust Recycling-Induced Melt-Periotite Interactions in the Trans-North China Orogen:U-Pb Dating,Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology,51(1-2):537-571.doi: 10.1093/petrology/egp082
      Liu,Y.S.,Hu,Z.C.,Gao,S.,et al.,2008.In Situ Analysis of Major and Trace Elements Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology,257(1-2):34-43.doi:http://dx.doi.org/ 10.1016/j.chemgeo.2008.08.004
      Meng,E.,Xu,W.L.,Yang,D.B.,et al.,2011.Zircon U-Pb Chronology,Geochemistry of Mesozoic Volcanic Rocks from the Lingquan Basin in Manzhouli Area,and Its Tectonic Implications.Acta Petrologica Sinica,27(4):1209-1226 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20110425
      Orolmaa,D.,Erdenesaihan,G.,Borisenko,A.S.,et al.,2008.Permian-Triassic Granitoid Magmatism and Metallogeny of the Hangayn (Central Mongolia).Russian Geology and Geophysics,49(7):534-544.doi: 10.1016/j.rgg.2008.06.008
      Qihe,R.G.,1995.Vestigiofossils of the Middle Jurassic Ershi'erzhan Group in Mohe Area,Heilongjiang Province.Regional Geology of China,(3):243-244 (in Chinese).
      Qi,J.Z.,Li,L.,Guo,X.D.,2000.Geological Characteristics of the Shabaosi Altered Sandstone Type Gold Deposit in North Da Hinggan Mountains.Mineral Deposits,19(2):116-125 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200002002.htm
      Roser,B.P.,Korsch,R.J.,1988.Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data.Chemical Geology,67(1-2):119-139.doi: 10.1016/0009-2541(88)90010-1
      Shao,L.,Stattergger,K.,Li,W.H.,1998.Discussion of Tectonic Background by the Sandstone's Geochemistry.Chinese Science Bulletin,43(9):985-987 (in Chinese). doi: 10.1007/BF02883223
      Sorokin,A.A.,Yarmolyuk,V.V.,Kotov,A.B.,et al.,2004.Geochronology of Triassic-Jurassic Granitoids in the Southern Framing of the Mongol-Okhotsk Foldbelt and the Problem of Early Mesozoic Granite Formation in Central and Eastern Asia.Doklady Earth Sciences,399(8):1091-1094. https://www.researchgate.net/publication/258563760_Geochronology_of_Triassic-Jurassic_Granitoids_in_the_Southern_Framing_of_the_Mongol-Okhotsk_Foldbelt_and_the_Problem_of_Early_Mesozoic_Granite_Formation_in_Central_and_Eastern_Asia
      Sun,G.R.,Liu,X.G.,Han,Z.Z.,et al.,2002.Stratigraphic Division and Age of the Mid-Upper Jurassic Ershi'erzhan Group in the Upper Heilongjiang River Basin.Geological Bulletin of China,21(3):150-155 (in Chinese with English abstract).
      Sun,Q.S.,2013.Study on the Exhumation Process from Late Jurassic of Mohe Basin (Dissertation).Jilin University,Changchun (in Chinese with English abstract).
      Tang,J.,Xu,W.L.,Wang,F.,et al.,2014.Geochronology and Geochemistry of Early-Middle Triassic Magmatism in the Erguna Massif,NE China:Constraints on the Tectonic Evolution of the Mongol-Okhotsk Ocean.Lithos,184-187:1-16.doi:http://dx.doi.org/ 10.1016/j.lithos.2013.10.024
      Tomurtogoo,O.,Windley,B.F.,Kroner,A.,et al.,2005.Zircon Age and Occurrence of the Adaatsag Ophiolite and Muron Shear Zone,Central Mongolia:Constraints on the Evolution of the Mongol-Okhotsk Ocean,Suture and Orogen.Journal of the Geological Society,162(1):125-134.doi: 10.1144/0016-764903-146
      Wan,Y.S.,Zhang,Q.D.,Song,T.R.,2003.Detrital Zircon SHRIMP Chronology of the Mesoproterozoic Changzhougou Formation Clastic Rocks in Beijing Ming Tombs:Limitation on the Provenance and Maximal Sedimentary Age of Cap Rocks in North China Craton.Chinese Science Bulletin,48(18):1970-1975 (in Chinese).
      Wang,F.,Zhou,X.H.,Zhang,L.C.,et al.,2006.Late Mesozoic Volcanism in the Great Xing'an Range (NE China):Timing and Implications for the Dynamic Setting of NE Asia.Earth and Planetary Science Letters,251(1-2):179-198.doi: 10.1016/j.epsl.2006.09.007
      Wang,J.,Sun,F.Y.,Li,B.L.,et al.,2016.Age,Petrogenesis and Tectonic Implications of Permian Hornblendite in Tugurige,Urad Zhongqi,Inner Mongolia.Earth Science,41(5):792-808 (in Chinese with English abstract). https://www.researchgate.net/publication/304880140_Age_petrogenesis_and_tectonic_implications_of_Permian_hornblendite_in_Tugurige_Urad_Zhongqi_Inner_Mongolia
      Wang,Q.,2007.The Geophysical Research of the Structure Characteristics in the Western of the Mohe Basin (Dissertation).Jilin University,Changchun (in Chinese with English abstract).
      Williams,I.S.,2001.Response of Detrital Zircon and Monazite and Their U-Pb Isotopic Systems to Regional Metamorphism and Host-Rock Partial Melting,Cooma Complex,Southeastern Australia.Australian Journal of Earth Sciences,48(4):557-580.doi: 10.1046/j.1440-0952.2001.00883.x
      Wu,F.Y.,Sun,D.Y.,Ge,W.C.,et al.,2011.Geochronology of the Phanerozoic Granitoids in Northeastern China.Journal of Asian Earth Sciences,41(1):1-30 .doi: 10.1016/j.jseaes.2010.11.014
      Wu,H.Y.,Xin,R.C.,Yang,J.G.,2003a.The Middle Jurassic Sedimentary Evolution and Petroleum Potential of the Mohe Basin.Petroleum Geology & Experiment,25(2):116-121 (in Chinese with English abstract).
      Wu,H.Y.,Yang,J.G.,Huang,Q.H.,et al.,2003b.Sequence and Age of the Mesozoic Strata in the Mohe Basin.Journal of Stratigraphy,27(3):193-198 (in Chinese with English abstract).
      Xin,R.C.,Wu,H.Y.,Yang,J.G.,2003.Upper Jurassic Sequence-Stratigraphic Framework of the Mohe Basin.Journal of Stratigraphy,27(3):199-204 (in Chinese with English abstract).
      Xu,M.J.,Xu,W.L.,Meng,E.,et al.,2011.LA-ICP-MS Zircon U-Pb Chronology and Geochemistry of Mesozoic Volcanic Rocks from the Shanghulin-Xiangyang Basin in Ergun Area,Northeastern Inner Mongolia.Geological Bulletin of China,30(9):1321-1338 (in Chinesewith English abstract). https://www.researchgate.net/publication/282559967_LA-ICP-MS_zircon_U-Pb_chronology_and_geochemistry_of_Mesozoic_volcanic_rocks_from_the_Shanghulin-Xiangyang_basin_in_Ergun_area_northeastern_Inner_Mongolia
      Xu,W.L.,Wang,F.,Pei,F.P.,et al.,2013.Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China:Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations.Acta Petrologica Sinica,29(2):339-353 (in Chinese with English abstract). https://www.researchgate.net/publication/282382991_Mesozoic_tectonic_regimes_and_regional_ore-forming_background_in_NE_China_Constraints_from_spatial_and_temporal_variations_of_Mesozoic_volcanic_rock_associations_Acta_Petrologica_Sinica_292
      Yang,J.G.,Wu,H.Y.,Liu,J.L.,2006.Stratigraphic Correlation of the Mesozoic and Cenozoic in the Outer Basins of the Daqing Exploration Area,Heilongjiang,China.Geological Bulletin of China,25(9-10):1088-1093 (in Chinese with English abstract). https://www.researchgate.net/publication/279574216_Stratigraphic_correlation_of_the_Mesozoic_and_Cenozoic_in_the_outer_basins_of_the_Daqing_exploration_area_Heilongjiang_China
      Yang,W.,Li,S.G.,2008.Geochronology and Geochemistry of the Mesozoic Volcanic Rocks in Western Liaoning:Implications for Lithospheric Thinning of the North China Craton.Lithos,102(1/2):88-117.doi: 10.1016/j.lithos.2007.09.018
      Yuan,H.L.,Gao,S.,Liu,X.M.,et al.,2004.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research,28(3):353-370.doi: 10.1111/j.1751-908x.2004.tb00755.x
      Zhang,C.,Yang,W.H.,He,Z.H.,et al.,2014.Chronology and Geochemistry of Rhyolites in Mankegou'ebo Formation from Ta'erqi Area,Southern-Central Greater Xing'an Range.Global Geology,33(2):255-265 (in Chinese with English abstract).
      Zhang,J.H.,2005.Geochronological Framework of the Mesozoic Volcanic Rocks in the Great Xing'an Range,NE China (Dissertation).Jilin University,Changchun (in Chinese with English abstract). https://www.researchgate.net/publication/248352568_Geochronological_framework_of_Mesozoic_volcanic_rocks_in_the_Great_Xing%27an_Range_NE_China_and_their_geodynamic_implications?_sg=NmLLcgBFugarWUwjuAU87irYQT_HV8Jk97puepa2AXXeVLqr37zt2A5wMz7BpF5GnhOUUHSNc53jDpTVQjg8NS3kciFzUcFNUNPZRHHvwiA
      Zhang,J.H.,Ge,W.C.,Wu,F.Y.,et al.,2008.Large-Scale Early Cretaceous Volcanic Events in the Northern Great Xing'an Range,Northeastern China.Lithos,102(1-2):138-157.doi: 10.1016/j.lithos.2007.08.011
      Zhang,S.,Lin,C.M.,Wu,C.D.et al.,2003.Tectonic Characteristics and Basin Evolution of the Mohe Basin,Heilongjiang Province.Geological Journal of China Universities,9(3):411-419 (in Chinese with English abstract). https://www.researchgate.net/publication/304396417_Tectonic_characteristics_and_basin_evolution_of_the_Mohe_BasinHeilongjiang_Province
      Zorin,Y.A.,1999.Geodynamics of the Western Part of the Mongolia-Okhotsk Collisional Belt,Trans-Baikal Region (Russia) and Mongolia.Tectonophysics,306(1):33-56.doi: 10.1016/s0040-1951(99)00042-6
      黑龙江省地质矿产局,1993.黑龙江省区域地质志.北京:地质出版社. https://zhidao.baidu.com/share/471c20e7f0bf79adc03e1be68104bb2e.html
      陈志广,张连昌,卢百志,等,2010.内蒙古太平川铜钼矿成矿斑岩时代、地球化学及地质意义.岩石学报,26(5): 1437-1449. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201005010.htm
      和钟铧,刘招君,郭宏伟,等,2008a.漠河盆地中侏罗世沉积源区分析及地质意义.吉林大学学报(地球科学版),38(3): 398-404. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200803006.htm
      和钟铧,王玉芬,侯伟,2008b.漠河盆地中侏罗统砂岩地球化学特征及物源属性分析.沉积与特提斯地质,28(4): 93-100. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200804017.htm
      和政军,李锦轶,莫申国,等,2003.漠河前陆盆地砂岩岩石地球化学的构造背景和物源区分析.中国科学(D辑),33(12): 1219-1226. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200312010.htm
      侯伟,2006.漠河盆地中侏罗世沉积演化与物源分析(硕士学位论文).长春:吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-2007093064.htm
      侯伟,刘招君,何玉平,等,2010a.漠河盆地上侏罗统物源分析及其地质意义.地质论评,56(1): 71-81. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201001012.htm
      侯伟,刘招君,何玉平,等,2010b.漠河盆地上侏罗统沉积特征与构造背景.吉林大学学报(地球科学版),40(2): 286-297. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201002007.htm
      侯伟,刘招君,何玉平,等,2010c.砂岩稀土元素地球化学特征在沉积物源区分析中的应用:以中国东北漠河盆地中侏罗统为例.沉积学报,28(2): 285-293. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201002010.htm
      李碧乐,孙永刚,陈广俊,等,2016.小兴安岭东安金矿区细粒正长花岗岩U-Pb年龄、岩石地球化学、Hf同位素组成及地质意义.地球科学,41(1): 1-16. http://www.earth-science.net/WebPage/Article.aspx?id=3215
      李春雷,2007.漠河盆地构造特征演化与成盆动力学研究(硕士学位论文).北京:中国地质大学. http://d.wanfangdata.com.cn/Thesis/Y1784198
      李锦轶,和政军,莫申国,等,2004.大兴安岭北部绣峰组下部砾岩的形成时代及其大地构造意义.地质通报,23(2): 120-129. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200402003.htm
      李良,孙丰月,李碧乐,等,2015.黑龙江省漠河县砂宝斯金矿床流体特征及矿床成因.地球科学,40(7):1163-1176. http://www.earth-science.net/WebPage/Article.aspx?id=3117
      李亚萍,李锦轶,孙桂华,等,2007.准噶尔盆地基底的探讨: 来自原泥盆纪卡拉麦里组砂岩碎屑锆石的证据.岩石学报,23(7): 1577-1590. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200707002.htm
      孟恩,许文良,杨德彬,等,2011.满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义.岩石学报,27(4): 1209-1226. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201104029.htm
      其和日格,1995.黑龙江省漠河地区中侏罗统二十二站组的遗迹化石.中国区域地质,(3): 243-244. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD503.008.htm
      齐金忠,李莉,郭晓东,2000.大兴安岭北部砂宝斯蚀变砂岩型金矿地质特征.矿床地质,19(2): 116-125. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200002002.htm
      邵磊,Stattergger,K.,李文厚,1998.从砂岩地球化学探讨盆地构造背景.科学通报,43(9): 985-987. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199809020.htm
      孙广瑞,刘旭光,韩振哲,等,2002.上黑龙江盆地中上侏罗统二十二站群的地层划分与时代.地质通报,21(3): 150-155. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200203008.htm
      孙求实,2013.漠河盆地晚侏罗系以来剥露过程研究(硕士学位论文).长春:吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-1013195446.htm
      万渝生,张巧大,宋天锐,2003.北京十三陵长城系常州沟组碎屑锆石SHRIMP年龄:华北克拉通盖层物源区及最大沉积年龄的限定.科学通报,48(18): 1970-1975. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200318013.htm
      王键,孙丰月,李碧乐,等,2016.内蒙乌拉特中旗图古日格二叠纪角闪石岩年龄、岩石成因及构造背景.地球科学,41(5): 792-808. http://www.earth-science.net/WebPage/Article.aspx?id=3299
      王骞,2007.漠河盆地西部构造特征的地球物理研究(硕士学位论文).长春:吉林大学. http://cdmd.cnki.com.cn/article/cdmd-10183-2007095175.htm
      吴河勇,辛仁臣,杨建国,2003a.漠河盆地中侏罗统沉积演化及含油气远景.石油实验地质,25(2): 116-121. http://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200302003.htm
      吴河勇,杨建国,黄清华,等,2003b.漠河盆地中生代地层层序及时代.地层学杂志,27(3): 193-198. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200303004.htm
      辛仁臣,吴河勇,杨建国,2003.漠河盆地上侏罗统层序地层格架.地层学杂志,27(3): 199-204. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200303005.htm
      徐美君,许文良,孟恩,等,2011.内蒙古东北部额尔古纳地区上护林-向阳盆地中生代火山岩LA-ICP-MS锆石U-Pb年龄和地球化学特征.地质通报,30(9): 1321-1338. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201109001.htm
      许文良,王枫,裴福萍,等,2013.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约.岩石学报,29(2): 339-353. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm
      杨建国,吴河勇,刘俊来,2006.大庆探区外围盆地中、新生代地层对比及四大勘探层系.地质通报,25(9-10): 1088-1093. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2006Z2016.htm
      张超,杨伟红,和钟铧,等,2014.大兴安岭中南段塔尔气地区满克头鄂博组流纹岩年代学和地球化学研究.世界地质,33(2): 255-265. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201402002.htm
      张吉衡,2005.大兴安岭地区中生代火山岩的年代学格架(硕士学位论文).长春:吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-2006091982.htm
      张顺,林春明,吴朝东,等,2003.黑龙江漠河盆地构造特征与成盆演化.高校地质学报,9(3): 411-419. http://cdmd.cnki.com.cn/Article/CDMD-11415-2007066666.htm
    • 期刊类型引用(24)

      1. 刘锐,臧淑英,赵林,吴晓东,刘立新,吴少强,李天瑞,张紫豪,何俭翔,李彪,张博雄,程小峰. 30 ka BP以来大兴安岭漠河盆地多年冻土区气候与环境变化. 地理学报. 2024(09): 2280-2296 . 百度学术
      2. 李焕纪,孙永刚,郑近龙,董峻麟,张徐平. 青海沱沱河地区夏里组砂岩形成时代及物源区构造环境判别. 世界核地质科学. 2024(05): 875-887 . 百度学术
      3. 王久懿,孙彦峰,周传芳,乔牡冬,徐立明,王远超,韩风,姜平,冯嘉,张起鹏. 黑龙江漠河盆地漠河组砂岩碎屑锆石U-Pb年龄、地球化学特征及其对构造背景的制约. 地质通报. 2023(01): 146-167 . 百度学术
      4. 杜兵盈,刘宇崴,王训练,刘勇,高洪岩,张铁安. 黑龙江省前新生代地层研究新进展. 地层学杂志. 2023(01): 102-117 . 百度学术
      5. 周传芳,冯嘉,杨华本,段明新,王久懿,陈卓,杜兵盈,梁中恺,孙彦峰,于俊博,姜平. 漠河盆地中侏罗世绣峰组物源分析及构造意义. 吉林大学学报(地球科学版). 2023(02): 450-474 . 百度学术
      6. 段明新,周传芳,杨华本,蔡艳龙,魏小勇,徐建鑫. 漠河盆地西缘阿陵河砾岩层的形成时代及其地质意义. 地质科学. 2022(03): 861-878 . 百度学术
      7. 李小亮,杨乐,张松涛,张万辉,覃泽礼,严正平,赵俊芳,李良. 青海东昆仑驼路沟钴矿的成矿时代与成因. 世界地质. 2022(03): 483-497 . 百度学术
      8. 陈龙,梁琛岳,刘永江,贾祥鹤,张骞,宋志伟,李冬雪,段东. 漠河盆地绣峰组形成时代及物源分析:对蒙古-鄂霍茨克洋东段演化的启示. 地球科学. 2022(09): 3334-3353 . 本站查看
      9. 周传芳,杨华本,蔡艳龙,张元厚,姜丽莉,魏小勇,段明新,冯嘉,王博超,赵喜东. 漠河盆地西缘漠河组形成时代及物源区构造环境判别. 中国地质. 2021(03): 832-853 . 百度学术
      10. 段明新,周传芳,杨华本,蔡艳龙,魏小勇,徐建鑫,赵佳琪. 漠河盆地西部二十二站组碎屑锆石U-Pb年龄、地球化学特征及其物源意义. 地质学报. 2021(11): 3317-3334 . 百度学术
      11. 王远超,赵元艺,刘春花,水新芳,程贤达,巩鑫,刘璇,谭伟,洪骏男. 漠河盆地二十二站组砂岩年代学、地球化学及其地质意义. 地质学报. 2020(03): 869-893 . 百度学术
      12. 蒙麟鑫,周云,蔡永丰,冯佐海,唐专红,蒙有言,麻艺超. 扬子与华夏地块西南端界线:来自钦防地区碎屑锆石U-Pb年代学的制约. 地球科学. 2020(04): 1227-1242 . 本站查看
      13. 李宝龙,范海滨,朱德全,彭勃,郭平,周磊,李宇飞. 藏北革吉北部竟柱山组地球化学与碎屑锆石U-Pb年代学特征及构造意义. 地质学报. 2020(12): 3657-3673 . 百度学术
      14. 杜添添,曲跃. 漠河盆地二十二站组泥岩的有机地球化学特征. 黑龙江科技大学学报. 2019(01): 1-4 . 百度学术
      15. 杜兵盈,刘宇崴,张铁安,刘玉,王文东,赵明胜,刘明伟,赵雨生. 黑龙江省西北部侏罗纪—早白垩世地层划分与对比. 地层学杂志. 2019(01): 28-35 . 百度学术
      16. 杨文鹏,张立东,张俭峰,姜海洋,吕石佳,李新鹏,万太平. 东北地区新开岭-科洛杂岩变形规律与成因. 地球科学. 2019(07): 2551-2566 . 本站查看
      17. 李良,孙丰月,李碧乐,陈广俊,许庆林,张雅静,钱烨,王琳琳. 漠河地区黑云母花岗闪长岩地球化学、Hf同位素特征及其成因. 地球科学. 2018(02): 417-435 . 本站查看
      18. 徐大良,彭练红,刘浩,邓新,魏运许,张维峰. 南秦岭北缘淅川地区泥盆纪地层的物源及构造背景. 地球科学. 2018(07): 2234-2248 . 本站查看
      19. 周江羽,魏启荣,王健,许欢,赵闪,吉雪峰,欧波,王旭东,陈泰一. 西藏则学地区古特提斯残留洋盆沉积充填及源区构造背景. 地球科学. 2018(06): 2116-2132 . 本站查看
      20. 陈泰一,魏启荣,周江羽,王旭东,曾会兰,王健,吉雪峰,许欢,赵闪,欧波. 西藏岗巴-东亚地区永珠组沉积时代及沉积环境. 地球科学. 2018(08): 2893-2910 . 本站查看
      21. 白建科,陈隽璐,朱小辉,冯博. 准噶尔盆地东北缘卡拉麦里组物源区特征:碎屑岩地球化学及锆石U-Pb年代学的制约. 地球科学. 2018(12): 4411-4426 . 本站查看
      22. 李世超,张凌宇,李鹏川,施璐,郑常青. 大兴安岭中段早三叠世O型埃达克岩的发现及其大地构造意义. 地球科学. 2017(12): 2117-2128 . 本站查看
      23. 袁晓蔷,姚光庆,姜平,陆江. 北部湾盆地乌石凹陷东部流沙港组物源分析. 地球科学. 2017(11): 2040-2054 . 本站查看
      24. 李占东,李海红,刘义坤. 黑龙江省冻土天然气水合物前景及对能源转型的机遇. 齐齐哈尔大学学报(哲学社会科学版). 2017(10): 16-18+21 . 百度学术

      其他类型引用(13)

    • 加载中
    图(10) / 表(2)
    计量
    • 文章访问数:  5163
    • HTML全文浏览量:  2516
    • PDF下载量:  48
    • 被引次数: 37
    出版历程
    • 收稿日期:  2016-07-25
    • 刊出日期:  2017-01-15

    目录

    /

    返回文章
    返回