Characteristics of Rare Earth Elements in the Sediments of the Datong Basin and Its Indication to the Iodine Enrichment
-
摘要: 大同盆地是典型的干旱-半干旱内陆盆地,盆地中部地下水碘含量异常,对当地饮用水安全造成了严重威胁.对盆地高碘地下水分布区沉积物组成及稀土元素(REE) 进行了地球化学研究,结果表明,地下水系统呈弱碱性(pH值为7.18~9.64) 的偏还原环境,沉积物多为Ce正常或轻微负异常及Eu负异常;沉积物中碘含量为0~1.78×10-6;ΣREE含量较高,ΣLREE/ΣHREE比值为2.79~4.14,即富集轻稀土元素(LREE) 而亏损重稀土元素(HREE).ΣREE与碘含量呈负相关关系,虽然铁氧化物/氢氧化物矿物的还原性溶解可导致二者的释放,但由于沉积物有机质产生的低结晶矿物对碘的强吸附性,使沉积物中碘含量较高;弱碱性环境中REE的再吸附过程会导致沉积物中富集LREE;沉积物中碘含量与氧化还原敏感组分TOC、U、V及[Eu]N的关系也表明,地下水系统的氧化还原条件及有机质含量是影响碘富集的重要因素.Abstract: Under arid and semi-arid climate, high iodine concentration in groundwater of the Datong basin, has been a serious threat to the safety of drinking water for the residents. Sediments composition and rare earth elements (REE) were studied on the 300 m core samples from iodine-affected area of the Datong basin. Results show that the groundwater system in the study area is alkalescent (pH: 7.18~9.64) partial reductive environment, and sediments show the slightly negative anomalies of Ce and Eu. The content of iodine in sediments is 0~1.78×10-6. The content of ΣREE are high and the ΣLREE/ΣHREE ratios are 2.79~4.14, which means samples are enriched in LREE and depleted in HREE. There is a negative relationship between the concentrations of ΣREE and iodine. Although the reductive dissolution of the iron oxide / hydroxide mineral can result in the release of them, strong absorption of iodine by the low crystallinity minerals produced by sedimentary organic matter makes the iodine content in sediments higher. In slightly weak alkaline environment, the process of REE re-adsorption might attributed to the enrichment of LREE in sediments. The relationship between iodine contents and redox sensitive components (TOC, U, V and [Eu]N show that the redox conditions and organic matter content in groundwater system are important factors that affect the concentration of iodine.
-
Key words:
- groundwater /
- rare earth elements (REE) /
- iodine /
- geochemistry /
- redox reaction /
- Datong basin /
- sediments
-
图 1 大同盆地高碘地下水中碘含量分布(a) 和沉积物钻孔岩性(b)、碘(c)、TOC (d)、ΣREE (e)、U (f)、pH (g)、LREE/HREE值(h) 垂向分布
图a引自李俊霞(2014)
Fig. 1. Distribution of iodine content (a), lithology (b) and vertical profiles of iodine (c), TOC (d), ΣREE (e), U (f), pH (g) and LREE/HREE (h) in core sediment samples from Datong basin
表 1 大同盆地沉积物中碘及其他元素的含量统计
Table 1. Iodine and other element contents in the sediments from Datong basin
沉积物样品参数 pH 碘(10-6) TOC (%) ΣREE (10-6) U (10-6) V (10-6) ΣLREE/ΣHREE Ce/Ce* Eu/Eu* 最大值 9.64 1.78 10.66 262.1 16.49 151.80 4.14 0.99 1.04 最小值 7.18 0.00 <0.01 71.7 1.51 36.04 2.79 0.90 0.72 平均值 8.77 0.29 1.66 171.6 3.43 81.32 3.43 0.94 0.92 -
Bao, Z.C., Peng, B., Xu, J.Z., et al., 2012.Geochemical Study on the Relation of Chemical Compositions to Heavy Metal Contamination of Sediments from the Lowermost Xiangjiang River, Hunan Province, China.Geochimica, 41(6):545-558 (in Chinese with English abstract). Barrat, J.A., Boulègue, J., Tiercelin, J.J., et al., 2000.Strontium Isotopes and Rare-Earth Element Geochemistry of Hydrothermal Carbonate Deposits from Lake Tanganyika, East Africa.Geochimica et Cosmochimica Acta, 64(2):287-298.doi: 10.1016/s0016-7037(99)00294-x Bau, M., 1999.Scavenging of Dissolved Yttrium and Rare Earths by Precipitating Iron Oxyhydroxide:Experimental Evidence for Ce Oxidation, Y-Ho Fractionation, and Lanthanide Tetrad Effect.Geochimica et Cosmochimica Acta, 63(1):67-77.doi: 10.1016/s0016-7037(99)00014-9 Chen, D.F., Dong, W.Q., Qi Liang, et al., 2003.Possible REE Constraints on the Depositional and Diagenetic Environment of Doushantuo Formation Phosphorites Containing the Earliest Metazoan Fauna.Chemical Geology, 201(1-2):103-118.doi: 10.1016/s0009-2541(03)00235-3 Chen, L.Q., Wei, F.S., 1991.The Background Value of Bromon and Iodine in China Soils.Aird Environmental Monitoring, 5(2):65-69 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GHJC199102000.htm Deng, Y.M., Wang, Y.X., Li, H.J., et al., 2015.Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain.Earth Science, 40(11):1876-1886(in Chinese with English abstract). https://www.researchgate.net/publication/288228393_Seasonal_variation_of_arsenic_speciation_in_shallow_groundwater_from_endemic_arsenicosis_area_in_Jianghan_Plain Deng, Y.N., Guo, Q.J., Zhu, M.Y., et al., 2014.REE Geochemistry of Kerogen from Early Cambrian Black Rock Series in Western Hunan.Earth Science, 39(3):283-292 (in Chinese with English abstract). https://www.researchgate.net/publication/285986475_REE_geochemistry_of_kerogen_from_Early_Cambrian_black_rock_series_in_western_Hunan Eusterhues, K., Rennert, T., Knicker, H., et al., 2011.Fractionation of Organic Matter Due to Reaction with Ferrihydrite:Coprecipitation Versus Adsorption.Environmental Science & Technology, 45(2):527-533.doi: 10.1021/es1023898 Englund.E, Aldahan.A, Hou.X.L., et al., 2010.Speciation of Iodine (127I and 129I) in Lake Sediments.Nuclear Instruments and Methods in Physics Research, 268(7-8):1102-1105.doi: 10.1016/j.nimb.2009.10.109 Guo, H.M., 2002.Environmental Evolution of Shallow Groundwater and Its Pollution Sensitivity in Datong Basin of Shanxi Province (Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract). Guo, H.M., Zhang, B., Li, Y., et al., 2010.Concentrations and Patterns of Rare Earth Elements in High Arsenic Groundwaters from the HetaoPlain, Inner Mongolia.Earth Science Frontiers, 17(6):59-66 (in Chinese with English abstract). Hansen, V., Roos, P., Aldahan, A., et al., 2011.Partition of Iodine (129I and 127I) Isotopes in Soils and Marine Sediments.Journal of Environmental Radioactivity, 102(12):1096-1104.doi: 10.1016/j.jenvrad.2011.07.005 Huang, C.M., Gong.Z.T., 2001.Geochemical Implication of Rare Earth Elements in Process of Soil Development.Journal of Rare Earth, 19(1):57-62. https://www.researchgate.net/publication/280036654_Geochemical_implication_of_rare_earth_elements_in_process_of_soil_development Huang, C.M., Wang, C.S., 2002.Geochemical Features of Rare Earth Elements in Process of Rock Weathering and Soil Formation.Chinese Rare Earths, 23(5):46-49 (in Chinese with English abstract). Islam, F.S., Gault, A.G., Boothman, C., et al., 2004.Role of Metal-Reducing Bacteria in Arsenic Release from Bengal Delta Sediments.Nature, 430(6995):68-71.doi: 10.1038/nature02638 Johnson, C.C., 2003.Database of the Iodine Content of Soils Populated with Data from Published Literature.British Geological Survey Commissioned Report CR/03/004N. https://www.researchgate.net/publication/264533016_Database_of_Iodine_Content_of_Soils_Populated_with_Data_from_Published_Literature Jones, B., Manning, D.A.C., 1994.Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones.Chemical Geology, 111(1-4):111-129.doi: 10.1016/0009-2541(94)90085-x Kodama, S., Takahashi, Y., Okumura, K., et al., 2006.Speciation of Iodine in Solid Environmental Samples by Iodine K-Edge XANES:Application to Soils and Ferromanganese Oxides.Science of the Total Environment, 363(1-3):275-284.doi: 10.1016/j.scitotenv.2006.01.004 Lan, X.H., Li, R.H., Mi, B.B., et al., 2016.Distribution Characteristics of Rare Earth Elements in Surface Sediment and Their Provenance Discrimination in the Eastern Bohai and Northern Yellow Seas.Earth Science, 41(3):463-474(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201603012.htm Li, J.X., 2014.Geochemistry of High Iodine Groundwater System of Datong Basin, Northern China (Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract). Li, J.X., Wang Y.X., Guo W., et al., 2014.Iodine Mobilization in Groundwater System at Datong Basin, China:Evidence from Hydrochemistry and Fluorescence Characteristics.Science of the Total Environment, 468-469:738-745.doi: 10.1016/j.scitotenv.2013.08.092 Lin, Z.J., Chen, D.F., Liu, Q., 2008.Geochemical Indices for Redox Conditions of Marine Sediments.Bulletin of Mineralogy, Petrology and Geochemistry, 27(1):72-80 (in Chinese with English abstract). https://www.researchgate.net/publication/288555539_Geochemical_indices_for_redox_conditions_of_marine_sediments Malcolm, S.J., Price, N.B., 1984.The Behaviour of Iodine and Bromine in Estuarine Surface Sediments.Marine Chemistry, 15(3):263-271.doi: 10.1016/0304-4203(84)90022-7 Munksgaard, N.C., Lim, K., Parry, D.L., 2003.Rare Earth Elements as Provenance Indicators in North Australian Estuarine and Coastal Marine Sediments.Estuarine, Coastal and Shelf Science, 57(3):399-409.doi: 10.1016/s0272-7714(02)00368-2 Olivarez, A.M., Owen, R.M., Rea, D.K., 1991.Geochemistry of Eolian Dust in Pacific Pelagic Sediments:Implications for Paleoclimatic Interpretations.Geochimica et Cosmochimica Acta, 55(8):2147-2158.doi: 10.1016/0016-7037(91)90093-k Ren, J.B., He, G.W., Yao, H.Q., et al., 2016.Geochemistry and Significance of REE and PGE of the Cobalt-Rich Crusts from West Pacific Ocean Seamounts.Earth Science, 41(10):1745-1757 (in Chinese with English abstract). https://www.researchgate.net/publication/309768997_Geochemistry_and_significance_of_REE_and_PGE_of_the_cobalt-rich_crusts_from_west_pacific_ocean_seamounts Rio-Salas, R.D., Ochoa-Landín, L., Eastoe, C.J., et al., 2013.Genesis of Manganese Oxide Mineralization in the Boleo Region and Concepción Peninsula, Baja California Sur:Constraints from Pb-Sr Isotopes and REE Geochemistry.Revista Mexicana de Ciencias Geológicas, 30(3):482-499. https://www.researchgate.net/publication/260839358_Genesis_of_manganese_oxide_mineralization_in_the_Boleo_region_and_Concepcion_Peninsula_Baja_California_Sur_constraints_from_Pb-Sr_isotopes_and_REE_geochemistry Schlegel, M.L., Reiller, P., Mercier-Bion, F., et al., 2006.Molecular Environment of Iodine in Naturally Iodinated Humic Substances:Insight from X-Ray Absorption Spectroscopy.Geochimica et Cosmochimica Acta, 70(22):5536-5551.doi: 10.1016/j.gca.2006.08.026 Shields, G., Stille, P., 2001.Diagenetic Constraints on the Use of Cerium Anomalies as Palaeoseawater Redox Proxies:An Isotopic and REE Study of Cambrian Phosphorites.Chemical Geology, 175(1-2):29-48.doi: 10.1016/s0009-2541(00)00362-4 Singh, P., Rajamani, V., 2001.REE Geochemistry of Recent Clastic Sediments from the Kaveri Floodplains, Southern India:Implication to Source Area Weathering and Sedimentary Processes.Geochimica et Cosmochimica Acta, 65(18):3093-3108.doi: 10.1016/s0016-7037(01)00636-6 Su, C.L., 2006.Regional Hydrogeochemistry and Genesis of High Arsenic Groundwater at Datong Basin, ShanxiProvince, China (Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract). Taylor, S.R., McLennan, S.M., 1981.The Continental Crust:Its Composition and Evolution.Blackwell, Boston. Tribovillard, N., Algeo, T.J., Lyons, T., et al., 2006.Trace Metals as Paleoredox and Paleoproductivity Proxies:An Update.Chemical Geology, 232(1-2):12-32.doi: 10.1016/j.chemgeo.2006.02.012 Verplanck, P.L., Nordstrom, D.K., Taylor, H.E., et al., 2004.Rare Earth Element Partitioning between Hydrous Ferric Oxides and Acid Mine Water during Iron Oxidation.Applied Geochemistry, 19(8):1339-1354.doi: 10.1016/j.apgeochem.2004.01.016 Wang, S.H., Zhang, N., Chen, H., et al., 2014.The Surface Sediment Types and Their Rare Earth Element Characteristics from the Continental Shelf of the Northern South China Sea.Continental Shelf Research, 88:185-202.doi: 10.1016/j.csr.2014.08.005 Wang, X.J., Chen, Y.W., Lei, J.Q., et al., 1982.REE Geochemistry in Sea-Floor Sediments in the Continental Shelf of East China Sea.Geochimica, 11(1):56-65 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX198201007.htm Xie, X.J., Wang, Y.X., Li, J.X., et al., 2012.Characteristics and Implications of Rare Earth Elements in High Arsenic Groundwater from the Datong Basin.Earth Science, 37(2):381-390(in Chinese with English abstract). Xu, S.Q., Xie, Z.Q., Liu, W., et al., 2010.Extraction and Determination of Total Bromine, Iodine, and Their Species in Atmospheric Aerosol.Chinese Journal of Analytical Chemistry, 38(2):219-224.doi: 10.1016/s1872-2040(09)60026-8 Zeng, Z.H., 1999.The Formation of I and Its Control Factors.Jilin Geology, 18(2):30-33 (in Chinese with English abstract). Zhang, M.L., Xu, M., Peng, X.F., 2013.Study on Groundwater Hydrochemical Classification of Mount Hua Ying Fold Based the Cluster Analysis.Ground Water, 35(1):31-33 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXSU201301012.htm Zhu, F.Q., Tan, J.A.1989.The Source of Iodine in Soil and Its Relationship with the Distribution of Endemic Goiter in China.Geography Science, 9(4):369-376 (in Chinese). Zhu, L.M., Du, J.M., Zhang, Y.H., et al., 2006.Tracing the Sediment Source at E2 Hole in the South Yellow Sea with Rare Earth Element and Trace Element.Acta Scientiae Circumstantiae, 26(3):495-500 (in Chinese with English abstract). http://www.oalib.com/paper/1589916 鲍志诚, 彭渤, 徐婧喆, 等, 2012.湘江入湖河段沉积物主元素组成对重金属污染的指示.地球化学, 41(6): 545-558. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201206004.htm 陈立乔, 魏复盛, 1991.中国土壤中溴、碘的背景含量.干旱环境监测, 5(2): 65-69. http://www.cnki.com.cn/Article/CJFDTOTAL-GHJC199102000.htm 邓义楠, 郭庆军, 朱茂炎, 等, 2014.湘西寒武纪早期黑色岩系中干酪根的稀土元素地球化学特征.地球科学, 39(3): 283-292. http://www.earth-science.net/WebPage/Article.aspx?id=2839 邓娅敏, 王焰新, 李慧娟, 等2015.江汉平原砷中毒病区地下水砷形态季节性变化特征.地球科学, 40(11): 1876-1886. http://www.earth-science.net/WebPage/Article.aspx?id=3194 郭华明, 2002.山西大同盆地浅层地下水环境演化及污染敏感性研究(博士学位论文).武汉:中国地质大学. 郭华明, 张波, 李媛, 等, 2010.内蒙古河套平原高砷地下水中稀土元素含量及分异特征.地学前缘, 17(6): 59-66. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006007.htm 黄成敏, 王成善, 2002.风化成土过程中稀土元素地球化学特征.稀土, 23(5): 46-49. http://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ200205013.htm 蓝先洪, 李日辉, 密蓓蓓, 等, 2016.渤海东部和黄海北部表层沉积物稀土元素的分布特征与物源判别.地球科学, 41(3): 463-474. http://www.earth-science.net/WebPage/Article.aspx?id=3272 李俊霞, 2014.大同盆地高碘地下水系统地球化学研究(博士学位论文).武汉:中国地质大学. 林治家, 陈多福, 刘芊, 2008.海相沉积氧化还原环境的地球化学识别指标.矿物岩石地球化学通报, 27(1): 72-80. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200801012.htm 任江波, 何高文, 姚会强, 等, 2016.西太平洋海山富钴结壳的稀土和铂族元素特征及其意义.地球科学, 41(10): 1745-1757. http://www.earth-science.net/WebPage/Article.aspx?id=3376 苏春利, 2006.大同盆地区域水文地球化学与高砷地下水成因研究(博士学位论文).武汉:中国地质大学. 王贤觉, 陈毓蔚, 雷剑泉, 等, 1982.东海大陆架海底沉积物稀土元素地球化学研究.地球化学, 11(1): 56-65. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198201007.htm 谢先军, 王焰新, 李俊霞, 等, 2012.大同盆地高砷地下水稀土元素特征及其指示意义.地球科学, 37(2): 381-390. http://www.earth-science.net/WebPage/Article.aspx?id=2243 曾昭华, 1999.地下水中碘的形成及其控制因素.吉林地质, 18(2): 30-33. http://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ902.004.htm 张明亮, 许模, 彭晓凤, 2013.基于聚类分析的华蓥山褶皱山系地下水水化学分类研究.地下水, 35(1): 31-33. http://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201301012.htm 朱发庆, 谭见安, 1989.土壤碘的来源及其与我国地甲病分布规律的关系研究.地理科学, 9(4): 369-376. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX198904009.htm 朱赖民, 杜俊民, 张远辉, 等, 2006.南黄海中部E2柱样沉积物来源的稀土元素及微量元素示踪.环境科学学报, 26(3): 495-500. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX200603022.htm