• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大同盆地沉积物REE分布特征及其对碘富集的指示

    周海玲 苏春利 李俊霞 谢先军

    周海玲, 苏春利, 李俊霞, 谢先军, 2017. 大同盆地沉积物REE分布特征及其对碘富集的指示. 地球科学, 42(2): 298-306. doi: 10.3799/dqkx.2017.022
    引用本文: 周海玲, 苏春利, 李俊霞, 谢先军, 2017. 大同盆地沉积物REE分布特征及其对碘富集的指示. 地球科学, 42(2): 298-306. doi: 10.3799/dqkx.2017.022
    Zhou Hailing, Su Chunli, Li Junxia, Xie Xianjun, 2017. Characteristics of Rare Earth Elements in the Sediments of the Datong Basin and Its Indication to the Iodine Enrichment. Earth Science, 42(2): 298-306. doi: 10.3799/dqkx.2017.022
    Citation: Zhou Hailing, Su Chunli, Li Junxia, Xie Xianjun, 2017. Characteristics of Rare Earth Elements in the Sediments of the Datong Basin and Its Indication to the Iodine Enrichment. Earth Science, 42(2): 298-306. doi: 10.3799/dqkx.2017.022

    大同盆地沉积物REE分布特征及其对碘富集的指示

    doi: 10.3799/dqkx.2017.022
    基金项目: 

    国家自然科学基金项目 41502230

    详细信息
      作者简介:

      周海玲(1991-),女,硕士,主要从事地下水污染与防治方面的研究工作.ORCID:0000-0002-5573-578X.E-mail: zhouhailing2015@163.com

    • 中图分类号: P641.69

    Characteristics of Rare Earth Elements in the Sediments of the Datong Basin and Its Indication to the Iodine Enrichment

    • 摘要: 大同盆地是典型的干旱-半干旱内陆盆地,盆地中部地下水碘含量异常,对当地饮用水安全造成了严重威胁.对盆地高碘地下水分布区沉积物组成及稀土元素(REE) 进行了地球化学研究,结果表明,地下水系统呈弱碱性(pH值为7.18~9.64) 的偏还原环境,沉积物多为Ce正常或轻微负异常及Eu负异常;沉积物中碘含量为0~1.78×10-6;ΣREE含量较高,ΣLREE/ΣHREE比值为2.79~4.14,即富集轻稀土元素(LREE) 而亏损重稀土元素(HREE).ΣREE与碘含量呈负相关关系,虽然铁氧化物/氢氧化物矿物的还原性溶解可导致二者的释放,但由于沉积物有机质产生的低结晶矿物对碘的强吸附性,使沉积物中碘含量较高;弱碱性环境中REE的再吸附过程会导致沉积物中富集LREE;沉积物中碘含量与氧化还原敏感组分TOC、U、V及[Eu]N的关系也表明,地下水系统的氧化还原条件及有机质含量是影响碘富集的重要因素.

       

    • 图  1  大同盆地高碘地下水中碘含量分布(a) 和沉积物钻孔岩性(b)、碘(c)、TOC (d)、ΣREE (e)、U (f)、pH (g)、LREE/HREE值(h) 垂向分布

      图a引自李俊霞(2014)

      Fig.  1.  Distribution of iodine content (a), lithology (b) and vertical profiles of iodine (c), TOC (d), ΣREE (e), U (f), pH (g) and LREE/HREE (h) in core sediment samples from Datong basin

      图  2  大同盆地沉积物中碘含量与TOC (a)、pH值(b) 的关系

      Fig.  2.  The relationship between iodine content and TOC (a), pH (b) in the sediments from Datong basin

      图  3  大同盆地沉积物中ΣREE与V关系

      Fig.  3.  The relationship between ΣREE and V contents inthe sediments from Datong basin

      图  4  大同盆地沉积物北美页岩标准化稀土元素配分模式图

      Fig.  4.  The Northern American Shale Composite normalized REE pattern of the sediments from Datong basin

      图  5  大同盆地沉积物中ΣREE与碘的关系

      Fig.  5.  The relationship between ΣREE and iodine concentration in the sediments from Datong basin

      图  6  指标聚类分析结果

      Fig.  6.  Results of parameter clustering analysis

      图  7  沉积物样品中碘含量与ΣLREE/ΣHREE比值(a)、[Eu]N(b) 关系

      Fig.  7.  The relationship between iodine and the ratio of ΣLREE/ΣHREE (a), [Eu]N (b) in sediment samples

      表  1  大同盆地沉积物中碘及其他元素的含量统计

      Table  1.   Iodine and other element contents in the sediments from Datong basin

      沉积物样品参数 pH 碘(10-6) TOC (%) ΣREE (10-6) U (10-6) V (10-6) ΣLREE/ΣHREE Ce/Ce* Eu/Eu*
      最大值 9.64 1.78 10.66 262.1 16.49 151.80 4.14 0.99 1.04
      最小值 7.18 0.00 <0.01 71.7 1.51 36.04 2.79 0.90 0.72
      平均值 8.77 0.29 1.66 171.6 3.43 81.32 3.43 0.94 0.92
      下载: 导出CSV
    • Bao, Z.C., Peng, B., Xu, J.Z., et al., 2012.Geochemical Study on the Relation of Chemical Compositions to Heavy Metal Contamination of Sediments from the Lowermost Xiangjiang River, Hunan Province, China.Geochimica, 41(6):545-558 (in Chinese with English abstract).
      Barrat, J.A., Boulègue, J., Tiercelin, J.J., et al., 2000.Strontium Isotopes and Rare-Earth Element Geochemistry of Hydrothermal Carbonate Deposits from Lake Tanganyika, East Africa.Geochimica et Cosmochimica Acta, 64(2):287-298.doi: 10.1016/s0016-7037(99)00294-x
      Bau, M., 1999.Scavenging of Dissolved Yttrium and Rare Earths by Precipitating Iron Oxyhydroxide:Experimental Evidence for Ce Oxidation, Y-Ho Fractionation, and Lanthanide Tetrad Effect.Geochimica et Cosmochimica Acta, 63(1):67-77.doi: 10.1016/s0016-7037(99)00014-9
      Chen, D.F., Dong, W.Q., Qi Liang, et al., 2003.Possible REE Constraints on the Depositional and Diagenetic Environment of Doushantuo Formation Phosphorites Containing the Earliest Metazoan Fauna.Chemical Geology, 201(1-2):103-118.doi: 10.1016/s0009-2541(03)00235-3
      Chen, L.Q., Wei, F.S., 1991.The Background Value of Bromon and Iodine in China Soils.Aird Environmental Monitoring, 5(2):65-69 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GHJC199102000.htm
      Deng, Y.M., Wang, Y.X., Li, H.J., et al., 2015.Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain.Earth Science, 40(11):1876-1886(in Chinese with English abstract). https://www.researchgate.net/publication/288228393_Seasonal_variation_of_arsenic_speciation_in_shallow_groundwater_from_endemic_arsenicosis_area_in_Jianghan_Plain
      Deng, Y.N., Guo, Q.J., Zhu, M.Y., et al., 2014.REE Geochemistry of Kerogen from Early Cambrian Black Rock Series in Western Hunan.Earth Science, 39(3):283-292 (in Chinese with English abstract). https://www.researchgate.net/publication/285986475_REE_geochemistry_of_kerogen_from_Early_Cambrian_black_rock_series_in_western_Hunan
      Eusterhues, K., Rennert, T., Knicker, H., et al., 2011.Fractionation of Organic Matter Due to Reaction with Ferrihydrite:Coprecipitation Versus Adsorption.Environmental Science & Technology, 45(2):527-533.doi: 10.1021/es1023898
      Englund.E, Aldahan.A, Hou.X.L., et al., 2010.Speciation of Iodine (127I and 129I) in Lake Sediments.Nuclear Instruments and Methods in Physics Research, 268(7-8):1102-1105.doi: 10.1016/j.nimb.2009.10.109
      Guo, H.M., 2002.Environmental Evolution of Shallow Groundwater and Its Pollution Sensitivity in Datong Basin of Shanxi Province (Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract).
      Guo, H.M., Zhang, B., Li, Y., et al., 2010.Concentrations and Patterns of Rare Earth Elements in High Arsenic Groundwaters from the HetaoPlain, Inner Mongolia.Earth Science Frontiers, 17(6):59-66 (in Chinese with English abstract).
      Hansen, V., Roos, P., Aldahan, A., et al., 2011.Partition of Iodine (129I and 127I) Isotopes in Soils and Marine Sediments.Journal of Environmental Radioactivity, 102(12):1096-1104.doi: 10.1016/j.jenvrad.2011.07.005
      Huang, C.M., Gong.Z.T., 2001.Geochemical Implication of Rare Earth Elements in Process of Soil Development.Journal of Rare Earth, 19(1):57-62. https://www.researchgate.net/publication/280036654_Geochemical_implication_of_rare_earth_elements_in_process_of_soil_development
      Huang, C.M., Wang, C.S., 2002.Geochemical Features of Rare Earth Elements in Process of Rock Weathering and Soil Formation.Chinese Rare Earths, 23(5):46-49 (in Chinese with English abstract).
      Islam, F.S., Gault, A.G., Boothman, C., et al., 2004.Role of Metal-Reducing Bacteria in Arsenic Release from Bengal Delta Sediments.Nature, 430(6995):68-71.doi: 10.1038/nature02638
      Johnson, C.C., 2003.Database of the Iodine Content of Soils Populated with Data from Published Literature.British Geological Survey Commissioned Report CR/03/004N. https://www.researchgate.net/publication/264533016_Database_of_Iodine_Content_of_Soils_Populated_with_Data_from_Published_Literature
      Jones, B., Manning, D.A.C., 1994.Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones.Chemical Geology, 111(1-4):111-129.doi: 10.1016/0009-2541(94)90085-x
      Kodama, S., Takahashi, Y., Okumura, K., et al., 2006.Speciation of Iodine in Solid Environmental Samples by Iodine K-Edge XANES:Application to Soils and Ferromanganese Oxides.Science of the Total Environment, 363(1-3):275-284.doi: 10.1016/j.scitotenv.2006.01.004
      Lan, X.H., Li, R.H., Mi, B.B., et al., 2016.Distribution Characteristics of Rare Earth Elements in Surface Sediment and Their Provenance Discrimination in the Eastern Bohai and Northern Yellow Seas.Earth Science, 41(3):463-474(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201603012.htm
      Li, J.X., 2014.Geochemistry of High Iodine Groundwater System of Datong Basin, Northern China (Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract).
      Li, J.X., Wang Y.X., Guo W., et al., 2014.Iodine Mobilization in Groundwater System at Datong Basin, China:Evidence from Hydrochemistry and Fluorescence Characteristics.Science of the Total Environment, 468-469:738-745.doi: 10.1016/j.scitotenv.2013.08.092
      Lin, Z.J., Chen, D.F., Liu, Q., 2008.Geochemical Indices for Redox Conditions of Marine Sediments.Bulletin of Mineralogy, Petrology and Geochemistry, 27(1):72-80 (in Chinese with English abstract). https://www.researchgate.net/publication/288555539_Geochemical_indices_for_redox_conditions_of_marine_sediments
      Malcolm, S.J., Price, N.B., 1984.The Behaviour of Iodine and Bromine in Estuarine Surface Sediments.Marine Chemistry, 15(3):263-271.doi: 10.1016/0304-4203(84)90022-7
      Munksgaard, N.C., Lim, K., Parry, D.L., 2003.Rare Earth Elements as Provenance Indicators in North Australian Estuarine and Coastal Marine Sediments.Estuarine, Coastal and Shelf Science, 57(3):399-409.doi: 10.1016/s0272-7714(02)00368-2
      Olivarez, A.M., Owen, R.M., Rea, D.K., 1991.Geochemistry of Eolian Dust in Pacific Pelagic Sediments:Implications for Paleoclimatic Interpretations.Geochimica et Cosmochimica Acta, 55(8):2147-2158.doi: 10.1016/0016-7037(91)90093-k
      Ren, J.B., He, G.W., Yao, H.Q., et al., 2016.Geochemistry and Significance of REE and PGE of the Cobalt-Rich Crusts from West Pacific Ocean Seamounts.Earth Science, 41(10):1745-1757 (in Chinese with English abstract). https://www.researchgate.net/publication/309768997_Geochemistry_and_significance_of_REE_and_PGE_of_the_cobalt-rich_crusts_from_west_pacific_ocean_seamounts
      Rio-Salas, R.D., Ochoa-Landín, L., Eastoe, C.J., et al., 2013.Genesis of Manganese Oxide Mineralization in the Boleo Region and Concepción Peninsula, Baja California Sur:Constraints from Pb-Sr Isotopes and REE Geochemistry.Revista Mexicana de Ciencias Geológicas, 30(3):482-499. https://www.researchgate.net/publication/260839358_Genesis_of_manganese_oxide_mineralization_in_the_Boleo_region_and_Concepcion_Peninsula_Baja_California_Sur_constraints_from_Pb-Sr_isotopes_and_REE_geochemistry
      Schlegel, M.L., Reiller, P., Mercier-Bion, F., et al., 2006.Molecular Environment of Iodine in Naturally Iodinated Humic Substances:Insight from X-Ray Absorption Spectroscopy.Geochimica et Cosmochimica Acta, 70(22):5536-5551.doi: 10.1016/j.gca.2006.08.026
      Shields, G., Stille, P., 2001.Diagenetic Constraints on the Use of Cerium Anomalies as Palaeoseawater Redox Proxies:An Isotopic and REE Study of Cambrian Phosphorites.Chemical Geology, 175(1-2):29-48.doi: 10.1016/s0009-2541(00)00362-4
      Singh, P., Rajamani, V., 2001.REE Geochemistry of Recent Clastic Sediments from the Kaveri Floodplains, Southern India:Implication to Source Area Weathering and Sedimentary Processes.Geochimica et Cosmochimica Acta, 65(18):3093-3108.doi: 10.1016/s0016-7037(01)00636-6
      Su, C.L., 2006.Regional Hydrogeochemistry and Genesis of High Arsenic Groundwater at Datong Basin, ShanxiProvince, China (Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract).
      Taylor, S.R., McLennan, S.M., 1981.The Continental Crust:Its Composition and Evolution.Blackwell, Boston.
      Tribovillard, N., Algeo, T.J., Lyons, T., et al., 2006.Trace Metals as Paleoredox and Paleoproductivity Proxies:An Update.Chemical Geology, 232(1-2):12-32.doi: 10.1016/j.chemgeo.2006.02.012
      Verplanck, P.L., Nordstrom, D.K., Taylor, H.E., et al., 2004.Rare Earth Element Partitioning between Hydrous Ferric Oxides and Acid Mine Water during Iron Oxidation.Applied Geochemistry, 19(8):1339-1354.doi: 10.1016/j.apgeochem.2004.01.016
      Wang, S.H., Zhang, N., Chen, H., et al., 2014.The Surface Sediment Types and Their Rare Earth Element Characteristics from the Continental Shelf of the Northern South China Sea.Continental Shelf Research, 88:185-202.doi: 10.1016/j.csr.2014.08.005
      Wang, X.J., Chen, Y.W., Lei, J.Q., et al., 1982.REE Geochemistry in Sea-Floor Sediments in the Continental Shelf of East China Sea.Geochimica, 11(1):56-65 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX198201007.htm
      Xie, X.J., Wang, Y.X., Li, J.X., et al., 2012.Characteristics and Implications of Rare Earth Elements in High Arsenic Groundwater from the Datong Basin.Earth Science, 37(2):381-390(in Chinese with English abstract).
      Xu, S.Q., Xie, Z.Q., Liu, W., et al., 2010.Extraction and Determination of Total Bromine, Iodine, and Their Species in Atmospheric Aerosol.Chinese Journal of Analytical Chemistry, 38(2):219-224.doi: 10.1016/s1872-2040(09)60026-8
      Zeng, Z.H., 1999.The Formation of I and Its Control Factors.Jilin Geology, 18(2):30-33 (in Chinese with English abstract).
      Zhang, M.L., Xu, M., Peng, X.F., 2013.Study on Groundwater Hydrochemical Classification of Mount Hua Ying Fold Based the Cluster Analysis.Ground Water, 35(1):31-33 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXSU201301012.htm
      Zhu, F.Q., Tan, J.A.1989.The Source of Iodine in Soil and Its Relationship with the Distribution of Endemic Goiter in China.Geography Science, 9(4):369-376 (in Chinese).
      Zhu, L.M., Du, J.M., Zhang, Y.H., et al., 2006.Tracing the Sediment Source at E2 Hole in the South Yellow Sea with Rare Earth Element and Trace Element.Acta Scientiae Circumstantiae, 26(3):495-500 (in Chinese with English abstract). http://www.oalib.com/paper/1589916
      鲍志诚, 彭渤, 徐婧喆, 等, 2012.湘江入湖河段沉积物主元素组成对重金属污染的指示.地球化学, 41(6): 545-558. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201206004.htm
      陈立乔, 魏复盛, 1991.中国土壤中溴、碘的背景含量.干旱环境监测, 5(2): 65-69. http://www.cnki.com.cn/Article/CJFDTOTAL-GHJC199102000.htm
      邓义楠, 郭庆军, 朱茂炎, 等, 2014.湘西寒武纪早期黑色岩系中干酪根的稀土元素地球化学特征.地球科学, 39(3): 283-292. http://www.earth-science.net/WebPage/Article.aspx?id=2839
      邓娅敏, 王焰新, 李慧娟, 等2015.江汉平原砷中毒病区地下水砷形态季节性变化特征.地球科学, 40(11): 1876-1886. http://www.earth-science.net/WebPage/Article.aspx?id=3194
      郭华明, 2002.山西大同盆地浅层地下水环境演化及污染敏感性研究(博士学位论文).武汉:中国地质大学.
      郭华明, 张波, 李媛, 等, 2010.内蒙古河套平原高砷地下水中稀土元素含量及分异特征.地学前缘, 17(6): 59-66. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006007.htm
      黄成敏, 王成善, 2002.风化成土过程中稀土元素地球化学特征.稀土, 23(5): 46-49. http://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ200205013.htm
      蓝先洪, 李日辉, 密蓓蓓, 等, 2016.渤海东部和黄海北部表层沉积物稀土元素的分布特征与物源判别.地球科学, 41(3): 463-474. http://www.earth-science.net/WebPage/Article.aspx?id=3272
      李俊霞, 2014.大同盆地高碘地下水系统地球化学研究(博士学位论文).武汉:中国地质大学.
      林治家, 陈多福, 刘芊, 2008.海相沉积氧化还原环境的地球化学识别指标.矿物岩石地球化学通报, 27(1): 72-80. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200801012.htm
      任江波, 何高文, 姚会强, 等, 2016.西太平洋海山富钴结壳的稀土和铂族元素特征及其意义.地球科学, 41(10): 1745-1757. http://www.earth-science.net/WebPage/Article.aspx?id=3376
      苏春利, 2006.大同盆地区域水文地球化学与高砷地下水成因研究(博士学位论文).武汉:中国地质大学.
      王贤觉, 陈毓蔚, 雷剑泉, 等, 1982.东海大陆架海底沉积物稀土元素地球化学研究.地球化学, 11(1): 56-65. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198201007.htm
      谢先军, 王焰新, 李俊霞, 等, 2012.大同盆地高砷地下水稀土元素特征及其指示意义.地球科学, 37(2): 381-390. http://www.earth-science.net/WebPage/Article.aspx?id=2243
      曾昭华, 1999.地下水中碘的形成及其控制因素.吉林地质, 18(2): 30-33. http://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ902.004.htm
      张明亮, 许模, 彭晓凤, 2013.基于聚类分析的华蓥山褶皱山系地下水水化学分类研究.地下水, 35(1): 31-33. http://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201301012.htm
      朱发庆, 谭见安, 1989.土壤碘的来源及其与我国地甲病分布规律的关系研究.地理科学, 9(4): 369-376. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX198904009.htm
      朱赖民, 杜俊民, 张远辉, 等, 2006.南黄海中部E2柱样沉积物来源的稀土元素及微量元素示踪.环境科学学报, 26(3): 495-500. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX200603022.htm
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  6011
    • HTML全文浏览量:  2521
    • PDF下载量:  32
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-11-05
    • 刊出日期:  2017-02-15

    目录

      /

      返回文章
      返回