Geochemical Characteristics and Signatures of Siltstones from Laiyang Group at Lingshan Island, Qingdao, Shandong
-
摘要: 灵山岛下部莱阳群重力流沉积地层以其巨厚的沉积规模,独特的沉积特征受到国内外地质学界越来越多的重视.但目前,该套地层的源区风化程度、物源性质、物源区构造背景及沉积环境尚不明确,通过对灵山岛下部莱阳群粉砂岩进行岩相学分析、主量元素XRF测试、稀土及微量元素ICP-MS测试,结果显示:粉砂岩SiO2含量较低 (平均51.78%),Fe2O3T含量较高 (平均5.73%),Na2O平均含量为2.74%,K2O平均含量为2.79%;通过主量元素投图分析,样品归类为杂砂岩及岩屑砂岩;样品ΣREE为153.00×10-6~254.38×10-6,平均为201.65×10-6,高于PAAS及UCC,富集轻稀土元素,贫重稀土元素,具有中等程度Eu负异常,弱Ce负异常;相对于UCC,样品富集大离子亲石元素,弱富集高场强元素,亏损过渡组元素.样品ICV值高 (>0.84)、为初次循环沉积,CIA值低 (<65) 表明源区风化强度低,物源为长英质物质及少量古地壳再旋回物质,物源区大地构造背景为大陆岛弧与活动大陆边缘,沉积环境为海相还原环境且莱阳期为干热气候.此外,应用对REE元素进行归类统计的方法来推测物源区,分析表明样品物源区最有可能为胶南群与蓬莱群地层.Abstract: Gravity flow deposits of Laiyang Group at the lower part of Lingshan island attract an increasing attention of geologists at home and abroad because of its huge thickness and unique sedimentary features. However, its weathering degree, characteristics and structural setting of provenance, and depositional environment stillremain in dispute. In this study, major elements, rare earth elements and trace elements contents of the siltstones from Laiyang Group at Lingshan Island were examined by XRF and ICP-MS. It is found that siltstones are characterized by relatively low contents of SiO2 (avg. 51.78%) and high contents of Fe2O3T (avg. 51.78%); average contents of Na2O and K2O of siltstones are 2.74% and 2.79%, respectively, the siltstones are classified as litharenites and greywackes; ΣREE contents of the samples are 153.00×10-6-254.38×10-6 (avg. 201.65×10-6), which are higher than those of UCC and PAAS; the pattern of REE is characterized by LREE enrichment, HREE depletion, moderately negative Eu abnormity and weakly negative Ce abnormity; compared with UCC, samples are enriched in LILEs, weakly enriched in HFSEs and depleted in transitional elements. Index of Compositional Variability (ICV) values of siltstones in Lingshan Island are high, which indicates the source materials are mainly primary cycle sediments, Chemical Index of Alteration (CIA) values are relatively low, which suggests that the weathering intensity of provenance is low. Element analysis indicates that felsic rocks serve as the main source rocks, including small amounts of contributions from recycled orogenic belt materials; tectonic settings of provenance belong to active continental margin and continental island arc; sedimentary environment is reducing marine environment and paleoclimate of Laiyang Period was arid. It is original for the authors to apply the statistical analysis method to determine the provenance regions more precisely according to the features of REEs, and it is concluded that the source rocks are most likely from Jiaonan Group and Penglai Group.
-
Key words:
- Lingshan island /
- Laiyang Group /
- geochemistry /
- sedimentary environment
-
图 1 灵山岛大地构造位置及地质简图
1.下白垩统青山群;2.下白垩统莱阳群;3.白色流纹质熔岩;4.断层;5.地层产状;6.地形等高线;据栾光忠等修改 (2010)
Fig. 1. The sketch showing geotectonic position and geologic framework of Lingshan island
图 4 主量元素上地壳标准化蛛网图及砂岩化学成分分类
图a.UCC数据据Rudnick and Gao (2003);PAAS数据Taylor and McLennan (1985);图b底图据Prettijohn and Potter (1972)
Fig. 4. Normalization of major elements to upper continental crust and chemical classification diagrams discriminating sediments
图 5 微量元素上地壳标准化蛛网图
Fig. 5. Trace elements spider-diagram normalized to average upper continental crustal values
图 6 灵山岛莱阳群粉砂岩REE分布模式
标准化值据Taylor and Mclennan (1985)
Fig. 6. Chondrite-normalized REE diagrams of the Laiyang Group siltstones in Lingshan island
图 7 灵山岛莱阳群粉砂岩Al2O3-(CaO+Na2O)-K2O关系
Fig. 7. Al2O3-(CaO+Na2O)-K2O molecular proportion for siltstone from Laiyang Group at Lingshan island
图 8 主量元素源区判别
F1=(-1.773TiO2)+(0.607Al2O3)+(0.760Fe2O3T)+(-1.500MgO)+(0.616CaO)+(0.509Na2O)+(-1.224K2O)+(-9.090);F2=(0.445TiO2)+(0.070Al2O3)+(-0.250Fe2O3T)+(-1.142MgO)+(0.438CaO)+(1.475Na2O)+(1.426K2O)+(-6.861);底图据Roser and Korsch (1988)
Fig. 8. Major element provenance discriminant plot
图 9 灵山岛莱阳群粉砂岩La/Th-Hf图解
Fig. 9. La/Th-Hf plot for the provenance of the siltstone from Laiyang Group in Lingshan
图 10 灵山岛莱阳群粉砂岩Co/Th-La/Sc图解
Fig. 10. Co/Th-La/Sc plot for the provenance of the siltstone from Laiyang Group in Lingshan island
图 11 主量元素构造环境判别图解
ACM.活动大陆边缘;PM.被动大陆边缘;CIA.大陆岛弧;OIA.大洋岛弧;A1.具长英质源区演化弧;A2.源区为玄武质和安山质的弧;图a据Maynard et al.(1982);图b据Bhatia (1983)
Fig. 11. Major elements discrimination diagram to indicate the tectonic setting
图 12 灵山岛莱阳群粉砂岩源岩构造背景判别图
PAAS.后台古代澳大利亚页岩;MA.理想安山岩;MAR.岩浆弧;A.大洋岛弧;B.大陆岛弧;C.活动大陆边缘;D.被动大陆边缘;图a据Girty et al.(1993);图b~d据Bhatia and Crook (1986)
Fig. 12. Trace element plots of siltstones from Laiyang Group in Lingshan island for tectonic discrimination
图 14 SiO2-(Al2O3+K2O+Na2O) 古气候判别图
Fig. 14. Bivariate SiO2 wt.% versus (Al2O3+K2O+Na2O) wt.% palaeoclimate discrimination diagram
表 1 灵山岛莱阳群粉砂岩主量元素分析结果 (%)
Table 1. Major element contents (%) of siltstones from Laiyang Group at Lingshan island
样品号 船厂剖面 千层崖剖面 灯塔剖面 钓鱼台剖面 平均值 CC-1 CC-2 CC-3 QCY-1 QCY-2 QCY-3 DT-1 DT-2 DT-5 DYT-1 DYT-2 DYT-3 SiO2 55.55 55.98 54.72 46.48 49.54 50.59 53.82 52.73 59.92 46.56 48.57 46.85 51.78 Al2O3 13.60 13.34 14.77 13.44 13.29 13.78 14.46 15.31 17.73 12.11 11.56 11.82 13.77 FeO 3.35 2.55 3.73 3.93 3.89 3.98 3.30 3.46 3.20 4.31 4.20 4.42 3.69 Fe2O3 0.83 1.72 1.30 3.02 3.16 1.31 1.99 2.23 1.21 0.90 0.78 1.03 1.62 Fe2O3T 4.55 4.56 5.45 7.39 7.48 5.74 5.66 6.07 4.77 5.69 5.45 5.95 5.73 MgO 2.63 2.69 4.13 3.81 3.80 3.99 3.65 3.84 2.91 4.20 4.04 4.25 3.66 CaO 6.13 6.36 5.56 6.70 6.51 7.60 5.26 5.98 1.57 10.70 10.32 10.71 6.95 Na2O 3.10 3.29 2.22 2.78 3.05 3.14 2.18 2.54 2.33 2.62 2.77 2.83 2.74 K2O 2.52 2.52 3.41 2.58 2.58 2.70 3.06 3.22 4.19 2.28 2.19 2.28 2.79 MnO 0.08 0.06 0.05 0.09 0.06 0.07 0.06 0.05 0.02 0.17 0.13 0.13 0.08 TiO2 0.68 0.37 0.39 0.65 0.37 0.37 0.71 0.41 0.48 0.63 0.32 0.34 0.48 P2O5 0.24 0.12 0.10 0.20 0.10 0.10 0.46 0.25 0.09 0.22 0.10 0.11 0.17 LOI 10.21 10.53 8.97 10.83 11.20 11.45 10.27 9.53 5.89 13.62 14.17 14.22 10.91 Total 98.92 99.52 99.36 94.50 97.54 99.08 99.23 99.55 99.55 98.31 99.14 98.99 98.64 ICV 1.45 1.49 1.44 1.79 1.79 1.71 1.42 1.44 0.92 2.17 2.18 2.24 1.67 CIA 51.25 49.61 57.32 52.94 50.85 50.99 57.95 56.40 61.21 52.19 50.17 50.08 53.41 F1 -0.26 0.29 -2.50 0.21 0.73 -0.04 -2.15 -0.64 -2.91 0.31 0.53 0.87 -0.46 F2 1.10 1.25 -1.17 -1.12 -0.94 0.08 -1.23 -0.57 0.18 -0.15 -0.16 -0.11 -0.24 注:Fe2O3T= Fe2O3+1.111 3×FeO,总和不包括Fe2O3T含量;F1,F2函数系数据Roser and Korsch (1988);ICV=Fe2O3+K2O+Na2O+CaO+MgO+MnO+TiO2)/Al2O3(百分含量);CIA=[(Al2O3/(Al2O3+CaO*+Na2O+K2O)]×100(摩尔量),CaO*为硅酸盐矿物中的CaO含量,不包含碳酸盐与磷灰石中的CaO. 表 2 灵山岛莱阳群粉砂岩微量及稀土元素分析结果 (10-6)
Table 2. Trace elements contents of siltstones from Laiyang Group at Lingshan island
样品号 船厂剖面 千层崖剖面 灯塔剖面 钓鱼台剖面 平均值 CC-1 CC-2 CC-3 QCY-1 QCY-2 QCY-3 DT-1 DT-2 DT-5 DYT-1 DYT-2 DYT-3 Li 34.47 32.17 78.12 56.98 54.28 58.03 61.22 58.45 66.57 41.75 41.45 44.65 52.35 Be 2.09 2.10 2.56 2.64 2.58 2.31 3.35 3.22 4.11 1.94 1.88 1.70 2.54 Sc 11.57 8.90 10.17 11.54 10.96 10.34 14.45 14.94 14.47 14.56 10.32 10.53 11.90 V 74.14 80.88 87.42 94.91 94.47 91.10 128.24 130.07 124.54 60.93 62.93 65.87 91.29 Cr 52.29 56.46 67.39 99.58 102.51 81.04 95.33 101.83 90.46 52.13 56.46 64.05 76.63 Co 12.66 11.95 19.83 32.64 31.60 25.05 11.77 11.58 12.16 18.32 18.82 22.50 19.07 Ni 19.51 21.47 29.83 87.09 91.11 32.39 25.12 27.16 30.13 25.32 27.29 29.08 37.13 Cu 19.24 21.57 26.41 30.83 33.00 30.95 26.16 28.21 36.07 25.43 27.61 32.33 28.15 Zn 80.40 75.62 75.70 94.20 97.42 89.18 80.14 84.96 116.03 102.00 107.50 106.84 92.50 Ga 17.86 17.95 20.30 25.42 27.66 21.00 23.68 26.33 31.10 19.04 21.40 16.94 22.39 Rb 97.84 94.68 117.24 118.61 114.76 93.16 132.86 128.33 156.04 88.83 86.10 73.95 108.53 Sr 438.14 429.52 285.55 528.90 528.69 503.00 315.10 311.85 151.55 825.92 830.07 736.54 490.40 Y 21.89 21.63 24.23 25.10 27.77 26.36 32.48 31.64 25.83 32.43 29.37 28.06 27.23 Cs 7.85 8.27 14.13 7.34 8.05 8.03 11.17 11.77 11.82 4.95 4.90 5.72 8.67 Ba 620.59 628.52 625.97 987.70 984.03 839.13 837.46 831.57 1021.56 730.52 733.87 679.20 793.34 La 40.55 32.60 36.87 49.43 38.88 35.74 46.98 50.72 54.28 46.01 46.03 41.56 43.31 Ce 70.87 65.25 75.92 82.79 79.98 71.32 96.31 106.05 104.02 89.05 87.88 81.64 84.26 Pr 8.37 8.51 9.16 9.95 9.85 9.10 12.17 13.59 12.39 10.66 11.40 10.09 10.44 Nd 31.96 27.82 32.51 38.48 33.71 30.50 48.47 48.76 41.93 39.96 38.98 35.53 37.38 Sm 6.17 4.81 5.90 6.70 6.06 5.99 8.67 8.91 7.19 7.04 6.94 6.36 6.73 Eu 1.12 1.05 1.12 1.40 1.40 1.29 1.93 2.03 1.35 1.63 1.73 1.59 1.47 Gd 4.51 4.34 4.97 5.69 5.45 5.07 7.47 8.13 5.70 6.05 6.32 5.63 5.78 Tb 0.73 0.71 0.79 0.92 0.90 0.82 1.19 1.30 0.89 0.98 1.04 0.93 0.93 Dy 3.63 3.44 3.81 4.66 4.24 3.95 5.86 6.16 4.24 4.89 4.99 4.55 4.53 Ho 0.71 0.65 0.79 0.90 0.80 0.82 1.11 1.15 0.82 0.96 0.98 0.87 0.88 Er 2.06 2.01 2.22 2.59 2.45 2.30 3.13 3.35 2.60 2.79 2.84 2.69 2.59 Tm 0.31 0.34 0.37 0.39 0.39 0.36 0.47 0.53 0.43 0.41 0.47 0.44 0.41 Yb 1.94 2.05 2.28 2.43 2.54 2.36 2.93 3.18 2.86 2.48 2.70 2.73 2.54 Lu 0.32 0.33 0.35 0.39 0.38 0.35 0.46 0.53 0.43 0.40 0.47 0.44 0.40 Tl 0.62 0.58 0.78 0.83 0.83 0.66 0.74 0.81 0.93 0.61 0.69 0.60 0.72 Pb 16.49 17.36 25.99 25.85 27.97 31.83 12.82 14.64 23.87 20.38 22.09 23.20 21.87 Bi 0.33 0.31 0.34 0.36 0.36 0.36 0.38 0.37 0.42 0.28 0.28 0.31 0.34 Th 13.85 14.06 16.13 16.36 16.31 17.28 15.50 16.88 22.14 13.72 14.46 15.51 16.02 U 6.42 5.80 3.51 6.11 5.69 5.82 8.08 7.84 3.21 5.18 5.17 5.14 5.66 Nb 14.22 13.44 13.82 16.99 16.90 11.47 15.04 15.34 17.81 13.04 13.84 10.41 14.36 Ta 1.21 1.11 1.01 1.14 1.00 0.80 0.99 1.05 1.25 1.08 1.07 0.73 1.04 Zr 231.08 219.41 212.95 213.05 204.59 220.96 202.09 221.79 200.12 217.67 210.04 179.22 211.08 Hf 7.69 6.39 5.40 6.84 6.23 5.13 6.51 6.60 5.69 6.78 6.30 4.90 6.20 B 158.00 199.00 149.00 151.00 125.00 141.00 169.00 149.00 175.00 157.00 103.00 122.00 149.83 Zr/Hf 30.05 34.34 39.46 31.16 32.86 43.11 31.06 33.61 35.18 32.10 33.35 36.56 34.40 Zr/Th 16.68 15.61 13.20 13.02 12.54 12.79 13.04 13.14 9.04 15.86 14.53 11.56 13.42 La/Th 2.93 2.32 2.29 3.02 2.38 2.07 3.03 3.00 2.45 3.35 3.18 2.68 2.73 La/Y 1.85 1.51 1.52 1.97 1.40 1.36 1.45 1.60 2.10 1.42 1.57 1.48 1.60 Th/Sc 1.20 1.58 1.59 1.42 1.49 1.67 1.07 1.13 1.53 0.94 1.40 1.47 1.37 Sc/Ni 0.59 0.41 0.34 0.13 0.12 0.32 0.58 0.55 0.48 0.57 0.38 0.36 0.40 Sc/Cr 0.22 0.16 0.15 0.12 0.11 0.13 0.15 0.15 0.16 0.28 0.18 0.16 0.16 Cr/Ni 2.68 2.63 2.26 1.14 1.13 2.50 3.79 3.75 3.00 2.06 2.07 2.20 2.43 Ni/Co 1.54 1.80 1.50 2.67 2.88 1.29 2.14 2.35 2.48 1.38 1.45 1.29 1.90 La/Yb 20.86 15.88 16.20 20.34 15.29 15.17 16.03 15.93 18.99 18.54 17.03 15.23 17.12 Rb/Sr 0.22 0.22 0.41 0.22 0.22 0.19 0.42 0.41 1.03 0.11 0.10 0.10 0.30 Th/U 2.16 2.42 4.60 2.68 2.87 2.97 1.92 2.15 6.90 2.65 2.80 3.02 3.09 La/Sc 3.50 3.66 3.62 4.28 3.55 3.46 3.25 3.39 3.75 3.16 4.46 3.95 3.67 Co/Th 0.91 0.85 1.23 2.00 1.94 1.45 0.76 0.69 0.55 1.33 1.30 1.45 1.20 Zr/Y 10.55 10.15 8.79 8.49 7.37 8.38 6.22 7.01 7.75 6.71 7.15 6.39 7.91 B/Ga 8.85 11.08 7.34 5.94 4.52 6.71 7.14 5.66 5.63 8.25 4.81 7.20 6.93 Ga/Rb 0.18 0.19 0.17 0.21 0.24 0.23 0.18 0.21 0.20 0.21 0.25 0.23 0.21 ΣREE 173.26 153.91 177.04 206.71 187.04 169.97 237.16 254.38 239.13 213.31 212.77 195.08 201.65 LREE 159.05 140.04 161.48 188.74 169.88 153.93 214.53 230.06 221.17 194.35 192.96 176.78 183.58 HREE 14.22 13.87 15.56 17.96 17.16 16.03 22.63 24.33 17.97 18.96 19.81 18.29 18.07 L/H 11.19 10.10 10.38 10.51 9.90 9.60 9.48 9.46 12.31 10.25 9.74 9.66 10.21 (La/Yb)N 1.54 1.17 1.20 1.50 1.13 1.12 1.18 1.18 1.40 1.37 1.26 1.12 1.26 (La/Sm)N 0.95 0.98 0.91 1.07 0.93 0.87 0.79 0.83 1.10 0.95 0.96 0.95 0.94 (Gd/Yb)N 1.40 1.28 1.32 1.42 1.30 1.30 1.54 1.54 1.21 1.48 1.41 1.25 1.38 δEu 1.00 1.08 0.97 1.07 1.15 1.10 1.13 1.12 1.00 1.18 1.23 1.25 1.11 δCe 0.89 0.90 0.95 0.86 0.94 0.91 0.93 0.93 0.93 0.93 0.88 0.92 0.91 Ceanom -0.06 -0.01 -0.01 -0.08 0.00 -0.01 -0.03 -0.01 -0.02 -0.03 -0.03 -0.02 -0.03 注:L/H为轻重稀土比值;下标N表示元素相对于PAAS标准化,下标anom表示元素相对于北美页岩标准化;δEu=2×EuN/(SmN+GdN),δCe=2×CeN/(LaN+NdN),该式中N为PAAS标准化,球粒陨石值参考Taylor and Mclennan (1985);Ceanom=lg[3CeN/(2LaN+NdN)],该式中N为北美页岩标准化,北美页岩值参考 Gromet et al.(1984) .表 3 灵山岛粉砂岩与不同构造环境砂岩稀土元素特征参数的对比
Table 3. Comparison REE characteristics of siltsones in Lingshan island with sandstones in different tectonic settings
构造环境 大洋岛弧 大陆岛弧 安第斯型大陆边缘 被动大陆边缘 灵山岛粉砂岩 物源类型 未切割的岩浆弧 (10-6) 切割岩浆弧 (10-6) 隆升的基底 (10-6) 克拉通内部构造高地 (10-6) 平均值 (10-6) La 8±1.7 27±4.5 37 39 43.31 Ce 19±3.7 59±8.2 78 85 84.26 δEu 1.04±0.11 0.79±0.1 0.6 0.56 0.70 ΣREE 58±10 146±20 186 210 201.65 LREE/HREE 3.8±0.9 7.7±1.7 9.1 8.5 10.21 La/Yb 4.2±1.3 11.0±3.6 12.5 15.9 17.12 (La/Yb)N 2.8±0.9 7.5±2.5 8.5 10.8 12.28 注:大洋岛弧、大陆岛弧、安第斯型大陆边缘、被动大陆边缘数据据Bhatia (1985);Bhatia and Crook (1986). 表 4 Bayes判别函数的标准化系数
Table 4. Standardized coefficients of Bayes discriminant function
荆山群 胶南群 粉子山群 海州群 中生代岩浆岩 TTG岩系 五莲群 蓬莱群 La 0.055 0.069 0.078 0.024 0.014 0.042 0.082 -0.003 Ce 0.071 0.040 0.023 -0.022 0.070 0.088 -0.045 -0.016 Pr -1.854 -0.324 0.562 0.886 0.203 -1.217 2.049 1.059 Nd 0.362 -0.053 -0.166 -0.276 -0.130 0.139 -0.568 -0.325 Sm -1.646 -1.691 -2.095 0.178 -1.003 -2.895 0.589 0.311 Eu 0.988 1.341 3.738 0.929 2.684 2.724 0.548 0.416 Gd 1.699 2.121 0.073 -0.354 0.265 1.597 -0.475 0.186 Tb 3.131 6.572 0.637 1.209 0.973 5.615 3.014 4.752 Dy -0.734 3.624 2.542 1.649 1.715 4.939 4.972 3.297 Ho -9.315 -23.509 -5.786 -6.086 -4.370 -16.735 -18.924 -20.573 Er 4.830 -2.937 -3.630 -3.069 -2.637 -4.343 -8.198 -4.416 Tm 13.327 27.889 29.701 11.097 25.040 27.184 27.649 26.890 Yb -3.148 -1.168 1.608 2.561 -0.055 -0.566 2.885 1.530 Lu -2.148 2.083 -18.650 -2.750 -14.854 -4.873 -1.694 -1.339 常数 -4.104 -5.124 -4.088 -4.824 -5.104 -6.668 -5.868 -3.498 表 5 Bayes判别系数
Table 5. Bayes discriminant coefficients
荆山群 胶南群 粉子山群 海州群 中生代岩浆岩 TTG岩系 五莲群 蓬莱群 DYT-1 -3.59 -3.31 -5.21 -6.80 -5.37 -8.02 -6.73 -3.38 DYT-2 -3.24 -1.47 -5.88 -6.30 -5.23 -6.51 -5.49 -1.83 DYT-3 -7.26 -5.48 -5.63 -5.71 -6.41 -10.98 -5.02 -2.51 QCY-1 -6.17 -5.00 -5.93 -6.33 -6.40 -10.36 -5.72 -2.74 QCY-2 -4.57 -1.69 -3.56 -4.91 -4.88 -7.06 -3.35 -0.54 QCY-3 -6.04 -2.90 -4.58 -4.65 -5.20 -10.19 -1.79 -0.22 DT-1 -1.18 3.08 0.12 -0.23 0.01 -0.94 2.62 3.00 DT-2 -2.24 1.56 -0.35 -0.81 -0.89 -2.43 1.92 2.24 DT-5 -1.93 2.22 -0.49 0.17 -0.10 -3.53 4.08 3.28 CC-1 -1.82 -0.84 -3.68 -2.42 -2.58 -4.94 -0.95 -0.29 CC-2 0.28 1.95 -1.50 -1.93 -1.10 -1.37 -0.29 0.20 CC-3 -1.82 -0.84 -3.68 -2.42 -2.58 -4.94 -0.95 -0.29 -
Armstrong-Altrin, J.S., Machain-Castillo, M.L., Rosales-Hoz, L., et al., 2015.Provenance and Depositional History of Continental Slope Sediments in the Southwestern Gulf of Mexico Unraveled by Geochemical Analysis.Continental Shelf Research, 95:15-26.doi: 10.1016/j.csr.2015.01.003 Armstrong-Altrin, J.S., Nagarajan, R., Madhavaraju, J., et al., 2013.Geochemistry of the Jurassic and Upper Cretaceous Shales from the Molango Region, Hidalgo, Eastern Mexico: Implications of Source-Area Weathering, Provenance, and Tectonic Setting.Comptes Rendus Geoscience, 345:185-202.doi: 10.1016/j.crte.2013.03.004 Bai, D.Y., Zhou, L., Wang, X.H., et al., 2007.Geochemistry of Nanhua-Cambrian Sandstone in Southeastern Hunan, and Its Constraints on Neoproterozoic-Early Paleozoic Tectonic Setting of South China.Acta Geological Sinica, 81(6):755-771(in Chinese with English abstract). Bhatia, M.R., 1983.Plate Tectonics and Geochemical Composition of Sandstones.The Journal of Geology, 91(6):611-627.doi: 10.1086/628815 Bhatia, M.R., 1985.Rare Earth Element Geochemistry of Australian Paleozoic Graywackes and Mudrocks:Provenance and Tectonic Control.Sedimentary Geology, 45(1-2):97-113.doi: 10.1016/0037-0738(85)90025-9 Bhatia, M.R., Crook, K.A.W., 1986.Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins.Contributions to Mineralogy and Petrology, 92(2):181-193.doi: 10.1007/BF00375292 Cao, J., Wu, M., Chen, Y., et al., 2012.Trace and Rare Earth Element Geochemistry of Jurassic Mudstones in the Northern Qaidam Basin, Northwest China.Chemie der Erde-Geochemistry, 72(3):245-252.doi: 10.1016/j.chemer.2011.12.002 Chakrabarti, G., Shome, D., Bauluz, B., et al., 2009.Provenance and Weathering History of Mesoproterozoic Clastic Sedimentary Rocks from the Basal Gulcheru Formation, Cuddapah Basin, India.Journal of the Geological Society of India, 74:119-130.doi: 10.1007/s12594-009-0096-7 Chen, X.Z., Cao, H.Z., 2008.Discriminant Analysis and Application of SPSS.Science Technology and Engineering, 8(13):3567-3574 (in Chinese with English abstract). Chen, Y.X., 2013.Crustal Anatexis during Continental Collision:Evidence from Ultrahigh-Pressure Metamorphic Rocks in the Sulu Orogen (Dissertation).Universtiy of Science and Technology of China, Hefei (in Chinese with English abstract). Cox, R., Lowe, D.R., Cullers, R.L., 1995.The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States.Geochimica et Cosmochimica Acta, 59(14):2919-2940.doi: 10.1016/0016-7037(95)00185-9 Cullers, R.L., 1995.The Controls on the Major-and Trace-Element Evolution of Shales, Siltstones and Sandstones of Ordovician to Tertiary Age in the Wet Mountains Region, Colorado, U.S.A..Chemical Geology, 123(1):107-131.doi: 10.1016/0009-2541(95)00050-V Degens, E.T., Williams, E.G., Keith, M.L., et al., 1957.Environmental Studies of Carboniferous Sediments Part I:Geochemical Criteria for Different Marine from Freshwater Shales.AAPG, 41(11):2427-2455. Deng, P., 1993.The Application of Trace Amount of Elements in the Exploration of Oil and Gas.Petroleum Exploration and Eevelopment, 20(1):27-32(in Chinese with English abstract). Dong, X.P., Lu, H.B., Zhang, X., et al., 2013.Stage Analysis on the Soft-Sediment Deformation in the Early Cretaceous Flysh, Lingshan Island, Shandong Provence.Geological Review, 59(6):1060-1067(in Chinese with English abstract). Dong, X.P., Lu, H.B., Zhang, X., et al., 2014.Slump Scarp Outcrop in Early Cretaceous Flysch, North of Lingshan Island, Qingdao, Shandong.Geological Review, 64(4):771-779(in Chinese with English abstract). Etemad-Saeed, N., Hosseini-Barzi, M., Armstrong-Altrin, J.S., 2011.Petrography and Geochemistry of Clastic Sedimentary Rocks as Evidences for Provenance of the Lower Cambrian Lalun Formation, Posht-E-Badam Block, Central Iran.Journal of African Earth Sciences, 61(2):142-159.doi: 10.1016/j.jafrearsci.2011.06.003 Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995.Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Povenance.Geology, 23(10):921-924.doi:10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO; 2 Floyed, P.A., Leveridge, B.E., 1987.Tectonic Environment of the Devonian Gramscatho Basin, South Cornwall:Framework Mode and Geochemical Evidence from Turbiditic Sandstones.Journal of the Geological Society, 144(4)1-542. Forth Institute of Geology & Mineral Exploration of Shandong Province, 2003.Regional Geology of Shandong Province.Shandong Cartographic Publishing House, Jinan (in Chinese). Ge, Y.Z., Zhong, J.H., Fang, X.F., et al., 2015.Study on Internal Sedimentary and Structural Features of the Slump Body in Lingshan Island, Qingdao, Shandong.Geological Review, 61(3):634-644(in Chinese with English abstract).doi: 10.16509/j.georeview.2015.03.016 Girty, G.H., Hanson, A.D., Yoshinobu, A.S., et al., 1993.Provenance of Paleozoic Mudstones in a Contact Metamorphic Aureole Determined by Rare Earth Element, Th and Sc Analyses, Sierra Nevada, California.Geology, 21(4):363-366.doi:10.1130/0091-7613(1993)021<0363:POPMIA>2.3.co; 2 Gromet, L.P., Haskin, L.A., Korotev, R.L., et al., 1984.The "North American Shale Composite":Its Compilation, Major and Trace Element Characteristics.Geochimica et Cosmochimica Acta, 48(12):2469-2482.doi: 10.1016/0016-7037(84)90298-9 Gu, X.X., Liu, J.M., Zheng, M.H., et al., 2002.Provenance and Tectonic Setting of the Proterozoic Turbidites in Hunan, South China:Geochemical Evidence.Journal of Sedimentary Research, 72(3):393-407.doi: 10.1306/081601720393 Guo, J.H., Zhai, M.G., 2002.Petrochemistry and Geochemistry of HP Metabasites from Haiyangsuo in Sulu UHP Belt of Eastern China.Science China Earth Sciences, 45(1):21.doi: 10.1360/02yd9003 Hatck, J.R., Leventhal, J.S., 1992.Relationship between Inferred Redox Potential of the Depositional Environmental and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone Wabaunsee County, Kansas U.S.A..Chemical Geology, 99(1-3):65-82.doi: 10.1016/0009-2541(92)90031-Y Hayashi, K., Hiroyuki, F., Heinrich, H.D., et al., 1997.Geochemistry of ~1.9 Ga Sedimentary Rocks from Northeastern Labrador, Canada.Geochimica et Cosmochimica Acta, 61(19):4115-4137.doi: 10.1016/S0016-7037(97)00214-7 He, X.Q., 2008.Multivariate Statistical Analysis.Renmin Universtiy of China Press, Beijing, (9):105-112 (in Chinese). He, Z.J., Li, J.T., Mo, S.G., et al., 2003.Tectonic Setting and Provenance of Sandstones in Froeland Basin of Mohe.Science in China (Series D), 33(12):1219-1226(in Chinese). Hossain, H.M., Roser, B.P., Kimura, J.I., 2010.Petrography and Whole-Rock Geochemistry of the Tertiary Sylhet Succession, Northeastern Bengal Basin, Bangladesh:Provenance and Source Area Weathering.Sedimentary Geology, 228(3-4):171-183.doi: 10.1016/j.sedgeo.2010.04.009 Hu, J., Qiu, J.S., Xu, X.S., et al., 2009.I-and A-Type Composite Gneissic Metagranites in Lanshan Area, Shandong Province:Geochronology, Geochemistry and Tectonic Implication.Acta Perologica Sinica, 25(2):282-296(in Chinese with English abstract). Huang, J., Zheng, Y.F., Zhao, Z.F., et al., 2006.Melting of Subducted Continet:Element and Isotopic Evidence for a Genetic Relationship between Neoterozoic and Mesozoic Granitoids in Sulu Orogen.Chemical Geology, 229:227-256.doi: 10.1016/j.chemgeo.2005.11.007 Jia, Y.Y., Xing., X.J., Sun, G.Q., et al., 2015.The Paleogene-Neogene Paleoclimate Evolution in Western Sector of Northern Margin of Qaidam Basin.Earth Science, 40(12):1955-1967(in Chinese with English abstract). Johnsson, M.J., 1993.The System Controlling the Composition of Clastic Sediments.Geological Society of America Special Papers, 284:1-20.doi: 10.1130/SPE284-p1 Lei, B.J., Que, H.P., Hu, N., 2002.Geochemistry and Sedimentary Environments of the Palaeozoic Siliceous Rocks in Western Hubei.Sedimentary Geology and Tethyan Geology, 22(2):71-79(in Chinese with English abstract). Li, F.L., Qu, X.Y., Liu, L., et al., 2009.Sedimentary Environment on Upper Permian Linxi Group in Inner Mongolia.Acta Sedimentologica Sinica, 27(2):265-272(in Chinese with English abstract).doi: 10.14027/j.cnki.cjxb.2009.02.004 Li, J., Jin, A.W., Hou, G.T., et al., 2015.Study on Early Cretaceous Stress Fields and Geological Significance of Lingshan Island.Acta Scientiarum Naturalium Universities Pekinensis, 51(6):1069-1077(in Chinese with English abstract). Li, M., 2011.The Basement Features and Dynamic Evolution Mechanism of the Qianliyan Uplift, South Yellow Sea (Dissertation).Ocean University of China, Qingdao (in Chinese with English abstract). Li, S.Y., Li, R.W., Meng, Q.R., Wang, D.X., et al., 2006.Radiometric Dating of Sediments Derived from Metamorphic Rocks of the Dabie Orogenic Belt in the Jurassic and Early Cretaceous.Progress in Nature Science, 16(1):194-202.doi: 10.1080/10020070612330084 Li, S.Y., Meng, Q.R., Li, R.W., et al., 2008.Characteristics of Material Components from the Lower Cretaceous Laiyang Formation in Jiaolai Basin, Shandong Province, Eastern China and Constraints to the Provenance.Acta Petrologica Sinica, 24(10):2395-2406 (in Chinese with English abstract). Li, X.H., Chen, F., Guo, J.H., Li, Q.L., et al., 2007.South China Provenance of the Lower-Grade Penglai Group North of the Sulu UHP Orogenic Belt, Eastern China:Evidence from Detrital Zircon Ages and Nd-Hf Isotopic Composition.Geochemical Journal, 41(1):29-45. doi: 10.2343/geochemj.41.29 Liao, W.L., Xiao, L., Zhang, L., et al., 2015.Provenance and Tectonic Settings of Early Carboniferous Sedimentary Strata in Western Juggar, Xinjiang.Earth Science, 40(3):485-503 (in Chinese with English abstract).doi: 10.3799/dqkx.2015.039 Liu, G., Zhou, D.S., 2007.Application of Microelements Analysis in Identifying Sedimentary Environment.Petroleum Geology & Experiment, 29(3):307-314(in Chinese with English abstract). Liu, L.S., Liu, F.L., Liu, P.H., et al., 2015.Geochemical Characteristics and Metamorphic Evolution of Metamafic Rocks from Haiyangsuo Area, Sulu Ultra-Pressure Metamorphic Belt.Acta Petrologica Sinica, 31(10):2863-2888(in Chinese with English abstract). Long, X., Yuan, C., Sun, M., et al., 2012.Geochemistry and Nd Isotopic Composition of the Early Paleozoic Flysch Sequence in the Chinese Altai, Central Asia:Evidence for a Northward-Derived Maifc Souce and Insight into Nd Model Ages in Accretionary Orogen.Gondwana Research, 22(2):554-566.doi: 10.1016/j.gr.2011.04.009 Lü, H.B., Zhang, H.C., Wang, J., 2013.The Discovery of Huge Slide Block in Mesozoic Turbidite at Jiaonan, Shandong.Geological Review, 58(1):80-81(in Chinese). Lü, H.B., Wang, J., Zhang, H.C., 2011.Discovery of the Late Mesozoic Slump Beds in Lingshan Island, Shandong, and a Pilot Research on the Regional Tectonics.Acta Geologica Sinica, 85(6):938-946 (in Chinese with English abstract). https://www.researchgate.net/publication/265382273_Discovery_of_the_Late_Mesozoic_Slump_Beds_in_Lingshan_Island_Shandong_and_a_Pilot_Research_on_the_Regional_Tectonics Lü, H.B., Zhang, H.C, Wang, J., 2013.Early Cretaceous Flysch is not Deposits of Intracontinental Delta-Answer Professor Zhong.Geological Review, 59(1):11-14 (in Chinese). Luan, G.Z., Li, A.L., Wang, J., et al., 2010.The Geological Origin Division of the Main Sea Island in Qingdao Area and Environment Analysis.Periodical of Ocean University of China, 40(8):111-116(in Chinese with English abstract). Maynard, J.B., Valloni, R., Yu, H.S., 1982.Composition of Modern Deep-Sea Sands from Arc-Related Basins.Geological Society, London, Special Publications, 10(1):551-561.doi: 10.1144/GSL.SP.1982.010.01.36 Mclennan, S.M., Hemming, S., Mcdaniel, D.K., et al., 1993.Geochemical Approaches to Sedimentation, Provenance, and Tectonics.Geological Society of America Special Papers, 21-40.doi:10.1130/SPE284-p21 Nebitt, H.W., Young, G.M., 1982.Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites.Nature, 299(5885):715-717.doi: 10.1038/299715a0 Nebitt, H.W., Young, G.M., 1984.Prediction of some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations.Geochimica et Cosmochim Acta, 48(7):1523-1534.doi: 10.1016/0016-7037(84)90408-3 Neubauer, F., Mader, D., 2004.Provenance of Palaeozoic Sandstones from the Carnic Alps (Austria):Petrographic and Geochemical Indicators.International Journal of Earth Sciences, 93(2):262-281.doi: 10.1007/s00531-004-0391-x Pettijohn, F.J, Potter, P.E., 1972.Sand and Sandstone.Springer, New York. Potter, P.E., 1978.Petrology and Chemistry of Modern Big River Sands.The Journal of Geology, 86(4):423-449.doi: 10.1086/649711 Qiu, H.O., Sun, W., Tang, Z.Y., et al., 2010.Geochemical Characteristics of the Oma Section in the Tibetan Gyirong Basin and Its Implications on Environment Change.Earth Science, 35(5):789-802(in Chinese with English abstract). Raiswell, R., Buckley, F., Bern, R.A., 1988.Degree of Pyritization of Iron as a Paleoenvironmental Indicator of Bottom-Water Oxygenation.SEPM Journal of Sedimentary Research, 58(5):812-819. Ren, Z.J.2006.The Correct Use of Discriminant Analysis Method by SPSS.Statistics and Decision, 3:157 (in Chinese). Roser, B.P., Cooper, R.A., Nathan, S., et al., 1996.Reconnaissance Sandstone Geochemistry, Provenance, and Tectonic Setting of the Lower Paleozoic Terranes of the West Coast and Nelson, New Zealand.Journal of Geology and Geophysics, 39(1):1-16.doi: 10.1080/00288306.1996.9514690 Roser, B.P., Korsch, R.J., 1988.Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data.Chemical Geology, 67(1-2):119-139.doi: 10.1016/0009-2541(88)90010-1 Roy, D.K., Roser, B.P., 2013.Climatic Control on the Composition of Carboniferous-Permian Gondwana Sediments, Khalaspir Basin, Bangladesh.Gondwana Research, 23(3):1163-1171.doi: 10.1016/j.gr.2012.07.006 Rudnick, R.L., Gao, S., 2003.Composition of the Continental Crust.Treatise on Geochemistry, 3(1):1-23.doi: 10.1016/B0-08-043751-6/03016-4 Saxena, A., Pandit, M.K., 2012.Geochemistry of Hindoli Group Metasediments, SE Aravalli Craton, NW India:Implications for Palaeoweathering and Provenance.Journal of the Geological Society of India, 79(3):267-278.doi: 10.1007/s12594-012-0045-8 Shao, Z.F., Zhong, J.H., Li, Y., et al., 2014a.Characteristics and Sedimentary Processes of Lamina-Controlled Sand-Particle Imbricate Structure in Deposits on Lingshan Island, Qingdao.Science in China (Series D), 44(8):1761-1776(in Chinese). http://or.nsfc.gov.cn/handle/00001903-5/249811 Shao, Z.F., Zhong, J.H., Li, Y., et al., 2014b.The Sedimentary Characteristics and Environment Analysis of Late Mesozoic Gravity Flows in Lingshan Island.Geological Review, 60(3):555-566 (in Chinese with English abstract). Song, C.Y., Wang, J., Fu, X.G., et al., 2013.Geochemical Characteristic and Signatures of the Sandstones from Zangxiahe Formation in Qiangtang Basin.Earth Science, 38(3):508-518(in Chinese with English abstract). Song, M.C., Wang, L.M., Wang, L.Z., et al., 1995.Ludong Rongcheng Gneiss and Its Origin.Shandong Geology, 11(2):32-44 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SDDI502.003.htm Suttner, L.J., Dutta, P.K., 1986.Alluvial Sandstone Composition and Paleoclimate.I.Framework Mineralogy.Journal of Sedimentary Petrology, 56(3):329-345.doi: 10.1306/212F8909-2B24-11D7-8648000102C1865D Tao, S., Tang, D.Z., Zhou, C.W., et al., 2009.Element Geochemical Characteristics of the Lower Assemblage Hydrocarbon Source Rocks in Southeast Sichuan-Central Guizhou (Chuandongnan-Qianzhogn) Region and Its Periphery Area and Their Implications to Sedimentary Environments.Geology in China, 36(2):397-403 (in Chinese with English abstract). https://www.researchgate.net/publication/287006863_Element_geochemical_characteristics_of_the_lower_assemblage_hydrocarbon_source_rocks_in_southeast_Sichuan-central_Guizhou_Chuandongnan-Qianzhong_region_and_its_periphery_areas_and_their_implications_t Tang, J., Zheng, Y.F., Wu, Y.B., et al., 2006.Zircon SHRIMP U-Pb Dating, C and O Isotopes for Impure Marbles from the Jiaobei Terrane in the Sulu Orogen:Implication for Tectonic Affinity.Precambrian Research, 144(1):1-18.doi: 10.1016/j.precamres.2005.10.003 Tang, J., Zheng, Y.F., Wu, Y.B., et al., 2007.Geochronology and Geochemistry of Metamorphic Rocks in the Jiaobei Terrane:Constraints on Its Tectonic Affinity in the Sulu Orogen.Precambrian Research, 152(1):48-82.doi: 10.1016/j.precamres.2006.09.001 Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.Blackwell Press, London. Tian, Y., Xie, G.G., Wang, L.Z., et al., 2015.Provenance and Tectonic Settings of Triassic Xujiahe Formation in Qiyueshan Area, Southwest Hubei:Evidence from Petrology, Geochemistry and Zircon U-Pb Ages of Clasitic Rocks.Earth Science, 40(12):2021-2036 (in Chinese with English abstract). Wang, A.D., Zhou, Y.Q., Yan, H., et al., 2013.Characteristics of Soft-Sediment Deformation Structures of the Early Cretaceous in Lingshan Island of Shandong Province.Journal of Palaeogeography, 15(5):717-728 (in Chinese with English abstract). Wang, A.D., Zhou, Y.Q., Zhang, Z.K., et al., 2014.Characteristics and Significance of Underwater Non-Tectonic Cracks in Laiyang Group of Lingshan Island, Shandong Province.Acta Geoscientica Sinica, 35(3):321-328 (in Chinese with English abstract). Wang, B.Q., Wang, W., Zhou, M.F., 2013.Provenance and Tectonic Setting of the Triassic Yidun Group, the Yidun Terran, Tibet.Geoscience Frontiers, 4(6):765-777.doi: 10.1016/j.gsf.2013.02.007 Wang, J., Chang, S.C., Lu, H.B., et al., 2014.Detrital Zircon U-Pb Age Constraints on Cretaceous Sedimentary Rocks of Lingshan Island and Implications for Tectonic Evolution of Eastern Shandong, North China.Journal of Asian Earth Sciences, 96:27-45.doi: 10.1016/j.jseaes.2014.09.002 Wang, J., Chang, S.C., Wang, K, L., et al., 2015.Geochronology and Geochemistry of Early Cretaceous Igneous Units from the Central Sulu Orogenic Belt:Evidence for Crustal Delamination during a Shift in the Regional Tectonic Regime.Journal of Asian Earth Sciences, 112:49-59.doi: 10.1016/j.jseaes.2015.09.009 Wang, X.X., Zheng, R.C., Yan, G.Q., et al., 2014.The Mudstone Sedimentary Environment and Provenance Analysis Based on the Geochemical Evidence of Rare Earth Elements:Take Chang 9 Oil-Bearing Layer in Longdong Area of Ordos Basin as an Example.Natural Gas Geoscience, 25(9):1387-1394 (in Chinese with English abstract). https://www.researchgate.net/publication/287721756_The_mudstone_sedimentary_environment_and_provenance_analysis_based_on_the_geochemical_evidence_of_rare_earth_elements_Take_Chang_9_oil-bearing_layer_in_Longdong_Area_of_Ordos_Basin_as_an_example Wu, S.B., 2001.Sedimentary Facies and Depositional Model of Wulabo Formation, Upper Permian Series in Bogeda Piedmont Depression, Junggar Basin.Acta Sedimentologica Sinica, 19(3):333-339 (in Chinese with English abstract). Wu, T.Y., Fu, Y.T., 2014.Cretaceous Deepwater Lacustrine Sedimentary Sequences from the Northernmost South China Block, Qingdao, China.Journal of Earth Science, 25(2):241-251, doi: 10.1007/s12583-014-0418-6 Xie, S.K., Wang, Z.J., Wang, J., et al., 2010.Trace Element Geochemistry of the Middle and Upper Ordovician Strata in the Guanyinqiao Section, Qijiang, Chongqing.Sedimentary Geology and Tethyan Geology, 30(4):60-65 (in Chinese with English abstract). Xiong, X.H., Xiao, J.F., 2011.Geochemical Indicators of Sedimentary Environments—A Summary.Earth and Environment, 39(3):405-413 (in Chinese with English abstract). Xu, F.J., Li, A.C., Wan, S.M., et al., 2009.Terrigenous Mineral Constrains on the Grain-Size Distribution and Geochemical Composition of Sediments in the Inner Shelf of the East China Sea.Earth Science, 34(4):613-622 (in Chinese with English abstract). Xue, H.M., Liu, F.L., Meng, F.C., 2006.Major and Trace Element Geochemistry of Granitic Gneisses from Sulu Orogen, Eastern Shandong Peninsula:Evidence for a Neoproterozoic Active Continental Margin in the Northern Margin of the Yangtze Craton.Acta Petrologica Sinica, 22(7):1779-1790 (in Chinese with English abstract). Yan, Z., Wang, Z.Q., Wang, T., et al., 2006.Provenance and Tectonic Setting of Clastic Deposits in the Devonian Xicheng Basin, Qinling Orogen, Central China.Journal of Sedimentary Research, 76(3):557-574.doi: 10.2110/jsr.2006.046 Yang, J.H., Du, Y.S., Xu, Y.J.Two Suits of Sandstones in the Lower Paleozoic at Jingtai, Eastern North Qinlian:Trace and Rare Earth Elements Characteristics and Tectonic Setting.Journal of Paleogeography, 10(4):395-408 (in Chinese with English abstract). Yang, R.C., van Loon, A.J.T.V., 2016.Early Cretaceous Slumps and Turbidites with Peculiar Soft-Sediment Deformation Structures on Lingshan Island (Qingdao, China) Indicating a Tensional Tectonic Regime.Journal of Asian Earth Sciences, 129(2016):206-219.doi: 10.1016/j.jseaes.2016.08.014 Zhang, H.C., Lü, H.B., Li, J.G., et al., 2013.The Lingshandao Formation:A New Lithostratigraphic Unit of the Early Cretaceous in Qingdao, Shandong, China.Journal of Stratigraphy, 37(2):216-222 (in Chinese with English abstract). Zhang, J., Zhao, Z.F., Zheng, Y.F., et al., 2010.Postcollisional Magmatism:Geochemical Constraints on the Petrogenesis of Mesozoic Granitoids in the Sulu Orogen, China.Lithos, 119(3-4):512-536.doi: 10.1016/j.lithos.2010.08.005 Zhang, S, S., 1988.Application and Research of Mg/Al Ratio in the Sedimenatry Rocks.Bulletin of Mineral Geochemistry, 7(2):112-113 (in Chinese). Zhang, W.T., 2006.Advanced SPSS Statistical Analysis Tutorial.Advanced Education Press, Beijing.(12):261-277 (in Chinese). Zhao, M., Shao, L., Liang, J.S., et al., 2013.REE Character of Sediment from the Paleo-Red River and Its Implication of Provenance.Earth Science, 38(S1):61-69 (in Chinese with English abstract). https://www.researchgate.net/publication/286178316_REE_character_of_sediment_from_the_paleo-red_river_and_its_implication_of_provenance Zhong, J.H., 2013.Is Mesozoic Sedimentary Rocks of Lingshan Island Deep Water Distal Turbidite or Intracontinental Delta Deposits? Discuss with Professor Lu.Geological Review, 58(6):1180-1182 (in Chinese). http://www.academia.edu/4602933/Mazak_Formation_of_Cenomanian_age_in_Czech_Republic Zhou, G., Zheng, R.C., Luo, P., et al., 2012.Geological Events and Their Geochemical Responses of the Permian-Triassic Boundary, Huaying, Eastern Sichuan.Earth Science, 37(Suppl.1):101-110(in Chinese with English abstract). https://www.researchgate.net/publication/287620987_Geological_events_and_their_geochemical_responses_of_the_Permian-Triassic_Boundary_Huaying_Eastern_Sichuan Zhou, Y.Q., Zhang, Z.K., Liang, W.D., et al., 2015a.Late Mesozoic Tectono-Magmatic Activities and Prototype Basin Restoration in Eastern Shandong Province, China.Earth Science Frontiers, 22(1):137-156 (in Chinese with English abstract). https://www.researchgate.net/publication/281762585_Late_Mesozoic_tectono-magmatic_activities_and_prototype_basin_restoration_in_Eastern_Shandong_Province_China Zhou, Y.Q., Zhang, Z.K., Xu, H., et al., 2015b.Soft-Sediment Deformation Structures in the Sediments at Lingshan Island.Marine Geology Frontiers, 31(4):42-54 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDT201504007.htm Zhu, X.Q., Wang, G., Yang, S.P., 2013.Geochemistry of the Baoshan-Taoxing Eclogite in the Middle Section of Sulu Orogenic Belt.Geology and Resources, 22(1):41-49 (in Chinese with English abstract). Zimmermann, U., Bahlburg, H., 2003.Provenance Analysis and Tectonic Setting of the Ordovician Clastic Deposits in the Southern Puna Basin, NW Argentina.Sedimentology, 50(6):1079-1104.doi: 10.1046/j.1365-3091.2003.00595.x 柏道远, 周亮, 王先辉, 等, 2007.湘东南南华系-寒武系砂岩地球化学特征及对华南新元古代-早古生代构造背景的制约.地质学报, 81(6):755-771. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200706003.htm 陈希傎, 曹慧珍, 2008.判别分析与SPSS的使用.科学技术与工程, 8(13):3567-3574. http://www.cnki.com.cn/Article/CJFDTOTAL-KXJS200813036.htm 陈伊翔, 2013. 大陆碰撞过程中地壳深熔作用: 苏鲁造山带超高压变质岩研究 (博士学位论文). 合肥: 中国科学技术大学. 邓平.1993.微量元素在油气勘探中的应用.石油勘探与开发, 20(1):27-32. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK199301005.htm 董晓朋, 吕洪波, 张星, 等, 2013.山东灵山岛早白垩世复理石软沉积物变形期次解析.地质论评, 2013, 59(6):1060-1067. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201306007.htm 董晓朋, 吕洪波, 张星, 等, 2014.灵山岛北端早白垩世复理石中的滑塌断崖.地质论评, 60(4):771-779. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201404009.htm 葛毓柱, 钟建华, 樊晓芳, 等, 2015.山东灵山岛滑塌体内部沉积及构造特征研究.地质论评, 61(3):634-644. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201503021.htm 何晓群, 2008. 多元统计分析. 北京: 中国人民大学出版社, (9): 105-112. 和政军, 李锦铁, 莫申国, 等, 2003.漠河前陆盆地砂岩岩石地球化学的构造背景和物源区分析.中国科学 (D辑), 33(12):1219-1226. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200312010.htm 胡建, 邱检生, 徐夕生, 等, 2009.山东岚山Ⅰ型与A型复合片麻状变质花岗岩:年代学, 地球化学及其构造指示意义.岩石学报, 25(2):282-296. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200902004.htm 贾艳艳, 邢学军, 孙国强, 等, 2015.柴北缘西段古-新近纪古气候演化.地球科学, 40(12):1955-1967. http://www.earth-science.net/WebPage/Article.aspx?id=3202 雷卞军, 阙洪培, 胡宁, 等, 2002.鄂西古生代硅质岩的地球化学特征及沉积环境.沉积与特提斯地质, 22(2):71-79. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200202009.htm 李福来, 曲希玉, 刘立, 等, 2009.内蒙古东北部上二叠统林西组沉积环境.沉积学报, 27(2):265-272. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200902009.htm 李杰, 金爱文, 侯贵廷, 等, 2015.灵山岛早白垩世构造应力解析及区域地质意义.北京大学学报 (自然科学版), 51(6):1069-1077. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201506012.htm 李敏, 2011. 南黄海千里岩隆起基底性质及动力学演化机制 (硕士学位论文). 青岛: 中国海洋大学. 李双应, 孟庆任, 李任伟, 等, 2008.山东胶莱盆地下白垩统莱阳组物质组分特征及其对源区的制约.岩石学报, 24(10):2395-2406. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200810020.htm 廖婉琳, 肖龙, 张雷, 等, 2015.新疆西准噶尔早石炭世沉积地层的物源及构造环境.地球科学, 40(3):485-503. http://www.earth-science.net/WebPage/Article.aspx?id=3031 刘刚, 周东升, 2007.微量元素分析在判别沉积环境中的应用.石油实验地质, 29(3):307-314. http://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200703016.htm 刘利双, 刘福来, 刘平华, 等, 2015.苏鲁超高压变质带中海阳所地区变基性岩的地球化学性质及变质演化特征.岩石学报, 31(10):2863-2888. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201510004.htm 栾光忠, 李安龙, 王建, 等, 2010.青岛主要海岛成因分类及其地质环境分析.中国海洋大学学报:自然科学版, 40(8):111-116. http://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201008019.htm 吕洪波, 王俊, 张海春, 2011.山东灵山岛晚中生代滑塌沉积层的发现及区域构造意义初探.地质学报, 85(6):938-946. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201106002.htm 吕洪波, 张海春, 王俊, 等, 2012.山东胶南灵山岛晚中生代浊积岩中发现巨大滑积岩块.地质论评, 58(1):80-81. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201201008.htm 吕洪波, 张海春, 王俊, 等, 2013.灵山岛早白垩世复理石不是陆内三角洲沉积--答钟建华教授.地质论评, 59(1):11-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201301003.htm 邱海鸥, 孙文, 汤志勇, 等, 2010.西藏吉隆盆地沃马剖面元素地球化学特征及环境指示意义.地球科学, 35(5):789-802. http://www.earth-science.net/WebPage/Article.aspx?id=2023 任志娟, 2006.SPSS中判别分析方法的正确使用.统计与决策, (3):157. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJC200603076.htm 山东省第四地质矿产勘查院, 2003.山东省区域地质.济南:山东省地图出版社. 邵珠福, 钟建华, 李勇, 等, 2014a.青岛灵山岛纹层控制的砂级颗粒支持叠瓦构造的发现及其意义, 中国科学 (D辑).44(8):1761-1776. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201408016.htm 邵珠福, 钟建华, 李勇, 等, 2014b.青岛灵山岛晚中生代重力流沉积特征及环境分析.地质论评, 60(3):555-566. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201403008.htm 宋春彦, 王剑, 付修根, 等, 2013.羌塘盆地臧夏河组砂岩地球化学特征及意义.地球科学, 38(3):508-518. http://www.earth-science.net/WebPage/Article.aspx?id=2719 宋明春, 王来明, 王兰中, 等, 1995.鲁东荣成片麻岩套及其成因.山东地质, 11(2):32-44. 陶树, 汤达祯, 周传袆, 等, 2009.川东南-黔中及其周边地区下组合烃源岩元素地球化学特征及沉积环境意义.中国地质, 36(2):397-403. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200902014.htm 田洋, 谢国刚, 王令占, 2015.鄂西南齐岳山须家河组物源及构造背景:来自岩石学、地球化学和锆石年代学的制约.地球科学, 40(12):2021-2036. http://www.earth-science.net/WebPage/Article.aspx?id=3206 王安东, 周瑶琪, 闫华, 等, 2013.山东省灵山岛早白垩世软沉积物变形构造特征.古地理学报, 15(5):717-728. http://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201305018.htm 王安东, 周瑶琪, 张振凯, 等, 2014.山东灵山岛莱阳群水下非构造裂缝特征及意义.地球学报, 35(3):321-328. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201403009.htm 王欣欣, 郑荣才, 闫国强, 等, 2014.基于稀土元素地球化学特征的泥岩沉积环境及物源分析-以鄂尔多斯盆地陇东地区长9油层组泥岩为例.天然气地球科学, 25(9):1387-1394. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201409011.htm 吴少波, 2001.博格达山前凹陷上二叠统乌拉泊组沉积相及沉积模式.沉积学报, 19(3):333-339. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200103002.htm 谢尚克, 汪正江, 王剑, 等, 2010.綦江观音桥中上奥陶统微量元素地球化学特征.沉积于特提斯地质, 30(4):60-65. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201004008.htm 熊小辉, 肖加飞, 2011.沉积环境的地球化学示踪.地球与环境, 39(3):405-413. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201103021.htm 徐方建, 李安春, 万世明, 等, 2009.东海内陆架陆缘物质矿物组成对粒度和地球化学成分的制约.地球科学, 34(4):613-622. http://www.earth-science.net/WebPage/Article.aspx?id=1865 薛怀民, 刘福来, 孟繁聪, 2006.苏鲁造山带胶东区段花岗片麻岩类的常量与微量元素地球化学:扬子克拉通北缘新元古代活动大陆边缘的证据.岩石学报, 22(7):1779-1790. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200607003.htm 杨江海, 杜远生, 徐亚军, 2008.北祁连东段景泰地区下古生界两套砂岩微量元素和稀土元素特征及其大地构造意义.古地理学报, 10(4):395-408. http://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200804011.htm 张海春, 吕洪波, 李建国, 等, 2013.山东青岛早白垩世新地层单位:灵山岛组.地层学杂志, 37(2):216-222. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201302014.htm 张士三, 1988.沉积岩层中镁铝含量比的研究及其应用.矿物岩石地球化学通报, 7(2):112-113. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH198802016.htm 张文彤, 2006. SPSS统计分析高级教程. 北京: 高等教育出版社, (12): 261-277. 赵梦, 邵磊, 梁建设, 等, 2013.古红河沉积物稀土元素特征及其物源指示意义.地球科学, 38(增刊1):61-69. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2013S1008.htm 钟建华, 2013.灵山岛中生代沉积岩是深水远源浊积岩, 还是陆内三角洲沉积?与吕洪波教授商榷.地质论评, 58(6):1180-1182. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201206020.htm 周刚, 郑荣才, 罗平, 等, 2012.川东华蓥二叠系-三叠系界线地层地质事件与元素地球化学响应.地球科学, 37(增刊1):101-110. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2012S1012.htm 周瑶琪, 张振凯, 梁文栋, 等, 2015a.山东东部晚中生代构造-岩浆活动及原型盆地恢复.地学前缘, 22(1):137-156. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501014.htm 周瑶琪, 张振凯, 许红, 等, 2015b.灵山岛沉积物软变形构造特征.海洋地质前沿, 31(4):42-54. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201504007.htm 朱学强, 王冠, 杨仕鹏, 2013.苏鲁造山带中段宝山-桃行榴辉岩地球化学特征.地质与资源, 22(1):41-49. http://www.cnki.com.cn/Article/CJFDTOTAL-GJSD201301009.htm