Hydro-Biogeochemistry of Hyporheic Zone: Principles, Methods and Ecological Significance
-
摘要: 精确量化潜流带水文交换和生物地球化学反应一直是一个挑战,潜流带水文-生物地球化学研究的核心任务是将小尺度上的水文通量及生物地球化学反应动力学与更大尺度上它们对河流水质和生态的累积效应关联起来.基于潜流带水文-生物地球化学耦合原理,系统综述了渗流仪测量、测压管测量、示踪剂注射试验、温度示踪等潜流带水文学研究方法以及野外示踪试验、室内培养试验等生物地球化学研究方法,针对性地评述了潜流带水文-生物地球化学过程在更大尺度上的累积效应及其对河流生态系统的重要意义,并指出未来的研究将从潜流带研究技术方法的先进化、水文地貌理论与模型的深入化和潜流带生物地球化学过程的尺度化等方面持续地发展.Abstract: It is always challenging to quantify precisely the hydrologic exchange and biogeochemical reaction in hyporheic zone. The core task for the research of hydro-biogeochemistry in hyporheic zone is to associate the hydrologic flux and biogeochemical reaction dynamics on small scale, with their cumulative effect on water quality and ecology of rivers on larger scale. This paper presents the basic principles of hydrology-biogeochemistry coupling in hyporheic zone, and systematically summarizes hydrologic approaches including measurement by seepage meter, piezometer measuring, tracer injection experiment, streambed temperature profile, environmental tracer and mass balance, and biogeochemical approaches including field tracer experiment and indoor incubation experiment. In addition, this paper specifically illustrates the cumulative effect of hydrologic and biogeochemical processes in hyporheic zone for larger scale, and its ecological significance. It is suggested that the future research on hyporheic zone science shall focus on the advance of research methods, development of hydrogeomorphic theory and model, and up scaling of biogeochemical processes in hyporheic zone.
-
Key words:
- hyporheic zone /
- biogeochemistry /
- multi-scale /
- ecology /
- hydrogeology
-
图 1 水文迁移与生物地球化学反应对潜流带反应程度控制的原理
潜流带反应程度在浅层潜流路径上可能受限于反应而在深层潜流路径上可能受限于迁移,反应时间尺度和迁移时间尺度的差异会导致潜流带反应的有效深度与实际潜流带深度不一致.改自Harvey et al.(2013)
Fig. 1. The sketch for the control of hydrologic transport and biogeochemical process on hyporheic zone reaction progress
图 2 暂时性储积模型的概念图解
a.表示仅考虑垂向交换;b.表示同时考虑垂向和侧向交换.改自Harvey and Gooseff(2015)
Fig. 2. Conceptual scheme of transient storage model (TSM)
图 3 反应意义因子(RSF)的概念图解
Fig. 3. Conceptual scheme of reaction significance factor (RSF)
图 4 多尺度与多维潜流路径的模型
Fig. 4. Conceptual scheme of multiscale and multidimensional hyporheic flow
图 5 基于反应意义因子估算的密西西比河流网络反硝化潜力
图a表示总体的反硝化RSF,值越高表示反硝化反应意义越大;图b表示垂向与横向RSF的比值,值越高表示垂向交换影响下的反硝化效率相对于侧向交换越大.改自Gomez-Velez et al.(2015)
Fig. 5. Denitrification potential of Mississippi River network based on RSF
表 1 量化潜流交换的主要方法
Table 1. Primary methods for quantifying hyporheic exchange
方法 空间尺度 时间尺度 优势 劣势 渗流仪测量 cm2~m2 数小时~数月 可直接量化渗流速率、可多次使用、价格低廉 只能针对时间和空间点、交换量较小时结果可能存在不确定性 测压管测量 cm2~m2 数秒~数分 可简单而精确地获取水力梯度 只能针对时间和空间点、需人工密集安装 示踪剂注射试验 10 m2~km2 数小时~数天 可评价整个河段的流量、损失及侧向流入量 无法识别长时间尺度的潜流路径;结果可能因示踪剂被吸附而受影响 河底温度示踪 cm2~m2 数秒~数月 低廉的价格、精确的温度测量、长时间的热记录、可识别渗流速率和方向 只能针对空间点、不能识别地下流动的补给 环境示踪剂 cm2~m2 数分~数天 可直接测定示踪剂浓度、简单的质量平衡计算 只能针对时间和空间点、要求不同水体端元的浓度差异显著 质量平衡 10 m2~km2 数小时~数年 直接测量河水流量、简单的水量均衡计算 当流量较低或是紊流时难以测定、要求所有监测点的流量特征曲线 注:改自 Hatch et al.(2006) 、Gonzalez-Pinzon et al.(2015) 和Harvey and Gooseff(2015). -
Anderson, M.P., 2005.Heat as a Ground Water Tracer.Ground Water, 43(6):951-968.doi: 10.1111/j.1745-6584.2005.00052.x Baker, M.A., Valett, H.M., Dahm, C.N., 2000.Organic Carbon Supply and Metabolism in a Shallow Groundwater Ecosystem.Ecology, 81(11):3133-3148.doi:10.1890/0012-9658(2000)081[3133:ocsami]2.0.co; 2 Battin, T.J., Kaplan, L.A., Findlay, S., et al., 2008.Biophysical Controls on Organic Carbon Fluxes in Fluvial Networks.Nature Geoscience, 1(2):95-100.doi: 10.1038/ngeo101 Battin, T.J., Kaplan, L.A., Newbold, J.D., et al., 2003.Contributions of Microbial Biofilms to Ecosystem Processes in Stream Mesocosms.Nature, 426(6965):439-442.doi: 10.1038/nature02152 Baxter, C., Hauer, F.R., Woessner, W.W., 2003.Measuring Groundwater-Stream Water Exchange: New Techniques for Installing Minipiezometers and Estimating Hydraulic Conductivity.Transactions of the American Fisheries Society, 132(3):493-502.doi:10.1577/1548-8659(2003)132<0493:mgwent>2.0.co;2 Bencala, K.E., Kennedy, V.C., Zellweger, G.W., et al., 1984.Interactions of Solutes and Streambed Sediment: 1.An Experimental Analysis of Cation and Anion Transport in a Mountain Stream.Water Resources Research, 20(12):1797-1803.doi: 10.1029/wr020i012p01797 Bencala, K.E., Walters, R.A., 1983.Simulation of Solute Transport in a Mountain Pool-and-Riffle Stream:A Transient Storage Model.Water Resources Research, 19(3):718-724.doi: 10.1029/wr019i003p00718 Boano, F., Harvey, J.W., Marion, A., et al., 2014.Hyporheic Flow and Transport Processes:Mechanisms, Models, and Biogeochemical Implications.Reviews of Geophysics, 52(4):603-679.doi: 10.1002/2012rg000417 Böhlke, J.K., Antweiler, R.C., Harvey, J.W., et al., 2009.Multi-Scale Measurements and Modeling of Denitrification in Streams with Varying Flow and Nitrate Concentration in the Upper Mississippi River Basin, USA.Biogeochemistry, 93(1-2):117-141.doi: 10.1007/s10533-008-9282-8 Böhlke, J.K., Harvey, J.W., Voytek, M.A., 2004.Reach-Scale Isotope Tracer Experiment to Quantify Denitrification and Related Processes in a Nitrate-Rich Stream, Midcontinent United States.Limnology and Oceanography, 49(3):821-838.doi: 10.4319/lo.2004.49.3.0821 Bourg, A.C.M., Bertin, C., 1993.Biogeochemical Processes during the Infiltration of River Water into an Alluvial Aquifer.Environmental Science & Technology, 27(4):661-666.doi: 10.1021/es00041a009 Bouwer, H., Rice, R.C., 1976.A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells.Water Resources Research, 12(3):423-428.doi: 10.1029/wr012i003p00423 Briggs, M.A., Lautz, L.K., McKenzie, J.M., et al., 2012.Using High-Resolution Distributed Temperature Sensing to Quantify Spatial and Temporal Variability in Vertical Hyporheic Flux.Water Resources Research, 48(2):W02527.doi: 10.1029/2011wr011227 Buffington, J.M., Tonina, D., 2009.Hyporheic Exchange in Mountain Rivers Ⅱ:Effects of Channel Morphology on Mechanics, Scales, and Rates of Exchange.Geography Compass, 3(3):1038-1062.doi: 10.1111/j.1749-8198.2009.00225.x Cardenas, M.B., 2015.Hyporheic Zone Hydrologic Science:A Historical Account of Its Emergence and a Prospectus.Water Resources Research, 51(5):3601-3616.doi: 10.1002/2015wr017028 Cecil, L.D., Green, J.R., 2000.222Rn, in Environmental Tracers in Subsurface Hydrology.Springer US, New York, 175-194. Christensen, S., Rasmussen, K.R., Moller, K., 1998.Prediction of Regional Ground Water Flow to Streams.Ground Water, 36(2):351-360.doi: 10.1111/j.1745-6584.1998.tb01100.x Conant, B., 2004.Delineating and Quantifying Ground Water Discharge Zones Using Streambed Temperatures.Ground Water, 42(2):243-257.doi: 10.1111/j.1745-6584.2004.tb02671.x Constantz, J.E., 1998.Interaction between Stream Temperature, Streamflow, and Groundwater Exchanges in Alpine Streams.Water Resources Research, 34(7):1609-1615.doi: 10.1029/98wr00998 Cook, P.G., Lamontagne, S., Berhane, D., et al., 2006.Quantifying Groundwater Discharge to Cockburn River, Southeastern Australia, Using Dissolved Gas Tracers 222Rn and SF6.Water Resources Research, 42(10):W10411.doi: 10.1029/2006WR004921 Cranswick, R.H., Cook, P.G., Lamontagne, S., 2014.Hyporheic Zone Exchange Fluxes and Residence Times Inferred from Riverbed Temperature and Radon Data.Journal of Hydrology, 519:1870-1881.doi: 10.1016/j.jhydrol.2014.09.059 Deng, Y.M., Wang, Y.X., Li, H.J., et al., 2015.Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain.Earth Science, 40(11):1876-1886(in Chinese with English abstract). Duff, J.H., Triska, F.J., 2000.Nitrogen Biogeochemistry and Surface-Subsurface Exchange in Streams, in Streams and Groundwaters.Academic Press, San Diego, 197-220. Elliott, A.H., Brooks, N.H., 1997.Transfer of Nonsorbing Solutes to a Streambed with Bed Forms:Theory.Water Resources Research, 33(1):123-136.doi: 10.1029/96wr02784 Findlay, S., 1995.Importance of Surface-Subsurface Exchange in Stream Ecosystems:The Hyporheic Zone.Limnology and Oceanography, 40(1):159-164.doi: 10.4319/lo.1995.40.1.0159 Fuller, C.C., Harvey, J.W., 2000.Reactive Uptake of Trace Metals in the Hyporheic Zone of a Mining-Contaminated Stream, Pinal Creek, Arizona.Environmental Science & Technology, 34(7):1150-1155.doi: 10.1021/es990714d Gandy, C.J., Smith, J.W.N., Jarvis, A.P., 2007.Attenuation of Mining-Derived Pollutants in the Hyporheic Zone:A Review.Science of the Total Environment, 373(2-3):435-446.doi: 10.1016/j.scitotenv.2006.11.004 Gomez-Velez, J.D., Harvey, J.W., 2014.A Hydrogeomorphic River Network Model Predicts Where and Why Hyporheic Exchange is Important in Large Basins.Geophysical Research Letters, 41(18):6403-6412.doi: 10.1002/2014gl061099 Gomez-Velez, J.D., Harvey, J.W., Cardenas, M.B., et al., 2015.Denitrification in the Mississippi River Network Controlled by Flow through River Bedforms.Nature Geoscience, 8(12):941-945.doi: 10.1038/ngeo2567 González-Pinzón, R., Ward, A.S., Hatch, C.E., et al., 2015.A Field Comparison of Multiple Techniques to Quantify Groundwater-Surface-Water Interactions.Freshwater Science, 34(1):139-160.doi: 10.1086/679738 Gordon, R.P., Lautz, L.K., Briggs, M.A., et al., 2012.Automated Calculation of Vertical Pore-Water Flux from Field Temperature Time Series Using the VFLUX Method and Computer Program.Journal of Hydrology, 420-421:142-158.doi: 10.1016/j.jhydrol.2011.11.053 Gu, C.H., Hornberger, G.M., Mills, A.L., et al., 2007.Nitrate Reduction in Streambed Sediments:Effects of Flow and Biogeochemical Kinetics.Water Resources Research, 43(12):W12413.doi: 10.1029/2007wr006027 Harvey, J.W., Bencala, K.E., 1993.The Effect of Streambed Topography on Surface-Subsurface Water Exchange in Mountain Catchments.Water Resources Research, 29(1):89-98.doi: 10.1029/92wr01960 Harvey, J.W., Böhlke, J.K., Voytek, M.A., et al., 2013.Hyporheic Zone Denitrification:Controls on Effective Reaction Depth and Contribution to Whole-Stream Mass Balance.Water Resources Research, 49(10):6298-6316.doi: 10.1002/wrcr.20492 Harvey, J.W., Drummond, J.D., Martin, R.L., et al., 2012.Hydrogeomorphology of the Hyporheic Zone:Stream Solute and Fine Particle Interactions with a Dynamic Streambed.Journal of Geophysical Research:Biogeosciences, 117(G4):G00N11.doi: 10.1029/2012jg002043 Harvey, J.W., Fuller, C.C., 1998.Effect of Enhanced Manganese Oxidation in the Hyporheic Zone on Basin-Scale Geochemical Mass Balance.Water Resources Research, 34(4):623-636.doi: 10.1029/97wr03606 Harvey, J.W., Wagner, B.J., Bencala, K.E., 1996.Evaluating the Reliability of the Stream Tracer Approach to Characterize Stream-Subsurface Water Exchange.Water Resources Research, 32(8):2441-2451.doi: 10.1029/96wr01268 Harvey, J., Gooseff, M., 2015.River Corridor Science:Hydrologic Exchange and Ecological Consequences from Bedforms to Basins.Water Resources Research, 51(9):6893-6922.doi: 10.1002/2015wr017617 Harvey, J.W., Wagner, B.J., 2000.Quantifying Hydrologic Interactions between Streams and Their Subsurface Hyporheic Zones, in Streams and Ground Waters.Academic Press, San Diego, 3-44. Hatch, C.E., Fisher, A.T., Revenaugh, J.S., et al., 2006.Quantifying Surface Water-Groundwater Interactions Using Time Series Analysis of Streambed Thermal Records:Method Development.Water Resources Research, 42(10):W10410.doi: 10.1029/2005wr004787 Hendricks, S.P., White, D.S., 2000.Stream and Groundwater Influences on Phosphorus Biogeochemistry, in Streams and Groundwaters.Academic Press, San Diego, 221-235. Hester, E.T., Doyle, M.W., 2008.In-Stream Geomorphic Structures as Drivers of Hyporheic Exchange.Water Resources Research, 44(3):W03417.doi: 10.1029/2006wr005810 Ho, R.T., Gelhar, L.W., 1973.Turbulent Flow with Wavy Permeable Boundaries.Journal of Fluid Mechanics, 58(2):403.doi: 10.1017/s0022112073002661 Kalbus, E., Reinstorf, F., Schirmer, M., 2006.Measuring Methods for Groundwater-Surface Water Interactions:A Review.Hydrology and Earth System Sciences, 10(6):873-887.doi: 10.5194/hess-10-873-2006 Keery, J., Binley, A., Crook, N., et al., 2007.Temporal and Spatial Variability of Groundwater-Surface Water Fluxes:Development and Application of an Analytical Method Using Temperature Time Series.Journal of Hydrology, 336(1-2):1-16.doi: 10.1016/j.jhydrol.2006.12.003 Kilpatrick, F.A., Cobb, E.D., 1985.Measurement of Discharge Using Tracers.U.S.Geological Survey, Techniques of Water-Resources Investigations, Book 3, Chapter A-16.United States Government Printing Office, Washington. Kim, H., Hemond, H.F., Krumholz, L.R., et al., 1995.In-Situ Biodegradation of Toluene in a Contaminated Stream.Part 1.Field Studies.Environmental Science & Technology, 29(1):108-116.doi: 10.1021/es00001a014 Lamontagne, S., Cook, P.G., 2007.Estimation of Hyporheic Water Residence Time In-Situ Using 222Rn Disequilibrium.Limnology and Oceanography:Methods, 5(11):407-416.doi: 10.4319/lom.2007.5.407 Lee, D.R., 1977.A Device for Measuring Seepage Flux in Lakes and Estuaries 1.Limnology and Oceanography, 22(1):140-147.doi: 10.4319/lo.1977.22.1.0140 Liu, C.X., Shang, J.Y., Kerisit, S., et al., 2013.Scale-Dependent Rates of Uranyl Surface Complexation Reaction in Sediments.Geochimica et Cosmochimica Acta, 105:326-341.doi: 10.1016/j.gca.2012.12.003 Liu, C.X., Shang, J.Y., Shan, H.M., et al., 2014.Effect of Subgrid Heterogeneity on Scaling Geochemical and Biogeochemical Reactions:A Case of U(Ⅵ) Desorption.Environmental Science & Technology, 48(3):1745-1752.doi: 10.1021/es404224j Liu, Y., Shao, J.L., Chen, C.S., 2015.Hydrogeological Parameter Estimations for Slug Test in Sloping Confined Aquifer.Earth Science, 40(5):925-932 (in Chinese with English abstract). Ma, R., Dong, Q.M., Sun, Z.Y., et al., 2013.Using Heat to Trace and Model the Surface Water-Groundwater Interactions:A Review.Geological Science and Technology Information, 32(2):131-137 (in Chinese with English abstract). McClain, M.E., Boyer, E.W., Dent, C.L., et al., 2003.Biogeochemical Hot Spots and Hot Moments at the Interface of Terrestrial and Aquatic Ecosystems.Ecosystems, 6(4):301-312.doi: 10.1007/s10021-003-0161-9 McKnight, D.M., Runkel, R.L., Tate, C.M., et al., 2004.Inorganic N and P Dynamics of Antarctic Glacial Meltwater Streams as Controlled by Hyporheic Exchange and Benthic Autotrophic Communities.Journal of the North American Benthological Society, 23(2):171-188.doi:10.1899/0887-3593(2004)023<0171:inapdo>2.0.co;2 Mulholland, P.J., Helton, A.M., Poole, G.C., et al., 2008.Stream Denitrification across Biomes and Its Response to Anthropogenic Nitrate Loading.Nature, 452(7184):202-205.doi: 10.1038/nature06686 Mulholland, P.J., Marzolf, E.R., Webster, J.R., et al., 1997.Evidence that Hyporheic Zones Increase Heterotrophic Metabolism and Phosphorus Uptake in Forest Streams.Limnology and Oceanography, 42(3):443-451.doi: 10.4319/lo.1997.42.3.0443 Murdoch, L.C., Kelly, S.E., 2003.Factors Affecting the Performance of Conventional Seepage Meters.Water Resources Research, 39(6):1163.doi: 10.1029/2002wr001347 Newbold, J.D., Thomas, S.A., Minshall, G.W., et al., 2005.Deposition, Benthic Residence, and Resuspension of Fine Organic Particles in a Mountain Stream.Limnology and Oceanography, 50(5):1571-1580.doi: 10.4319/lo.2005.50.5.1571 Packman, A.I., Brooks, N.H., 1995.Colloidal Particles Exchange between Stream and Stream Bed in a Laboratory Flume.Marine and Freshwater Research, 46(1):233-236. Palumbo-Roe, B., Wragg, J., Banks, V.J., 2012.Lead Mobilisation in the Hyporheic Zone and River Bank Sediments of a Contaminated Stream:Contribution to Diffuse Pollution.Journal of Soils and Sediments, 12(10):1633-1640.doi: 10.1007/s11368-012-0552-7 Paulsen, R.J., Smith, C.F., O'Rourke, D., et al., 2001.Development and Evaluation of an Ultrasonic Ground Water Seepage Meter.Ground Water, 39(6):904-911.doi: 10.1111/j.1745-6584.2001.tb02478.x Ren, J.H., Packman, A.I., 2004.Stream-Subsurface Exchange of Zinc in the Presence of Silica and Kaolinite Colloids.Environmental Science & Technology, 38(24):6571-6581.doi: 10.1021/es035090x Ren, J.H., Packman, A.I., 2005.Coupled Stream-Subsurface Exchange of Colloidal Hematite and Dissolved Zinc, Copper, and Phosphate.Environmental Science & Technology, 39(17):6387-6394.doi: 10.1021/es050168q Risgaard-Petersen, N., Nielsen, L.P., Rysgaard, S., et al., 2003.Application of the Isotope Pairing Technique in Sediments Where Anammox and Denitrification Coexist.Limnology and Oceanography:Methods, 1(1):63-73.doi: 10.4319/lom.2003.1.63 Rivett, M.O., Ellis, P.A., Greswell, R.B., et al., 2008.Cost-Effective Mini Drive-Point Piezometers and Multilevel Samplers for Monitoring the Hyporheic Zone.Quarterly Journal of Engineering Geology and Hydrogeology, 41(1):49-60.doi: 10.1144/1470-9236/07-012 Rosenberry, D.O., Morin, R.H., 2004.Use of an Electromagnetic Seepage Meter to Investigate Temporal Variability in Lake Seepage.Ground Water, 42(1):68-77.doi: 10.1111/j.1745-6584.2004.tb02451.x Rosenberry, D.O., Sheibley, R.W., Cox, S.E., et al., 2013.Temporal Variability of Exchange between Groundwater and Surface Water Based on High-Frequency Direct Measurements of Seepage at the Sediment-Water Interface.Water Resources Research, 49(5):2975-2986.doi: 10.1002/wrcr.20198 Ruff, J.F., Gelhar, L.W., 1972.Turbulent Shear Flow in Porous Boundary.Journal of Engineering Mechanics, 98(EM4):975-991. Sawyer, A.H., Cardenas, M.B., Buttles, J., 2011.Hyporheic Exchange Due to Channel-Spanning Logs.Water Resources Research, 47(8):W08502.doi: 10.1029/2011wr010484 Shepherd, R.G., 1989.Correlations of Permeability and Grain Size.Ground Water, 27(5):633-638.doi: 10.1111/j.1745-6584.1989.tb00476.x Simon, A., Bennett, S.J., Castro, J.M., 2013.Stream Restoration in Dynamic Fluvial Systems:Scientific Approaches, Analyses, and Tools.Geomorphology, 93(5):206-207.doi: 10.1029/gm194 Sophocleous, M., 2002.Interactions between Groundwater and Surface Water:The State of the Science.Hydrogeology Journal, 10(1):52-67.doi: 10.1007/s10040-001-0170-8 Stallman, R.W., 1965.Steady One-Dimensional Fluid Flow in a Semi-Infinite Porous Medium with Sinusoidal Surface Temperature.Journal of Geophysical Research, 70(12):2821-2827.doi: 10.1029/jz070i012p02821 Stanford, J.A., Ward, J.V., 1993.An Ecosystem Perspective of Alluvial Rivers:Connectivity and the Hyporheic Corridor.Journal of the North American Benthological Society, 12(1):48-60.doi: 10.2307/1467685 Stonedahl, S.H., Harvey, J.W., Wörman, A., et al., 2010.A Multiscale Model for Integrating Hyporheic Exchange from Ripples to Meanders.Water Resources Research, 46(12):W12539.doi: 10.1029/2009wr008865 Storey, R.G., Howard, K.W.F., Williams, D.D., 2003.Factors Controlling Riffle-Scale Hyporheic Exchange Flows and Their Seasonal Changes in a Gaining Stream:A Three-Dimensional Groundwater Flow Model.Water Resources Research, 39(2):1034.doi: 10.1029/2002wr001367 Stream Solute Workshop, 1990.Concepts and Methods for Assessing Solute Dynamics in Stream Ecosystems.Journal of the North American Benthological Society, 9(2):95-119.doi: 10.2307/1467445 Swanson, T.E., Cardenas, M.B., 2011.Ex-Stream:A MATLAB Program for Calculating Fluid Flux through Sediment-Water Interfaces Based on Steady and Transient Temperature Profiles.Computers & Geosciences, 37(10):1664-1669.doi: 10.1016/j.cageo.2010.12.001 Taniguchi, M., Fukuo, Y., 1993.Continuous Measurements of Ground-Water Seepage Using an Automatic Seepage Meter.Ground Water, 31(4):675-679.doi: 10.1111/j.1745-6584.1993.tb00601.x Thibodeaux, L.J., Boyle, J.D., 1987.Bedform-Generated Convective Transport in Bottom Sediment.Nature, 325(6102):341-343.doi: 10.1038/325341a0 Todd, D.K., Mays, L.W., 2005.Groundwater Hydrology.Wiley, Hoboken. Tonina, D., 2012.Surface Water and Streamed Sediment Interaction:The Hyporheic Exchange, in Fluid Mechanics of Environmental Interfaces.CRC Press, Taylor and Francis Group, London, 255-294. Tóth, J., 1963.A Theoretical Analysis of Groundwater Flow in Small Drainage Basins.Journal of Geophysical Research, 68(16):4795-4812.doi: 10.1029/jz068i016p04795 Triska, F.J., Duff, J.H., Avanzino, R.J., 1993.The Role of Water Exchange between a Stream Channel and Its Hyporheic Zone in Nitrogen Cycling at the Terrestrial-Aquatic Interface.Hydrobiologia, 251(1-3):167-184.doi: 10.1007/bf00007177 Triska, F.J., Kennedy, V.C., Avanzino, R.J., et al., 1989.Retention and Transport of Nutrients in a Third-Order Stream in Northwestern California:Hyporheic Processes.Ecology, 70(6):1893-1905.doi: 10.2307/1938120 Vaux, W.G., 1968.Intergravel Flow and Interchange of Water in a Streamed.Fishery Bulletin, 66(3):479-489. Winter, T.C., Harvey, J.W., Franke, O.L., et al., 1998.Groundwater and Surface Water:A Single Resource.USGS Circular, Reston, 1139. Wondzell, S.M., Swanson, F.J., 1996a.Seasonal and Storm Dynamics of the Hyporheic Zone of a 4th-Order Mountain Stream.Ⅰ:Hydrologic Processes.Journal of the North American Benthological Society, 15(1):3-19.doi: 10.2307/1467429 Wondzell, S.M., Swanson, F.J., 1996b.Seasonal and Storm Dynamics of the Hyporheic Zone of a 4th-Order Mountain Stream.Ⅱ:Nitrogen Cycling.Journal of the North American Benthological Society, 15(1):20-34.doi: 10.2307/1467430 Wroblicky, G.J., Campana, M.E., Valett, H.M., et al., 1998.Seasonal Variation in Surface-Subsurface Water Exchange and Lateral Hyporheic Area of Two Stream-Aquifer Systems.Water Resources Research, 34(3):317-328.doi: 10.1029/97wr03285 Zarnetske, J.P., Haggerty, R., Wondzell, S.M., et al., 2012.Coupled Transport and Reaction Kinetics Control the Nitrate Source-Sink Function of Hyporheic Zones.Water Resources Research, 48(11):W11508.doi: 10.1029/2012wr011894 Zhang, L.J., Xia, B., Gui, Z.S., et al., 2007.Contaminative Conditions Evaluation of Sixteen Main Rivers Flowing into Sea around Bohai Sea, in Summer of 2005.Environmental Science, 28(11):2409-2415 (in Chinese with English abstract). 邓娅敏, 王焰新, 李慧娟, 等, 2015.江汉平原砷中毒病区地下水砷形态季节性变化特征.地球科学, 40(11):1876-1886. doi: 10.1029/2012wr011894 刘颖,邵景力,陈家洵,2015. 基于微水试验倾斜承压含水层水文地质参数的推估.地球科学,40(5):925-932 http://www.earth-science.net/WebPage/Article.aspx?id=3084 马瑞, 董启明, 孙自永, 等, 2013.地表水与地下水相互作用的温度示踪与模拟研究进展.地质科技情报, 32(2):131-137. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201302018.htm 张龙军, 夏斌, 桂祖胜, 等, 2007.2005年夏季环渤海16条主要入海河流的污染状况.环境科学, 28(11):2409-2415. doi: 10.3321/j.issn:0250-3301.2007.11.001