Aquifer Parameter Estimation of Transient Pumping Test Based on Analytical and Numerical Methods
-
摘要: 含水层的水文地质参数是进行地下水资源计算、地下水污染防控等所必需的基础数据,结合数值模拟技术进行含水层参数反演很有必要.按照1:5万水文地质调查规范在江汉平原仙桃市杨林尾镇复兴水厂不同含水层位开展抽水试验,包括深层含水层单孔抽水试验以及浅层含水层中群孔(2孔)抽水试验.对于单孔抽水试验,应用第1类越流系统井流理论进行参数反演;对于群孔抽水试验,推导了特定综合井函数,并利用特定标准曲线匹配法和直线图解法求解了含水层参数.随后利用FEFLOW软件建立了相应数值模型,拟合了含水层参数.结果表明:浅层含水层的渗透系数变化范围为21.66~54.00 m/d,贮水率变化范围为1.28×10-5~8.00×10-4 m-1;深层含水层渗透系数变化范围为1.27~7.00 m/d,贮水率变化范围为3.90×10-6~5.00×10-6 m-1.对于深层承压含水层而言,越流补给量较大.采用数值模拟方法结合抽水试验数据求参,综合考虑了含水层结构,拟合效果好,所得结果更加可靠.Abstract: The aquifer parameters are the necessary basis data for calculation of groundwater resources and prevention of groundwater pollution, therefore it is necessary to invert the parameters with numerical method. According to the standard of 1:50 000 hydrogeological survey, two pumping tests with single pumping well in deep aquifer and two pumping wells in shallow aquifer were conducted at Fuxing Water Works at Yanglinwei Town of Xiantao City in Jianghan plain. The theory of first kind of leakage system was adopted to estimate the parameters in deep aquifer. For the shallow aquifer, a comprehensive well function was derived and the parameters were obtained by using the special type curve matching method and straight line method. In addition, the FEFLOW software has also been used to develop a numerical model for the pumping tests. The parameters were also estimated by the numerical model associated with the pumping test data. The results indicate that the hydraulic conductivity and the specific storage coefficient of the shallow confined aquifer are 21.66-54.00 m/d and 1.28×10-5 to 8.00×10-4 m-1, respectively. The hydraulic conductivity and the specific storage coefficient for the deep confined aquifer are 1.27-7.00 m/d and 3.90×10-6 to 5.00×10-6 m-1, respectively. The leakage from the third aquitard layer is significant, which should be taken into account for the analysis of the pumping test. In this paper, the numerical model is developed to estimate the aquifer parameters associated with the pumping test data, the structure of the aquifer was considered in detail in the numerical model. The good agreement between the simulated results and the measured data indicate that the results obtained from the numerical simulation are reliable.
-
Key words:
- Jianghan plain /
- pumping test /
- analytical method /
- numerical simulation /
- aquifer parameter /
- hydrogeology
-
表 1 研究区钻孔岩性及含水层划分
Table 1. The borehole lithology and aquifer division of the study area
分层 底板标高(m) 层厚(m) 岩性 含水层划分 第1层 -40 40 粉质粘土 孔隙潜水含水层 第2层 -100 60 细砂、中砂、卵砾石 浅层孔隙承压含水层 第3层 -138 38 粉质粘土夹细砂 弱透水层 第4层 -160 22 细砂、中砂、粗砂夹少量粉质粘土 深层孔隙承压含水层 注:以地面为基准面. 表 2 解析法求取浅层孔隙承压含水层参数结果
Table 2. The estimated results of aquifer parameters in the shallow confined aquifer with analytical method
方法 K(m/d) 贮水系数 贮水率(m-1) 标准曲线配比法 31.51 3.70×10-3 6.17×10-5 直线图解法 21.66 7.70×10-4 1.28×10-5 表 3 各主要含水层拟合后水文地质参数
Table 3. The estimated aquifer parameters with the numerical simulation
含水层 Kx(m/d) Ky(m/d) Kz(m/d) 贮水系数 贮水率Ss(m-1) 浅层孔隙承压含层 54.00 54.00 5.40 3.20×10-2 8.00×10-4 深层孔隙承压含层 7.00 7.00 0.70 1.10×10-4 5.00×10-6 弱透水层 1.00×10-3 1.00×10-3 0.80 7.60×10-4 2.00×10-5 表 4 浅层孔隙承压含水层抽水试验水均衡
Table 4. The corresponding period budget for shallow confined aquifer pumping test
层 流出量(m3) 流入量(m3) 自身弹性释放量(m3) 浅层孔隙承压含水层 0.03 228.10 227.99 表 5 深层孔隙承压含水层抽水试验各主要含水层水均衡
Table 5. The corresponding period budget for main aquifer of deep confined aquifer pumping test
层 流出量(m3) 流入量(m3) 自身弹性释放量(m3) 弱透水层 720.77 492.83 228.01 深层孔隙承压含水层 665.19 629.10 36.09 表 6 解析法与数值法参数结果汇总
Table 6. The summarization of aquifer parameters estimated by analytical and numerical methods
含水层 方法 K(m/d) 贮水率(m-1) 浅层孔隙承压含水层 特定标准曲线配比法 31.51 6.17×10-5 浅层孔隙承压含水层 特定直线图解法 21.66 1.28×10-5 浅层孔隙承压含水层 数值模拟法 54.00 8.00×10-4 深层孔隙承压含水层 Hantush-Jacob法 1.27 3.90×10-6 深层孔隙承压含水层 数值模拟法 7.00 5.00×10-6 -
Chen, X.L., Wen, Z., Hu, J.S., et al., 2016.Application of Numerical Simulation and Analytical Methods to Estimate Hydraulic Parameters of Foundation Pit in Hydropower Stations.Earth Science, 41(4):701-710(in Chinese with English abstract). Chen, X.L., Zhang, M.Y., Wen, Z., et al., 2014.Application of Numerical Simulation to Estimate the Hydraulic Parameters in Fractured Media:A Case Study in Emergency Water Area of Qitaihe City, Heilongjiang Province.Hydrogeology & Engineering Geology, 41(5):32-37, 56 (in Chinese with English abstract). Guo, J.Q., Zhou, H.F., Li, Y., et al., 2009.The Linear-Analytical Method of Estimating Aquifer Parameters from Unsteady Pumping Test Data.China Rural Water and Hydropower, (4):18-21 (in Chinese with English abstract). Hao, J., 2012.Numerical Simulation Study of Groundwater by FEFLOW in Baojixia Irrigation on Loess Plateau(Dissertation).Northwest A & F University, Yangling(in Chinese with English abstract). Li, P.Y., 2011.Comparative Study on the Methods for Determining Hydrogeological Parameters in Leaky Confined Aquifers by Transient Flow Pumping Test(Dissertation).Chang'an University, Xi'an, 9-20(in Chinese with English abstract). Liu, H.J., Hsu, N.S., Lee, T.H., 2009.Simultaneous Identification of Parameter, Initial Condition, and Boundary Condition in Groundwater Modelling.Hydrological Processes, 23(16):2358-2367.doi: 10.1002/hyp.7344 Liu, Y., Shao, J.L., Chen, C.S., 2015.Hydrogeological Parameter Estimations for Slug Test in Sloping Confined Aquifer.Earth Science, 40(5):925-932 (in Chinese with English abstract). Neuman, S.P., 1975.Analysis of Pumping Test Data from Anisotropic Unconfined Aquifers Considering Delayed Gravity Response.Water Resources Research, 11(2):329-342.doi: 10.1029/wr011i002p00329 Nie, Q.L., Gao, G.D., Xuan, H.S., et al., 2009.Methods of Determining Parameters of a Confined Aquifer with Pumping Tests.Hydrogeology & Engineering Geology, 36(4):37-40, 49(in Chinese with English abstract). Raymond, J., Therrien, R., Gosselin, L., et al., 2011.A Review of Thermal Response Test Analysis Using Pumping Test Concepts.Ground Water, 49(6):932-945.doi: 10.1111/j.1745-6584.2010.00791.x Sahin, A.U., 2016.A New Parameter Estimation Procedure for Pumping Test Analysis Using a Radial Basis Function Collocation Method.Environmental Earth Sciences, 75(3):1-13.doi: 10.1007/s12665-015-5079-y Tang, Y.M., Xiao, J., 2001.The Characteristic Parameters of Groundwater System in Mining Area—The Hydrogeological Significance and Function of the System.Hydrogeology and Engineering Geology, (6):26-29(in Chinese with English abstract). van Camp, M.V., Walraevens, K., 2009.Pumping Test Interpretation by Combination of Latin Hypercube Parameter Sampling and Analytical Models.Computers & Geosciences, 35(10):2065-2073.doi: 10.1016/j.cageo.2008.12.011 Xue, Y.Q., Zhu, X.Y., 1999.Groundwater Dynamic.Geological Publishing House, Beijing, 66-72(in Chinese). Yang, W., 2007.Numerical Simulation Research of Groundwater with FEFLOW in the West of Jilin Province(Dissertation).Jilin University, Changchun(in Chinese with English abstract). Zech, A., Arnold, S., Schneider, C., et al., 2015.Estimating Parameters of Aquifer Heterogeneity Using Pumping Tests—Implications for Field Applications.Advances in Water Resources, 83:137-147.doi: 10.1016/j.advwatres.2015.05.021 Zhao, B.F., Kang, W.D., Zhutian, D.W., et al., 2009a.Aquifer Parameter Recognition by Combining Simulation of Pumping Test and Water Level of Long-Term Observation Well.Journal of Jilin University(Earth Science Edition), 39(3):482-486(in Chinese with English abstract). Zhao, B.F., Kang, W.D., Zhutian, D.W., et al., 2009b.Aquifer Parameter Recognition Based on Numerical Simulation.Journal of Earth Sciences and Environment, 31(4):409-412(in Chinese with English abstract). Zhao, D.J., 2005.The Three-Dimensional Numerical Simulation for Groundwater System in Jianghan Plain(Dissertation).China University of Geosciences, Wuhan(in Chinese with English abstract). Zhao, X., 2009.Numerical Simulation Study of Groundwater Based on FEFLOW and GIS Technology in Xianyang City(Dissertation).Northwest A & F University, Yangling(in Chinese with English abstract). Zhou, Z.F., Tang, R.L., Wang, B., 1999.Determination of Hydrogeological Parameters of Leaky Aquifer Based on Pumping Test Data of Partially Penetrating Well near the Boundary.Journal of Hohai University, 27(3):5-8(in Chinese with English abstract). 陈晓恋, 文章, 胡金山, 等, 2016.解析法与数值法在水电站防渗墙效果评价中的运用.地球科学, 41(4):701-710. http://www.earth-science.net/WebPage/Article.aspx?id=3287 陈晓恋, 张美雁, 文章, 等, 2014.裂隙含水层水文地质参数反演——以黑龙江七台河市应急水源地为例.水文地质工程地质, 41(5):32-37, 56. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201405008.htm 郭建青, 周宏飞, 李彦, 等, 2009.分析非稳定流抽水试验数据的改进直线解析法.中国农村水利水电, (4):18-21. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD200904005.htm 郝健, 2012. 基于FEFLOW的宝鸡峡原上灌区地下水数值模拟研究(硕士学位论文). 杨凌: 西北农林科技大学. 李培月, 2011. 非稳定流抽水试验确定越流承压含水层水文地质参数方法对比研究(硕士学位论文). 西安: 长安大学, 9-20. 刘颖, 邵景力, 陈家洵, 2015.基于微水试验倾斜承压含水层水文地质参数的推估.地球科学, 40(5):925-932. http://www.earth-science.net/WebPage/Article.aspx?id=3084 聂庆林, 高广东, 轩华山, 等, 2009.抽水试验确定承压含水层参数方法探讨.水文地质工程地质, 36(4):37-40, 49. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200904011.htm 唐依民, 肖江, 2001.矿区地下水系统特征参数——系统域值的水文地质意义及作用.水文地质工程地质, 6:26-29. doi: 10.3969/j.issn.1000-3665.2001.04.008 薛禹群, 朱学愚, 1999.地下水动力学.北京:地质出版社, 66-72. 杨威, 2007. 基于FEFLOW的吉林西部地下水数值模拟研究(硕士学位论文). 长春: 吉林大学. 赵宝峰, 康卫东, 祝田多娃, 等, 2009a.抽水试验和长观水位联合模拟确定含水层参数.吉林大学学报:地球科学版, 39(3):482-486. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200903017.htm 赵宝峰, 康卫东, 祝田多娃, 等, 2009b.基于数值模拟的含水层参数识别.地球科学与环境学报, 31(4):409-412. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGX200904013.htm 赵德君, 2005. 江汉平原地下水系统三维数值模拟(硕士学位论文). 武汉: 中国地质大学. 赵旭, 2009. 基于FEFLOW和GIS技术的咸阳市地下水数值模拟研究(硕士学位论文). 杨凌: 西北农林科技大学. 周志芳, 汤瑞凉, 汪斌, 1999.基于抽水试验资料确定含水层水文地质参数.河海大学学报(自然科学版), 27(3):5-8. http://www.cnki.com.cn/Article/CJFDTOTAL-HHDX199903001.htm