Calculation Method about Hydraulic Conductivity of Quaternary Aquitard in Jianghan Plain
-
摘要: 弱透水层的渗透系数是区域地下水流系统划分和关键带水-土-生作用的重要参数.结合江汉平原关键带调查采集1:5万杨林尾-陆溪口图幅钻孔52组不同深度、不同岩性的原状土样,利用改进的渗透仪进行室内渗透实验,对粘性土样的渗透系数和粒度特征参数进行经验公式修正.发现研究区沉积物渗透系数与含水岩组埋深和岩性有关.浅层孔隙潜水含水岩组以粉质粘土、粘土为主,沉积环境稳定,渗透系数约10-9 m/s,变异系数为1.56;中深层承压含水岩组夹有多层粘土和粉砂,呈现多旋回分布的典型河湖交互作用的沉积环境,渗透系数为10-10~10-6 m/s,变异系数为2.04,变异性较大.利用有效孔隙比eu与黏粒含量P的显著二项式关系,修正预测粘性土渗透系数的太沙基经验公式,预测值与室内实测数据基本吻合,二者比值均小于10,验证了太沙基修正公式在河湖相平原区的适用性.Abstract: The hydraulic conductivity of aquitard is an important parameter for the regional groundwater flow system and the effect of water-soil-biology in critical zone. Taking the 1:50 000 Yanglinwei-Luxikou in Jianghan plain as typical study area combining with the investigation of critical zone, 52 sediment samples from different depth and lithology were collected to conduct the laboratorial penetration test with improved permeameter, and amend the empirical formula of clay with K and granularity characteristic parameters. The results show that: the hydraulic conductivity of sediments related to lithology and large variability, range from 10-10 to 10-6 m/s; pore phreatic aquifer group mainly consists of silty clay and clay, hydraulic conductivity and variability is small, sedimentary environment is relatively stable; artesian aquifer group due to the continuous distribution of clay and silt, leading to large hydraulic conductivity and variability, present multicycle sedimentary environment of typical river-lake interaction. Utilize the significant binomial relation with effective pore ratio (eu) and clay content (P), amend Terzaghi's empirical formula, and predicted data and experimental data are coincided basically, the range of specific value is less than an order of magnitude, validating the feasibility of amended Terzaghi's formula in river-lake plain.
-
Key words:
- Jianghan plain /
- hydraulic conductivity /
- clay /
- Terzaghi's empirical formula /
- groundwater /
- hydrogeology
-
表 1 渗透系数(m/s)数据统计结果
Table 1. Statistical results of the measured hydraulic conductivity (m/s)
钻孔编号 YLW01 YLW04 样品数 21 19 最大值 6.60×10-6 2.24×10-6 最小值 2.47×10-10 1.41×10-10 均值 5.79×10-7 2.56×10-7 标准差 1.53×10-6 5.95×10-7 变异系数 2.64 2.32 表 2 修正公式的土样参数
Table 2. The formula parameters of clay
样品编号 K(10-9 m/s) e d10(10-3 mm) eu 黏粒含量P(%) Y01-1 1.27 1.49 1.74 0.14 25.34 Y01-2 1.15 1.10 1.28 0.19 25.12 Y01-3 1.54 0.79 1.88 0.15 22.74 Y01-4 1.21 0.93 2.17 1.13 51.19 Y01-5 1.74 0.96 5.35 0.55 39.00 Y01-13 0.54 0.98 1.64 0.10 22.32 Y01-15 9.17 1.03 3.70 0.18 22.42 Y01-17 0.52 0.89 2.67 0.06 17.17 Y01-19 3.10 0.91 4.60 0.09 14.21 Y01-21 0.59 0.94 4.84 0.04 17.08 Y01-24 0.35 0.76 4.83 0.03 8.94 L02-3 6.82 0.92 3.12 0.19 24.89 L02-1-1 0.13 1.21 3.21 0.03 20.28 L02-1-2 3.71 0.81 1.94 0.22 30.03 L02-1-3 2.02 0.90 3.74 0.09 16.45 L02-1-5 0.41 0.96 5.30 0.03 9.44 表 3 修正公式的验证结果
Table 3. The verification result of amendment formula
样品编号 P(%) d10(10-3 mm) K实测(10-9 m/s) K预测(10-9 m/s) K预测/K实测 相对误差 Y04-1 27.10 1.58 0.35 2.12 6.06 5.06 Y04-2 37.30 1.30 1.36 8.38 6.16 5.16 Y04-3 28.83 1.37 0.82 2.25 2.76 1.76 Y04-4 35.56 1.29 3.46 6.31 1.82 0.82 Y04-5 28.58 1.45 3.17 2.39 0.75 -0.25 Y04-13 27.95 1.32 1.13 1.76 1.56 0.56 JH01-69 12.59 1.82 0.28 0.11 0.39 -0.61 JH01-72 8.84 2.47 0.36 0.25 0.69 -0.31 JH01-73 10.73 2.01 0.06 0.13 2.17 1.17 JH04-22 33.47 1.35 5.10 5.00 0.98 -0.02 JH08-01 22.92 1.74 6.77 0.99 0.15 -0.85 JH10-17 24.49 1.67 1.68 1.33 0.79 -0.21 JH10-23 31.45 1.38 0.58 3.69 6.36 5.36 JH10-69 25.27 1.64 0.57 1.53 2.67 1.67 -
Bagarello, V., Elrick, D.E., Iovino, M., et al., 2006.A Laboratory Analysis of Falling Head Infiltration Procedures for Estimating the Hydraulic Conductivity of Soils.Geoderma, 135:322-334.doi: 10.1016/j.geoderma.2005.12.008 Bojana, D., 2009.Predicting the Hydraulic Conductivity of Saturated Clays Using Plasticity-Value Correlations.Applied Clay Science, 45:90-94.doi: 10.1016/j.clay.2009.04.001 Chapuis, R.P., Aubertin, M., 2003.On the Use of the Kozeny Carman Equation to Predict the Hydraulic Conductivity of Soils.Canadian Geotechnical Journal, 40(3):616-628.doi: 10.1139/t03-013 Chen, C.X., Lin, M., 1999.Dynamics of Groundwater.China University of Geosciences Press, Wuhan, 7-9 (in Chinese). Cheng, C.L., Shu, L.C., Wang, M.M., et al., 2011.Experimental Study on Permeability Coefficient of Streambed Sediment of Yangtze River in Jiangsu Province.Water Resources and Power, 29(11):64-66, 211 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDNY201111016.htm Dang, F.N., Liu, H.W., Wang, X.W., et al., 2015.Empirical Formulas of Permeability of Clay Based on Effective Pore Ratio.Chinese Journal of Rock Mechanics and Engineering, 34(9):1909-1917 (in Chinese with English abstract). https://www.researchgate.net/publication/283807110_Empirical_formulas_of_permeability_of_clay_based_on_effective_pore_ratio Deng, Y.F., Liu, S.Y., Zhang, D.W., et al., 2011.Comparison among Some Relationships between Permeability and Void Ratio.Northwestern Seismological Journal, 33(Suppl.):64-66, 76(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ2011S1015.htm Deng, Y.M., Wang, Y.X., Li, H.J., et al., 2015.Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain.Earth Science, 40(11):1876-1886(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201511010.htm Fernando, J., 2008.Determination of Coefficient of Permeability from Soil Percolation Test.The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa. Ge, Q., Gong, X.L., Liang, X., et al., 2015.The Permeability Apparatus about a Low Permeability of Saturated Clay:2015104824344.2016.8.16, Chinese Patent (in Chinese). Jiang, X.W., Wan, L., Wang, X.S., et al., 2009.Effect of Exponential Decay in Hydraulic Conductivity with Depth on Regional Groundwater Flow.Geophysical Research Letters, 36(24): 1-4.doi: 10.1029/2009gl041251 Kang, J.B., Shackelford, C.D., 2009.Clay Membrane Testing Using a Flexible-Wall Cell under Closed-System Boundary Conditions.Applied Clay Science, 44(1-2):43-58.doi: 10.1016/j.clay.2009.01.006 Kellon, C.J., Wassenaar, L.I., Hendry, M.J., 2001.Stable Isotopes (δ18O, δ2H) of Pore Waters in Clay-Rich Aquitards:A Comparison and Evaluation of Measurement Techniques.Groundwater Monitoring & Remediation, 21(2):108-116. https://www.researchgate.net/publication/229911514_Stable_Isotopes_d18O_d2H_of_Pore_Waters_in_Clay-Rich_Aquitards_A_Comparison_and_Evaluation_of_Measurement_Techniques Li, H.M., Deng, Y.M., Luo, L.W., et al., 2015.Geochemistry of High Arsenic Shallow Aquifers Sediment of the Jianghan Plain.Geological Science and Technology Information, (3):178-184(in Chinese with English abstract). Liu, H.W., Dang, F.N., Wang, X.W., et al., 2015.Method of Using Consistency Index Estimating the Permeability Coefficient of Clay.Journal of Sichuan University(Engineering Science Edition), 47(Suppl.1):48-52(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SCLH2015S1009.htm Mao, C.X., 2003.Seepage Computation Analysis & Control.China Water & Power Press, Beijing, 4-8 (in Chinese). Ministry of Housing and Urban-Rural Development of the People's Republic of China, 1999.Standard for Soil Test Method.China Planniing Press, Beijing (in Chinese). Rosas, J., Lopez, O., Missimer, T.M., et al., 2013.Determination of Hydraulic Conductivity from Grain-Size Distribution for Different Depositional Environments.Groundwater, 52(3):399-413.doi: 10.1111/gwat.12078 Taylor, D.W., 1948.Fundamentals of Soil Mechanics.Soil Science Press, New York, 161. Wan, L., Jiang, X.W., Wang, X.S., 2010.A Common Regularity of Aquifers:The Decay in Hydraulic Conductivity with Depth.Geological Journal of China Universities, 16(1):7-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX201001003.htm Wang, X.Y., Liu, C.L., 2003.New Understanding of the Regularity of Water Seepage in Cohesive Soil.Acta Geoscientia Sinica, 24(1):91-95(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200301015.htm Ye, Z.Q., Li, A.Q., Yang, G.H., et al., 1999.Study of Permeability for Cohesive Soil.Journal of Southeast University, 29(5):121-125 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DNDX199905024.htm Zeng, L.L., Hong, Z.S., Chen, F.Q., 2012.A Law of Change in Permeability Coefficient during Compression of Remolded Clays.Rock and Soil Mechanics, 33(5):1286-1292(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX201205001.htm Wen, Z., Liu, K., Chen, X.L., 2015.Approximate Analytical Solutions for Two-Region Non-Darcian Flow to a Partially Penetrating Well.Earth Science, 40(5):918-924(in Chinese with English abstract). https://www.researchgate.net/publication/282377592_Approximate_analytical_solutions_for_two-region_Non-Darcian_flow_to_a_partially_penetrating_well Zhang, M.X., Zhu, X.W., Yu, G.L., et al., 2015.Permeability of Muddy Clay and Settlement Simulation.Ocean Engineering, 104:521-529.doi: 10.1016/j.oceaneng.2015.05.031 Zhu, C.H., Liu, J.M., Wang Z.H., 2005.The Influence Law of the Grain Composition of Coarse-Grained Soil to Hydraulic Conductivity.Yellow River, 27(12):79-81(in Chinese). Zhu, X.W., Yan, J.M., Wang, X.B., et al., 2014.Laboratory Investigation of the Permeability of Saturated Muddy Clays.Water Resources and Hydropower Engineering, 45(9):107-111(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SJWJ201409029.htm 陈崇希, 林敏, 1999.地下水动力学.武汉:中国地质大学出版社, 7-9. 程春龙, 束龙仓, 王茂枚, 等, 2011.长江江苏段河床沉积物渗透系数试验研究.水电能源科学, 29(11):64-66, 211. doi: 10.3969/j.issn.1000-7709.2011.11.017 党发宁, 刘海伟, 王学武, 等, 2015.基于有效孔隙比的黏性土渗透系数经验公式研究.岩石力学与工程学报, 34(9):1909-1917. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509022.htm 邓永锋, 刘松玉, 章定文, 等, 2011.几种孔隙比与渗透系数关系的对比.西北地震学报, 33(增刊):64-66, 76. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ2011S1015.htm 邓娅敏, 王焰新, 李慧娟, 等, 2015.江汉平原砷中毒病区地下水砷形态季节性变化特征.地球科学, 40(11):1876-1886. http://www.earth-science.net/WebPage/Article.aspx?id=3194 葛勤, 龚绪龙, 梁杏, 等, 2015. 一种低渗透饱和粘土渗透测定仪: 2015104824344. 2016. 8. 16, 中国专利. 李红梅, 邓娅敏, 罗莉威, 等, 2015.江汉平原高砷含水层沉积物地球化学特征.地质科技情报, (3):178-184. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503025.htm 刘海伟, 党发宁, 王学武, 等, 2015.利用稠度指标估算黏土渗透系数的方法研究.四川大学学报:工程科学版, 47(增刊1):48-52. http://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2015S1009.htm 毛昶熙, 2003.渗流计算分析与控制.北京:水利水电出版社. 万力, 蒋小伟, 王旭升, 2010.含水层的一种普遍规律:渗透系数随深度衰减.高校地质学报, 16(1):7-12. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201001003.htm 王秀艳, 刘长礼, 2003.对粘性土孔隙水渗流规律本质的新认识.地球学报, 24(1):91-95. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200301015.htm 叶正强, 李爱群, 杨国华, 等, 1999.粘性土的渗透规律性研究.东南大学学报, 29 (5):121-125. doi: 10.3969/j.issn.1001-0505.1999.05.025 曾玲玲, 洪振舜, 陈福全, 2012.压缩过程中重塑黏土渗透系数的变化规律.岩土力学, 33(5):1286-1292. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201205001.htm 文章, 刘凯, 陈晓恋, 2015.承压含水层中非完整井附近"非达西-达西"两区渗流模型近似解析解.地球科学, 40(5):918-924. http://www.earth-science.net/WebPage/Article.aspx?id=3089 中华人民共和国住房和城乡建设部, 1999.土工试验方法标准, GB/T50123-1999.北京:中国计划出版社. 朱崇辉, 刘俊民, 王增红, 2005.粗粒土的颗粒级配对渗透系数的影响规律研究.人民黄河, 27(12):79-81. doi: 10.3969/j.issn.1000-1379.2005.12.036 朱熹文, 严建明, 王贤奔, 等, 2014.淤泥质饱和土渗透系数的室内实验研究.水利水电技术, 45(9):107-111. http://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201409029.htm