• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地下水与地表水相互作用下硝态氮的迁移转化实验

    闫雅妮 马腾 张俊文 廖曼 王智真

    闫雅妮, 马腾, 张俊文, 廖曼, 王智真, 2017. 地下水与地表水相互作用下硝态氮的迁移转化实验. 地球科学, 42(5): 783-792. doi: 10.3799/dqkx.2017.066
    引用本文: 闫雅妮, 马腾, 张俊文, 廖曼, 王智真, 2017. 地下水与地表水相互作用下硝态氮的迁移转化实验. 地球科学, 42(5): 783-792. doi: 10.3799/dqkx.2017.066
    Yan Ya'ni, Ma Teng, Zhang Junwen, Liao Man, Wang Zhizhen, 2017. Experiment on Migration and Transformation of Nitrate under Interaction of Groundwater and Surface Water. Earth Science, 42(5): 783-792. doi: 10.3799/dqkx.2017.066
    Citation: Yan Ya'ni, Ma Teng, Zhang Junwen, Liao Man, Wang Zhizhen, 2017. Experiment on Migration and Transformation of Nitrate under Interaction of Groundwater and Surface Water. Earth Science, 42(5): 783-792. doi: 10.3799/dqkx.2017.066

    地下水与地表水相互作用下硝态氮的迁移转化实验

    doi: 10.3799/dqkx.2017.066
    基金项目: 

    广西矿冶与环境科学实验中心项目 KH2012ZD004

    国家水体污染控制与治理科技重大专项 2012ZX07204-003-04

    广西高等学校高水平创新团队及卓越学者计划项目 002401013001

    中国地质调查局项目 DD20160255

    详细信息
      作者简介:

      闫雅妮(1990-),女,硕士研究生,主要从事地下水氮污染方面的研究工作.ORCID:0000-0003-2688-330X.E-mail: yanyani1990@163.com

      通讯作者:

      马腾,ORCID:0000-0003-2827-9579.E-mail:mateng@cug.edu.cn

    • 中图分类号: P641.3

    Experiment on Migration and Transformation of Nitrate under Interaction of Groundwater and Surface Water

    • 摘要: 全球水体氮污染形势严峻,且以硝态氮(NO3--N)污染为主,研究地下水与地表水(G-S)相互作用模式对NO3--N在“潜流带”(HZ)中迁移转化的影响是开展水体氮污染综合防控的关键.开展地表水(S)补给地下水(G)(下降流)、地下水(G)补给地表水(S)(上升流)以及交替作用3种模式的NO3--N迁移转化实验,研究表明:3种模式下,出水NO3--N浓度可降低95%以上;上升流中反硝化强度大于下降流;异化还原作用(DNRA)对下降流与上升流出水氨氮(NH4+-N)浓度的贡献分别约为71%和11%;上升流实验后水-土界面有机氮含量是下降流实验后水-土界面的2.3倍.结果表明,G-S相互作用下NO3--N的衰减途径主要包括:合成有机氮、反硝化及DNRA;相互作用模式对各衰减途径的强度存在影响;HZ介质通过吸附NH4+-N和微生物作用合成有机氮的方式截留氮素.

       

    • 图  1  下降流(a)和上升流(b)实验装置

      Fig.  1.  Schematic diagram of down-welling (a) and up-welling (b) experiment device

      图  2  交替实验装置

      Fig.  2.  Sketch of alternate experiment device

      图  3  下降流(a)和上升流(b)实验组出水NO3--N浓度及Cl-浓度变化曲线

      Fig.  3.  The curves of NO3--N concentration and Cl- concentration in the effluent of down-welling (a) and up-welling (b) experiment group

      图  4  上升流(GA)和下降流实验组(SA)出水中DO(a)和NO2--N(b)浓度对比

      Fig.  4.  The curves of DO (a) and NO2--N (b) in the effluent of up-welling (GA) and down-welling experimental groups (SA)

      图  5  下降流(a)实验组、上升流(b)实验组与对照组出水NH4+-N浓度变化曲线

      Fig.  5.  The curves of NH4+-N in the effluent of down-welling (a) and up-welling (b) experimental and control groups

      图  6  下降流(a)和上升流(b)实验组土柱不同深度氮素形态及含量

      Fig.  6.  Nitrogen forms and contents in different depth of the down-welling (a) and up-welling (b) experiment group column

      图  7  交替实验Cl-(a), 出水DO(b), 出水NO3--N及NO2-N(c)和出水NH4+-N(d)度变化曲线

      Fig.  7.  The curves of Cl- (a), DO (b), NO3--N and NO2--N (c) and NH4+-N (d) concentration in the effluent of alternate experiment

      图  8  G-S相互作用下NO3--N在HZ介质中的迁移转化概念模型

      Fig.  8.  Conceptual model of NO3--N migration and transformation in HZ under the G-S interaction

      表  1  实验用土基本理化性质

      Table  1.   The basic physical and chemical properties of experimental soil

      指标干容重
      (g/cm3)
      NO3--N
      (mg/kg)
      NH4+-N
      (mg/kg)
      有机氮
      (mg/kg)
      TN
      (mg/kg)
      数值1.4319.831.33633.06654.22
      下载: 导出CSV

      表  2  模拟液主要组分及其浓度

      Table  2.   Main components and concentrations in simulated solution

      实验模拟液分组编号Cl-(mg/L)KNO3(以N计,mg/L)CH3COONa(以C计,mg/L)DO(mg/L)
      下降流地表水实验组SA500100171.439~10
      对照组SB500-171.439~10
      上升流地下水实验组GA500100171.43<2
      对照组GB500-171.43<2
      交替地表水实验组SD2505085.729~10
      对照组SE250-85.729~10
      地下水实验组GD-5085.72<2
      对照组GE--85.72<2
      注:表中“-”代表不添加该试剂.
      下载: 导出CSV

      表  3  交替实验组土柱不同深度氮素形态及含量(mg/kg)

      Table  3.   Nitrogen forms and contents in different depth of alternate experimental group column (mg/kg)

      形态深度(cm)NO3--NNH4+-N有机氮TN
      实验前0~1019.831.33633.06654.22
      实验后0~513.008.00728.26749.26
      5~1011.1725.75839.14876.05
      下载: 导出CSV
    • Brauns, B., Bjerg, P.L., Song, X.F., et al., 2016.Field Scale Interaction and Nutrient Exchange between Surface Water and Shallow Groundwater in the Baiyang Lake Region, North China Plain.Journal of Environmental Sciences, 45:60-75.doi: 10.1016/j.jes.2015.11.021
      Carrey, R., Rodríguez-Escales, P., Otero, N., et al., 2014.Nitrate Attenuation Potential of Hypersaline Lake Sediments in Central Spain:Flow-through and Batch Experiments.Journal of Contaminant Hydrology, 164:323-337.doi: 10.1016/j.jconhyd.2014.06.017
      Chen, X.M., Ma, T., Cai, H.S., et al., 2013.Regional Control of Groundwater Nitrogen Contamination.Geological Science and Technology Information, 32(6):130-143, 149 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201306021.htm
      Deng, Y.M., Wang, Y.X., Li, H.J., et al., 2015.Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain.Earth Science, 40(11):1876-1886(in Chinese with English abstract). http://xueshu.baidu.com/s?wd=paperuri%3A%28c5dec679e43d7763acda4183e310b5a2%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.en.cnki.com.cn%2FArticle_en%2FCJFDTOTAL-DQKX201511010.htm&ie=utf-8&sc_us=6400518108938269600
      Domagalski, J.L., Phillips, S.P., Bayless, E.R., et al., 2008.Influences of the Unsaturated, Saturated, and Riparian Zones on the Transport of Nitrate near the Merced River, California, USA.Hydrogeology Journal, 16(4):675-690.doi: 10.1007/s10040-007-0266-x
      Fazzolari, É., Nicolardot, B., Germon, J.C., 1998.Simultaneous Effects of Increasing Levels of Glucose and Oxygen Partial Pressures on Denitrification and Dissimilatory Nitrate Reduction to Ammonium in Repacked Soil Cores.European Journal of Soil Biology, 34(1):47-52.doi:10.1016/ S1164 -5563(99)80006-5
      Ge, S.J., Peng, Y.Z., Wang, S.Y., et al., 2012.Nitrite Accumulation under Constant Temperature in Anoxic Denitrification Process:The Effects of Carbon Sources and COD/NO3-N.Bioresource Technology, 114:137-143.doi: 10.1016/j.biortech.2012.03.016
      Glass, C., Silverstein, J., 1998.Denitrification Kinetics of High Nitrate Concentration Water:pH Effect on Inhibition and Nitrite Accumulation.Water Research, 32(3):831-839.doi: 10.1016/s0043-1354(97)00260-1
      Guo, J.N., Lu, S.Y., Jin, X.C., et al., 2010.Regularity of Nitrogen Release under Low Oxygen Conditions from Various Sediments in a River Network.Acta Scientiae Circumstantiae, 30(3):614-620(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJXX201003026.htm
      Guo, Y., Peng, D.C., Zhang, X.Y., et al., 2014.Growth Characteristics of Heterotrophic Bacteria with Nitrate as a Sole Nitrogen Source.Chinese Journal of Environmental Engineering, 8(3):882-886 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJJZ201403015.htm
      Hendricks, S.P., 1993.Microbial Ecology of the Hyporheic Zone:A Perspective Integrating Hydrology and Biology.Journal of the North American Benthological Society, 12(1):70-78.doi: 10.2307/1467687
      Hill, A.R., 1996.Nitrate Removal in Stream Riparian Zones.Journal of Environment Quality, 25(4):743-755.doi: 10.2134/jeq1996.00472425002500040014x
      Hill, A.R., Labadia, C.F., Sanmugadas, K., 1998.Hyporheic Zone Hydrology and Nitrogen Dynamics in Relation to the Streambed Topography of a N-Rich Stream.Biogeochemistry, 42(3):285-310.doi: 10.1023/A:1005932528748
      Hu, J.F., Wang, J.S., Teng, Y.G., 2004.Study Progress of Interaction between Stream and Groundwater.Hydrogeology & Engineering Geology, 31(1):108-113 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG200401027.htm
      Hu, L.T., Wang, Z.J., Zhao, J.S., et al., 2007.Advances in the Interactions and Integrated Model between Surface Water and Groundwater.Journal of Hydraulic Engineering, 38(1):54-59(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLXB200701007.htm
      Hu, Y.L., Ma, R., Sun, Z.Y., et al., 2016.Influencing Factors of Nitrate Concentrations in River Water and Groundwater Interaction Zone:A Case Study in the Middle Reaches of Heihe River at Linze, Northwestern China.Safety and Environmental Engineering, 23(1):40-46 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KTAQ201601009.htm
      Huang, R.H., Wu, Y.G., Li, Y.F., et al., 2006.Simulating Experiment of NO3--N in Vertical System of Riverbank Filtration.Journal of Earth Sciences and Environment, 28(3):92-96(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX200603020.htm
      Karan, S., Kidmose, J., Engesgaard, P., et al., 2014.Role of a Groundwater-Lake Interface in Controlling Seepage of Water and Nitrate.Journal of Hydrology, 517:791-802.doi: 10.1016/j.jhydrol.2014.06.011
      Li, J.R., Wang, L., Chen, T., et al., 2012.A Study of DO on Nitrogen Releasing in the Sediment of Rivers.China Rural Water and Hydropower, (5):32-34(in Chinese with English abstract).
      Li, Y., Zhang, W.W., Yuan, J.H., et al., 2016.Research Advances in Flow Patterns and Nitrogen Transformation in Hyporheic Zones.Journal of Hohai University (Natural Sciences), 44(01):1-7 (in Chinese with English abstract). https://www.researchgate.net/publication/301630507_Research_advances_in_flow_patterns_and_nitrogen_transformation_in_hyporheic_zones
      Lowrance, R., Todd, R., Fail, J., et al., 1984.Riparian Forests as Nutrient Filters in Agricultural Watersheds.BioScience, 34(6):374-377.doi: 10.2307/1309729
      Ma, J., Song, X.R., Li, L., 2014.Effect of Carbon Source on Nitrite Accumulation and pH Value of Effluent during Denitrification Process.China Environmental Science, 34(10):2556-2561(in Chinese with English abstract). https://www.researchgate.net/publication/287587517_Effect_of_carbon_source_on_nitrite_accumulation_and_pH_value_of_effluent_during_denitrification_process
      Oh, J., Silverstein, J., 1999.Oxygen Inhibition of Activated Sludge Denitrification.Water Research, 33(8):1925-1937.doi: 10.1016/s0043-1354(98)00365-0
      Pretty, J.L., Hildrew, A.G., Trimmer, M., 2006.Nutrient Dynamics in Relation to Surface-Subsurface Hydrological Exchange in a Groundwater Fed Chalk Stream.Journal of Hydrology, 330(1-2):84-100.doi: 10.1016/j.jhydrol.2006.04.013
      Rütting, T., Boeckx, P., Müller, C., et al., 2011.Assessment of the Importance of Dissimilatory Nitrate Reduction to Ammonium for the Terrestrial Nitrogen Cycle.Biogeosciences, 8(7):1779-1791.doi: 10.5194/bg-8-1779-2011
      Schmidt, C.S., Richardson, D.J., Baggs, E.M., 2001.Constraining the Conditions Conducive to Dissimilatory Nitrate Reduction to Ammonium in Temperate Arable Soils.Soil Biology and Biochemistry, 43(7):1607-1611.doi: 10.1016/j.soilbio.2011.02.015
      Shabaga, J.A., Hill, A.R., 2010.Groundwater-Fed Surface Flow Path Hydrodynamics and Nitrate Removal in Three Riparian Zones in Southern Ontario, Canada.Journal of Hydrology, 388(1-2):52-64.doi: 10.1016/j.jhydrol.2010.04.028
      Shao, L., Xu, Z.X., Yin, H.L., et al., 2008.Rice Husk as Carbon Source and Biofilm Carrier for Water Denitrification.Journal of Biotechnology, 136:S662.doi: 10.1016/j.jbiotec.2008.07.1534
      Storey, R.G., Williams, D.D., Fulthorpe, R.R., 2004.Nitrogen Processing in the Hyporheic Zone of a Pastoral Stream.Biogeochemistry, 69(3):285-313.doi: 10.1023/b:biog.0000031049.95805.ec
      Teng, Y.G., Zuo, R., Wang, J.S., 2007.Hyporheic Zone of Groundwater and Surface Water and Its Ecological Function.Earth and Environment, 35(1):1-8(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ200701000.htm
      Wang, B.G., Jin, M.G., Liang, X., 2015.Using EARTH Model to Estimate Groundwater Recharge at Five Representative Zones in the Hebei Plain, China.Journal of Earth Science, 26(3):425-434. doi: 10.1007/s12583-014-0487-6
      Wang, D.C., Zhang, R.Q., Shi, Y.H., 1995.Fundamentals of Hydrogeology.Geological Publishing House, Beijing, 67(in Chinese).
      Wang, F., Zhang, R., Liu, Z.J., et al, 2012.Study on the Effects of Carbon Sources on Nitrogen Migration in Different Mediums of Hyporheic Zones.Value Engineering, (24):18-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JZGC201224010.htm
      Wu, Q.H., Zeng, X.Y., Huang, Y., 2005.Effects of DO on Nitrogen Releasing from Sediments of River.Environmental Pollution & Control., 27(1):21-24(in Chinese with English abstract).
      Xiong, Y., Li, Q.D., 1978.China Soils.Science Press, Beijing, 84 (in Chinese).
      Yang, S., Wu, S.J., Cai, Y.J., et al., 2016.The Synergetic and Competitive Mechanism and the Dominant Factors of Dissimilatory Nitrate Reduction Processes:A Review.Acta Ecologica Sinica, 36(5):1224-1232 (in Chinese with English abstract).
      Zheng, P., Xu, X.Y., Hu, B.L., 2004.New Theory and Technology of Biological Nitrogen Removal.Science Press, Beijing, 85 (in Chinese).
      陈新明, 马腾, 蔡鹤生, 等, 2013.地下水氮污染的区域性调控策略.地质科技情报, 32(6):130-143, 149. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306021.htm
      邓娅敏, 王焰新, 李慧娟, 等, 2015.江汉平原砷中毒病区地下水砷形态季节性变化特征.地球科学, 40(11):1876-1886. http://www.earth-science.net/WebPage/Article.aspx?id=3194
      郭建宁, 卢少勇, 金相灿, 等, 2010.低溶解氧状态下河网区不同类型沉积物的氮释放规律.环境科学学报, 30(3):614-620. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201003026.htm
      郭瑜, 彭党聪, 张新艳, 等, 2014.硝态氮为唯一氮源时异养微生物增长特性.环境工程学报, (3):882-886. http://cdmd.cnki.com.cn/Article/CDMD-10703-1014011092.htm
      胡俊锋, 王金生, 滕彦国, 2004.地下水与河水相互作用的研究进展.水文地质工程地质, 31(1):108-113. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200401027.htm
      胡立堂, 王忠静, 赵建世, 等, 2007.地表水和地下水相互作用及集成模型研究.水利学报, 38(1):54-59. http://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200701007.htm
      胡雅璐, 马瑞, 孙自永, 等, 2016.河水和地下水相互作用带中硝酸盐浓度影响因素研究——以黑河中游临泽河段为例.安全与环境工程, 23(1):40-46. http://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201601009.htm
      黄瑞华, 吴耀国, 李云峰, 等, 2006.硝态氮在河床垂向渗滤系统中环境行为的模拟实验.地球科学与环境学报, 28(3):92-96. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGX200603020.htm
      李金荣, 王莉, 陈停, 等, 2012.溶解氧影响河流底泥中氮释放的实验研究.中国农村水利水电, (5):32-34. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201205010.htm
      李勇, 张维维, 袁佳慧, 等, 2016.潜流带水流特性及氮素运移转化研究进展.河海大学学报(自然科学版), 44(1):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201601001.htm
      马娟, 宋相蕊, 李璐, 2014.碳源对反硝化过程NO2-积累及出水pH值的影响.中国环境科学, 34(10):2556-2561.
      滕彦国, 左锐, 王金生, 2007.地表水-地下水的交错带及其生态功能.地球与环境, 35(1):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200701000.htm
      王大纯, 张人权, 史毅红, 1995.水文地质学基础.北京:地质出版社, 67.
      王飞, 张蕊, 刘子剑, 等, 2012.碳源对氮素在不同潜流带介质中的迁移转化规律研究.价值工程, (24):18-20. doi: 10.3969/j.issn.1006-4311.2012.24.009
      吴群河, 曾学云, 黄钥, 2005.溶解氧对河流底泥中三氮释放的影响.环境污染与防治, 27(1):21-24. http://www.cnki.com.cn/Article/CJFDTOTAL-HJWR200501007.htm
      熊毅, 李庆达, 1978.中国土壤.北京:科学出版社, 84.
      杨杉, 吴胜军, 蔡延江, 等, 2016.硝态氮异化还原机制及其主导因素研究进展.生态学报, 36(5):1224-1232. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201605005.htm
      郑平, 徐向阳, 胡宝兰, 2004.新型生物脱氮理论与技术.北京:科学出版社, 85.
    • 加载中
    图(8) / 表(3)
    计量
    • 文章访问数:  5715
    • HTML全文浏览量:  2123
    • PDF下载量:  57
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-01-11
    • 刊出日期:  2017-05-15

    目录

      /

      返回文章
      返回