Hydrochemical Characteristics and Evolution of Karst Groundwater in Sanqiao District of Guiyang City
-
摘要: 贵阳市三桥地区岩溶地下水是贵阳市重要的生活及工农业用水水源,而贵州省岩溶系统发育异常复杂,对于岩溶水水化学及其演化特征尤其是水-岩相互作用方面的研究尚未见报道,为了保障该地区供水水质安全,以贵阳市三桥地区岩溶地下水为研究对象,通过系统的样品采集与氢氧同位素分析和水文地球化学模拟,针对岩溶地下水水化学组分的空间分布、演化特征及水-岩作用过程进行了系统的研究.研究表明:岩溶地下水水化学类型主要为HCO3·SO4-Ca·Mg型、HCO3·SO4-Ca型、HCO3-Ca型和HCO3-Ca·Mg型;研究区岩溶水主要来源于大气降水补给;研究区水化学特征主要受方解石、白云石、岩盐和石膏的溶解作用以及阳离子交替吸附作用控制.Abstract: The karst groundwater in Sanqiao district of Guiyang City is the main water sources for local people, and the development of karst system in Guiyang is very complicated. However, the study of karst water chemistry and its evolutionary characteristics, especially water-rock interaction, has not been reported. In order to ensure the safety of water supply in the region, chemical components and hydrogen and oxygen isotopic data of the groundwater in the Sanqiao district of Guiyang are combined to determine the spatial distribution and evolution of chemical components in groundwater and distinguish the water-rock interaction processes in this study. It is found that the hydrochemical type of groundwater can be classified into HCO3·SO4-Ca·Mg, HCO3·SO4-Ca, HCO3-Ca and HCO3-Ca·Mg. The hydrogen and oxygen isotopes of groundwater show that the recharge of groundwater in research area is precipitation. Besides, hydrogeochemical simulation shows that the hydrochemical characteristics are controlled by the solution of calcite, dolomite, halite and gypsum as well as cation exchange.
-
表 1 枯水期和丰水期水样测试数据
Table 1. The data of groundwater samples in dry season and wet season
样品编号 T(℃) pH (mg·L-1) K+ Ca2+ Na+ Mg2+ Cl- SO42- NO3- HCO3- TDS 枯水期 GY01 16.1 7.16 3.25 118.40 13.65 32.49 27.16 170.84 36.94 355.7 586 GY03 16.2 6.69 3.95 123.10 20.54 33.31 39.17 203.94 33.23 342.9 636 GY04 16.6 6.83 2.07 113.90 17.42 33.11 32.12 199.87 40.70 314.6 599 GY06 16.4 6.78 8.55 139.00 18.40 27.95 31.96 229.56 20.55 342.9 652 GY07 16.5 6.67 6.16 151.30 14.92 12.00 33.28 160.21 32.59 282.0 557 GY08 6.5 6.97 1.35 136.00 6.09 3.81 11.62 61.42 14.15 299.6 389 GY10 12.4 6.95 1.38 84.58 21.37 17.09 26.09 110.45 0.00 219.5 385 GY11 13.3 7.07 1.69 91.77 6.89 25.34 13.63 50.56 32.93 298.0 376 GY12 15.7 6.75 4.85 118.90 13.14 11.10 20.62 103.23 25.13 251.5 427 GY13 19.2 7.11 0.91 79.93 2.85 24.64 8.36 37.14 10.97 291.6 314 GY15 16.4 7.46 1.14 101.40 9.70 32.79 15.75 120.72 42.44 325.2 489 GY16 17.6 6.74 1.48 125.90 8.87 33.53 21.41 176.54 25.46 362.1 579 GY17 16.7 7.20 4.15 63.62 3.55 19.61 6.27 61.43 0.00 214.7 274 GY18 17.2 6.78 3.36 133.60 17.38 31.23 35.07 262.70 30.60 272.4 653 GY19 16.5 6.74 2.91 115.90 13.69 27.66 22.94 154.21 15.82 307.6 510 GY02 16.2 6.8 1.72 105.50 11.92 32.22 30.32 125.57 35.43 341.3 516 GY05 16.7 6.84 6.69 116.90 22.50 25.93 31.77 145.41 22.15 334.9 547 GY09 12.3 7.21 9.48 101.00 6.48 19.38 17.71 89.37 0.00 349.3 474 GY14 15.1 6.90 1.96 85.03 16.48 26.01 11.85 71.64 8.52 288.4 359 GY20 15.7 6.94 5.77 112.00 13.59 10.72 22.66 122.90 0.00 229.1 407 GY21 17.6 6.75 9.88 139.30 24.84 22.90 43.80 179.87 33.98 318.8 621 丰水期 GY01 19.7 7.09 6.48 104.74 24.12 36.47 29.38 164.24 36.86 373.0 727 GY03 17.9 6.99 8.50 108.23 33.99 36.16 38.50 196.28 41.48 344.1 776 GY04 18.1 7.15 4.94 105.49 35.05 39.34 36.77 203.80 52.63 327.1 777 GY06 19.9 7.18 11.26 126.94 21.31 33.58 23.72 283.54 25.62 281.1 833 GY07 19.3 6.97 11.60 131.41 26.15 12.30 37.42 176.87 51.47 281.1 758 GY08 22.2 7.34 1.95 105.39 7.80 2.87 7.50 48.26 11.09 303.2 476 GY10 20.9 7.21 16.83 69.75 18.47 20.63 13.46 91.06 33.03 248.7 481 GY11 19.3 7.56 1.74 71.01 9.14 25.55 11.74 47.29 36.42 304.9 451 GY12 19.4 7.25 8.87 105.52 15.32 9.71 15.13 114.05 25.36 269.1 568 GY13 21.7 7.37 0.89 63.74 3.95 25.47 7.38 40.38 25.42 304.9 407 GY17 19.4 7.68 7.20 52.75 5.70 19.90 5.09 97.05 16.22 218.0 389 GY19 19.9 7.10 4.11 97.60 15.29 30.11 16.77 176.17 20.16 291.3 636 GY22 18.7 7.51 1.46 68.67 3.47 19.64 3.70 56.71 12.60 252.1 385 GY23 20.3 7.22 5.13 126.79 27.76 7.34 37.31 137.77 76.14 218.0 692 GY14 19.7 7.30 4.47 69.56 7.40 26.62 10.94 60.85 10.97 299.8 435 GY20 20.3 7.09 10.27 101.85 20.70 10.50 20.33 116.36 29.27 235.1 561 GY21 20.6 7.07 19.48 115.93 40.27 22.78 43.51 164.91 49.69 328.8 771 表 2 路径1反向模拟结果
Table 2. The reverse simulation results of route 1
摩尔转移量 GY10→GY11 GY11→GY01 GY01→GY16 GY16→GY03 矿物相 化学式 方解石 CaCO3 1.911×10-4 -5.017×10-4 -2.025×10-5 - 白云石 CaMg(CO3)2 2.873×10-4 3.391×10-4 3.658×10-4 -2.504×10-4 石膏 CaSO4·2H2O 3.974×10-4 1.120×10-3 5.822×10-4 4.721×10-4 盐岩 NaCl 1.394×10-4 3.697×10-4 - 4.096×10-4 CO2 CO2 1.060×10-4 1.169×10-3 2.883×10-4 -3.369×10-4 注:负值表示沉淀,正值表示溶解;“-”表示该矿物未参与反应. 表 3 路径2反向模拟结果
Table 3. The reverse simulation results of route 2
摩尔转移量 GY09→GY14 GY14→GY05 矿物相 化学式 方解石 CaCO3 -7.330×10-4 - 白云石 CaMg(CO3)2 3.263×10-4 1.257×10-4 石膏 CaSO4·2H2O 1.629×10-4 6.929×10-4 盐岩 NaCl 2.325×10-4 5.623×10-4 CO2 CO2 - 3.313×10-4 CaX2 -1.014×10-4 2.296×10-4 阳离子交换 MgX2 - - Na2X 2.027×10-4 -3.001×10-4 注:负值表示沉淀,正值表示溶解;“-”表示该矿物未参与反应. -
Chen, Z.Y, 1995.Advancements of Hydrogeochemical Modeling.Advance in Earth Sciences, 10(3):278-282(in Chinese with English abstract). Daniele, L., Vallejos, A., Sola, F., et al., 2011.Hydrogeochemical Processes in the Vicinity of a Desalination Plant (Cabo de Gata, SE Spain).Desalination, 277(1-3):338-347.doi: 10.1016/j.desal.2011.04.052 Guo, Y.H., Shen, Z.L., Zhong, Z.S., 1997.Geochemical Simulation Chemical Environment Evolution of Groundwater in Hebei Plain.Science in China (Ser.D), 27(4):360-365(in Chinese). Huang, Q.B., Qin, X.Q., Liu, P.Y., et al., 2015.Impact of Acid to δ13CDIC of Karst Groundwater and Carbon Sink in Dry Season in Guilin.Earth Science, 40(7):1237-1247(in Chinese with English abstract). https://www.researchgate.net/publication/282984241_Impact_of_acid_rain_to_d13CDIC_of_Karst_groundwater_and_carbon_sink_in_dry_season_in_Guilin Ji, S.H., 2007.The Role of Oxygen-Hydrogen Isotopic Research in Ordovician Limestone Karstic Water Recharge, Runoff and Drainage Conditions in Kouquangou South, Datong Mining Area.Coal Geology of China, 19(1):36-38(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGMT200701013.htm Kohfahl, C., Rodriguez, M., Fenk, C., et al., 2008.Characterising Flow Regime and Interrelation between Surface-Water and Ground-Water in the Fuente de Piedra Salt Lake Basin by Means of Stable Isotopes, Hydrogeochemical and Hydraulic Data.Journal of Hydrology, 351(1-2):170-187.doi: 10.1016/j.jhydrol.2007.12.008 Lang, Y.C., 2005.Geochemical Characteristics of Cycling of Substances in Karst Groundwater System:A Case Study from Guiyang and Zunyi Cities, China(Dissertation).Graduate School of Chinese Academy of Sciences, Beijing(in Chinese with English abstract). Lang, Y.C., Liu, C.Q., Satake, H., et al., 2008.δ37Cl and δ34S Variations of Cl- And SO42- in Groundwater and Surface Water of Guiyang Area, China.Advances in Earth Science, 23(2):151-159(in Chinese with English abstract). Li, S.L., Liu, C.Q., 2006.The Character and Application of δ18O-NO3- in the Groundwater of Guiyang.Carsologica Sinica, 25(2):108-111(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYR200602005.htm Li, X.Z., Li, S.D., 1986.On the Karst Hydrogeological Conditions and Some Related Issues in Guiyang Area Based on the Interpretation of Aerial and Satellite Images.Carsologica Sinica, (S1):88-98(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGYR1986S1016.htm Liu, W.B., 2015.Groundwater Hydro-Chemical Characteristics Study in Hetao Plain(Dissertation).China University of Geosciences, Beijing(in Chinese with English abstract). Love, D., Hallbauer, D., Amos, A., et al., 2004.Factor Analysis as a Tool in Groundwater Quality Management:Two Southern African Case Studies.Physics and Chemistry of the Earth, Parts A/B/C, 29(15-18):1135-1143.doi: 10.1016/j.pce.2004.09.027 Qi, Y., Chu, X.W., 2011.Evaluation of Underground Water in Guiyang City.Environmental Science and Management, 36(10):173-175(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BFHJ201110041.htm Wang, Z.M., Tan, Z.L., 2013.Analysis of Dynamic Characteristics on Karst Groundwater in Guiyang City.Journal of Guizhou University(Natural Sciences), 30(1):27-32, 42(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZDI201301009.htm Xing, L.N., 2012.Groundwater Hydrochemical Characteristics and Hydrogeochemical Processes Approximately along Flow Paths in the North China Plain.China University of Geosciences, Beijing. Yang, M.D., 1990.A Brief Account of Karst Landscape Characteristics of Guizhou Plateau.Journal of Guizhou Normal University(Natural Sciences), 8(2):1-3(in Chinese). Yuan, J.F., Deng, G.S., Xu, F., et al., 2006.Hydrogeochemical Characteristics of Karst Groundwater in the Northern Part of the City of Bijie.Hydrogeology & Engineering Geology, 43(1):12-21(in Chinese with English abstract). Zhang, L.Z., 2011.Main Hydrogeological Question of Guiyang Urban Rail 1 Line Project(Dissertation).Chengdu University of Technology, Chengdu (in Chinese with English abstract). Zhuang, Y.Q., Guo, Q.H., Liu, M.L., et al., 2016.Geochemical Simulation of Thioarsenic Speciation in High-Temperature, Sulfide-Rich Hot Spring:A Case Study in the Rehai Hydrothermal Area, Tengchong, Yunnan.Earth Science, 41(9):1499-1510 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201609006.htm 陈宗宇, 1995.水文地球化学模拟研究的现状.地球科学进展, 10(3):278-282. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ503.013.htm 郭永海, 沈照理, 钟佐燊, 1997.河北平原地下水化学环境演化的地球化学模拟.中国科学(D辑), 27(4):360-365. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk199704012&dbname=CJFD&dbcode=CJFQ 黄奇波, 覃小群, 刘朋雨, 等, 2015.酸雨对桂林枯水期岩溶地下水δ13CDIC及碳汇效应的影响.地球科学, 40(7):1237-1247. http://www.earth-science.net/WebPage/Article.aspx?id=3114 吉淑华, 2007.大同矿区口泉沟南氢氧同位素研究在分析奥灰岩溶水补径排条件中的应用.中国煤田地质, 19(1):36-38. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT200701013.htm 郎赟超, 2005. 喀斯特地下水文系统物质循环的地球化学特征——以贵阳市和遵义市为例(博士学位论文). 北京: 中国科学院地球化学研究所. 郎赟超, 刘丛强, Satake, H., 等, 2008.贵阳地表水-地下水的硫和氯同位素组成特征及其污染物示踪意义.地球科学进展, 23(2):151-159. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200802008.htm 李思亮, 刘丛强, 2006.贵阳地下水硝酸盐氧同位素特征及应用.中国岩溶, 25(2):108-111. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200602005.htm 李兴中, 李双岱, 1986.从航卫片解译对贵阳地区岩溶水文地质条件的探讨.中国岩溶, (增刊1):88-98. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR1986S1016.htm 刘文波, 2015. 河套平原地下水化学特征研究(博士学位论文). 北京: 中国地质大学. 綦娅, 褚学伟, 2011.贵阳市地下水资源评价.环境科学与管理, 36(10):173-175. doi: 10.3969/j.issn.1673-1212.2011.10.045 王中美, 谭正莲, 2013.贵阳市岩溶地下水动态特征分析.贵州大学学报:自然科学版, 30(1):27-32, 42. http://www.cnki.com.cn/Article/CJFDTOTAL-GZDI201301009.htm 邢丽娜, 2012. 华北平原典型剖面上地下水化学特征和水文地球化学过程. 北京: 中国地质大学. 杨明德, 1990.贵州高原喀斯特景观特征简述.贵州师范大学学报:自然科学版, 8(2):1-3. http://www.cnki.com.cn/Article/CJFDTOTAL-NATR199002000.htm 袁建飞, 邓国仕, 徐芬, 等, 2016.毕节市北部岩溶地下水水文地球化学特征.水文地质工程地质, 43(1):12-21. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201601004.htm 张罗致, 2011. 贵阳市轨道交通1号线主要水文地质问题分析(硕士学位论文). 成都: 成都理工大学. 庄亚芹, 郭清海, 刘明亮, 等, 2016.高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟:以云南腾冲热海水热区为例.地球科学, 41(9):1499-1510. http://www.earth-science.net/WebPage/Article.aspx?id=3356