Generalization of Aquifer Group by Cumulative Transmissivity Method
-
摘要: 地下水流系统理论和数值模拟技术分别是水文地质学的基本理论和技术方法,含水岩组的概化是地下水流系统分析和地下水数值模拟的重要基础,直接影响着数值模拟和水流系统分析的精度和可信度.为提高含水岩组概化的精度和可信度,提出一种含水岩组概化的新方法,即累积导水系数法.依据岩层厚度与渗透系数乘积累积值随深度的变化,以及水文地质剖面岩性分布的整体特征,概化含水介质结构.以玛纳斯河流域为例,应用该方法概化流域内的岩性剖面,结合GMS软件中TINS模块构建水文地质结构模型.结果表明,应用该方法概化后的含水层结构具有较好的合理性和仿真性,建立的三维模型很好地显示了研究区含水介质的空间展布特征,为建立地下水流模型奠定了良好的基础.Abstract: Groundwater flow system theory and numerical simulation technique are foundamentals in hydrogeology. Generalizing aquifer group is an important foundation for groundwater flow system analysis and numerical simulation, which directly affects the accuracy and the reliability of the simulation results. This paper proposes a new method named cumulative transmissivity to generalize aquifer group, aiming at improving the generalization accuracy and reliability. The new method is characterized by aquifer structure based on the changes of the accumulated transmissivity (product of hydraulic conductivity and its thickness) with depth and the integral characteristics of the hydrogeological profile. A case study in the Manas River basin is presented in this paper. Based on the generalization, a hydrogeological structure model is built using the GMS software and its TINS module. The results indicate that the aquifer structures generalized using this method have a high rationality and fidelity. The 3D model well displays the spatial distribution of the aquifers and auitards in the study area and provides a good foundation for groundwater flow model.
-
图 4 红山嘴-150团(a)和玛纳斯河流域132-147团(b)剖面
据赵宝峰(2010)修改
Fig. 4. Cross-section from regiment 150 in Hongshanzui (a), and regiment 132 to 147 in Manas River basin (b)
表 1 玛纳斯河流域不同岩性的渗透系数
Table 1. Hydraulic conductivity of different lithology in Manas River basin
岩性 粗砂 细砂 粉土 粉质粘土 粘土 水平渗透系数(m/d) 50 5 0.5 0.1 0.01 表 2 概化后各分层的综合渗透系数
Table 2. Hydraulic conductivity of aquifer after generalization
岩性概化 ① ② ③ ④ ⑤ ⑥ ⑦ Kh 0.5 50 1.2 50 2.65 50 2.07 -
Cai, S.Y., Yang, J.Z., Huang, S., et al., 2003.Study of Strata Permeability Classification and Optimum Partition Methods.Journal of Yangtze River Scientific Research Institute, 20(6):37-40(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJKB200306011.htm Chen, H.H., 2014.Comprehensive Geophysical Methods Applied in Deep Geological Formations Coverage Area is Divided in(Dissertation).China University of Geosciences, Beijing(in Chinese with English abstract). Cui, Y.L., Shao, J.L., Li, C.J., et al., 2003.Groundwater System Analysis and Modeling in Plain of Manas Valley.Hydrogeology & Engineering Geology, 30(5):18-22(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG200305004.htm Dogrul, E.C., Kadir, T.N., Brush, C.F., et al., 2016.Linking Groundwater Simulation and Reservoir System Analysis Models:The Case for California's Central Valley.Environmental Modeling & Software, 77:168-182. doi: 10.1016/j.envsoft.2015.12.006 Filimonova, E.A., Baldenkov, M.G., 2015.A Combined-Water-System Approach for Tackling Water Scarcity:Application to the Permilovo Groundwater Basin, Russia.Hydrogeology Journal, 24(2):489-502.doi: 10.1007/s10040-015-1325-3 Ge, W.Y., Ye, N.J., Gong, J.S., et al., 2006.The Quaternary Aquifer Division and Character Analysis of Plain in Huaihe River Basin.Resources Survey & Environment, 27(4):268-276(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HSDZ200604003.htm Hu, G.H., 1980.Discussion on the Water Bearing Stratum Unit—Discussion on the Division of Water Bearing Strata.Hydrogeology & Engineering Geology, (6):1-5(in Chinese with English abstract). Jia, R.L., Zhou, J.L., Liu, Y.F., et al., 2014.Application of GMS Software in Establishing Three-Dimensional Model of Aquifer Structures.Water Saving Irrigation, (1):57-59(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSGU201401016.htm Li, Z.L., Pan, M., Han, D.K., et al., 2016.Three-Dimensional Structural Modeling Technique.Earth Science, 41(12):2136-2146 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201612018.htm Liang, X., Zhang, R.Q., Niu, H., et al., 2012.Development of the Theory and Research Method of Groundwater Flow System.Geological Science and Technology Information, 31(5):143-151(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201205020.htm Raiber, M., Webb, J.A., Cendón, D.I., et al., 2015.Environmental Isotopes Meet 3D Geological Modeling:Conceptualising Recharge and Structurally-Controlled Aquifer Connectivity in the Basalt Plains of South-Western Victoria, Australia.Journal of Hydrology, 527:262-280.doi: 10.1016/j.jhydrol.2015.04.053 Tong, X.J., Chen, M.Y., Zhou, L., 2002.On AGO Effect of the Grey Model.Systems Engineering—Theory & Practice, 22(11):121-125(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XTLL200211023.htm Wang, G.C., Xu, Y.X., Chen, X.J., et al., 2015.Three-Dimensional Geological Mapping and Visualization of Complex Orogenic Belts.Earth Science, 40(3):397-406(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201503001.htm Wang, H., Lu, C.Y., Qin, D.Y., et al., 2010.Advances in Method and Application of Groundwater Numerical Simulation.Earth Science Frontiers, 17(6):1-12(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201006000.htm Wei, G.X., Wang, G., Li, C.B., et al., 2006.The Numerical Simulation of Groundwater in the South of Qinwangchuan Basin.Journal of Lanzhou University(Natural Sciences), 42(6):16-21(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-LDZK200606004.htm Wu, J.C., Lu, L., 2011.Uncertainty Analysis for Groundwater Modeling.Journal of Nanjing University(Natural Sciences), 47(3):227-234 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ201103002.htm Xue, Y.Q., Wu, J.C., 2010.Groundwater Dynamics.Geological Publishing House, Beijing (in Chinese). Yang, H., Wang, Y.T., Lü, J.H., et al., 2000.Comprehensive Geological-Geophysical Interpretation of One Typical Section.Earth Science, 25(1):88-92(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200001018.htm Zhao, B.F., 2010.Research on Water Resources Characteristics and Its Rational Development Pattern for Arid Areas—A Case of Manas River Basin(Dissertation).Chang'an University, Xi'an(in Chinese with English abstract). Zhang, S.W., 2009.Bore Information Management and the Method Improvement of Auto-Generating Histogram(Dissertation).China University of Geosciences, Beijing(in Chinese with English abstract). Zhang, W.J., 2016.Three Dimensional Modeling and Visualization of the Hydrogeological Structure in the Guanzhong Basin.Sciencepaper Online.http://www.paper.edu.cn/releasepaper/2016/01/525/, Beijing(in Chinese). Zhang, Z.X., 1997.On the Accumulation Formation of the GM in Grey Prediction.Journal of Xi'an Petroleum Institute, 12(5):52-54(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XASY705.012.htm 蔡树英, 杨金忠, 黄爽, 等, 2003.地层渗透性分区和分层方法初步研究.长江科学院院报, 20(6):37-40. http://www.cnki.com.cn/Article/CJFDTOTAL-CJKB200306011.htm 陈浩辉, 2014. 综合物探方法在深覆盖区地质构造划分中的应用(硕士学位论文). 北京: 中国地质大学. 崔亚莉, 邵景力, 李慈君, 等, 2003.玛纳斯河流域山前平原地下水系统分析及其模拟.水文地质工程地质, 30(5):18-22. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200305004.htm 葛伟亚, 叶念军, 龚建师, 等, 2006.淮河流域平原区第四系含水层划分及特征分析.资源调查与环境, 27(4):268-276. http://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ200604003.htm 胡国华, 1980.试论含水地层单位——关于含水岩组划分问题的讨论.水文地质工程地质, (6):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG198006000.htm 贾瑞亮, 周金龙, 刘延锋, 等, 2014.应用GMS软件构建三维含水层结构模型.节水灌溉, (1):57-59. http://www.cnki.com.cn/Article/CJFDTOTAL-JSGU201401016.htm 李兆亮, 潘懋, 韩大匡, 等, 2016.三维构造建模技术.地球科学, 41(12):2136-2146. doi: 10.11764/j.issn.1672-1926.2016.12.2136 梁杏, 张人权, 牛宏, 等, 2012.地下水流系统理论与研究方法的发展.地质科技情报, 31(5):143-151. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205020.htm 同小军, 陈绵云, 周龙, 2002.关于灰色模型的累加生成效果.系统工程理论与实践, 22(11):121-125. doi: 10.3321/j.issn:1000-6788.2002.11.024 王国灿, 徐义贤, 陈旭军, 等, 2015.基于地表地质调查剖面网络基础上的复杂造山带三维地质调查与建模方法.地球科学, 40(3):397-406. http://www.earth-science.net/WebPage/Article.aspx?id=3033 王浩, 陆垂裕, 秦大庸, 等, 2010.地下水数值计算与应用研究进展综述.地学前缘, 17(6):1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006000.htm 魏国孝, 王刚, 李常斌, 等, 2006.秦王川盆地南部地下水流场数值模拟.兰州大学学报(自然科学版), 42(6):16-21. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200606004.htm 吴吉春, 陆乐, 2011.地下水模拟不确定性分析.南京大学学报(自然科学版), 47(3):227-234. http://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201103002.htm 薛禹群, 吴吉春, 2010.地下水动力学.北京:地质出版社. 杨辉, 王永涛, 吕金海, 等, 2000.某典型剖面综合地质地球物理解释.地球科学, 25(1):88-92. http://www.earth-science.net/WebPage/Article.aspx?id=904 赵宝峰, 2010. 干旱区水资源特征及其合理开发模式研究——以玛纳斯河流域为例(博士学位论文). 西安: 长安大学. 张生伟, 2009. 钻孔信息管理和柱状图成图方法的改进研究(硕士学位论文). 北京: 中国地质大学. 张渭军, 2016. 关中盆地水文地质结构三维建模与可视化. 北京: 中国科技论文在线. http://www.paper.edu.cn/releasepaper/2016/01/525/ 张子旭, 1997.灰色预测中GM模型的累加生成问题.西安石油学院学报(自然科学版), 12(5):52-54. http://www.cnki.com.cn/Article/CJFDTOTAL-XASY705.012.htm