• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    微凝胶颗粒水分散液体系在多孔介质中的驱替机理

    吴行才 韩大匡 卢祥国 叶银珠 孙哲

    吴行才, 韩大匡, 卢祥国, 叶银珠, 孙哲, 2017. 微凝胶颗粒水分散液体系在多孔介质中的驱替机理. 地球科学, 42(8): 1348-1355. doi: 10.3799/dqkx.2017.103
    引用本文: 吴行才, 韩大匡, 卢祥国, 叶银珠, 孙哲, 2017. 微凝胶颗粒水分散液体系在多孔介质中的驱替机理. 地球科学, 42(8): 1348-1355. doi: 10.3799/dqkx.2017.103
    Wu Xingcai, Han Dakuang, Lu Xiangguo, Ye Yinzhu, Sun Zhe, 2017. Oil Displacing Mechanism of Soft Microgel Particle Dispersion in Porous Media. Earth Science, 42(8): 1348-1355. doi: 10.3799/dqkx.2017.103
    Citation: Wu Xingcai, Han Dakuang, Lu Xiangguo, Ye Yinzhu, Sun Zhe, 2017. Oil Displacing Mechanism of Soft Microgel Particle Dispersion in Porous Media. Earth Science, 42(8): 1348-1355. doi: 10.3799/dqkx.2017.103

    微凝胶颗粒水分散液体系在多孔介质中的驱替机理

    doi: 10.3799/dqkx.2017.103
    基金项目: 

    国家科技重大专项 2011ZX05010

    国家科技重大专项 2008ZX05010

    详细信息
      作者简介:

      吴行才(1973-), 男, 高级工程师, 主要从事油田开发新技术、提高采收率基础理论方法研究和应用工作

    • 中图分类号: P554

    Oil Displacing Mechanism of Soft Microgel Particle Dispersion in Porous Media

    • 摘要: 储层孔隙结构的非均质性导致水驱不均,不同大小孔隙(喉)之间形成优势渗流流动.在水驱开发中后期,剩余油高度分散在储层孔渗系统中难以启动,如何对孔隙尺度的水驱优势流动进行抑制的同时又确保不堵塞油流通道,使剩余油被高效采出,是当前提高石油采收率技术基础研究的主要方向.制作微观仿真储层孔隙结构与尺度的非均质性物理模型,开展了连续相驱替流体(聚合物溶液、交联聚合物凝胶)和微纳米柔性微凝胶颗粒水分散体系驱油机理的对比实验.实验表明,作为连续相的传统聚合物溶液依靠粘度无区分地增加大小孔隙中的流动阻力,从而赋予低渗层区小孔隙中的剩余油以驱动力,将这些剩余油携带采出,当粘度过大时,甚至难以启动剩余油;微凝胶颗粒分散液作为低粘水分散流体,其中的凝胶颗粒优先进入大孔隙,暂堵在喉道处并抑制相对大孔隙中的流动,同时注入水转向进入相对小的孔隙,将其中的剩余油活塞式推出,该过程在空间和时间上是不断重复的.本文从流度调整的角度对实验结果进行了分析,结果表明传统的连续相驱替流体是依靠提升注入水的粘度实现流度的调整,而微凝胶颗粒水分散体系是通过降低注入水的相对渗透率,并相对提高油相渗透率,从而实现对流度的高效调整.

       

    • 图  1  油藏水驱开发中后期不同类别不同级别非均质性示意

      Fig.  1.  The sketch of different grades of formation heterogeneity

      图  2  连续相和分散相流体驱替机理示意

      Fig.  2.  Displacement mechanism sketch of continuous and discontinuous liquid

      图  3  SMG形貌显微照片

      Fig.  3.  SMG appearance photos

      图  4  孔隙尺度微观机理物理模型示意

      Fig.  4.  Pre-scale visualized microscopic model

      图  5  不同驱替介质驱替机理实验过程照片对比

      Fig.  5.  Oil and water relationship comparing of different flooding ways in microscopic pore and throat

      图  6  孔隙结构与尺度仿真微观物理模型示意

      Fig.  6.  The sketch of microscopic physical simulation model for pore structure and size

      图  7  仿真孔隙介质中分散体系同步调驱机理微观实验照片

      Fig.  7.  SMG's SDD mechanism experiment on pore-scale sand-cast model

      图  8  HBZ70断块油藏SMG注采井网

      Fig.  8.  HBZ70 field well pattern for SMG

      图  9  HBZ70断块油藏SMG生产效果曲线

      Fig.  9.  Production curve of HBZ70 field after SMG

      图  10  Z70-19井同步调驱前后吸水剖面对比

      Fig.  10.  Injectivity profile comparison of pre & post SDD on well Z70-19X

      图  11  S Z70-19井同步调驱前后生产效果对比

      Fig.  11.  SDD production curves of well Z70-19X

      图  12  XJ6ZD同步调驱注采井网

      Fig.  12.  XJ6ZD field well pattern for SCT

      图  13  XJ6ZD同步调驱生产效果曲线

      Fig.  13.  Production curve of XJ6ZD field after SCT

    • [1] Algharaib, M., Alajmi, A., Gharbi, R., et al., 2012.Enhancing Recovery in High Salinity Oil Reservoirs through Optimized Polymer Flood, International Petroleum Technology Conference, Bangkok.doi:10.2523/IPTC-14685-MS
      [2] Chen, Y.S., 1997.Countermeasures for Heterogeneity of Continental Oil Field.Petroleum Industry Press, Beijing, 1-20.
      [3] Du, R.R., Liu, X., 2015.Research on the Microspheres Acrylamide Copolymers Made Via Inverse Microemulsion Polymerization.Chemical Industry and Engineering Progress, 34(8):3065-3074 (in Chinese with English abstract). http://manu24.magtech.com.cn/hgjz/EN/abstract/abstract17431.shtml
      [4] Han, D.K., 2010.Discussions on Concepts, Countermeasures and Technical Routes for the Redevelopment of High Water-Cut Oilfields.Petroleum Exploration and Development, 37(5):583-591 (in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60055-9
      [5] Hewett, T.A., 1971.Fractal Distributions of Reservoir Heterogeneity and Their Influence on Fluid Transport, SPE Annual Technical Conference and Exhibition, New Orleans.doi:10.2118/15386-MS
      [6] Hou, W.H., 2007.Water Injection Profile Variation of Oil Layers under Polymer Flooding.Petroleum Exploration and Development, 34(4):478-482 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200704019.htm
      [7] Jia, H., Ni, X.L., Zhou, X.Y., et al., 2010.Research Progress on the Adaptability of Polymer Flooding Reservoir.Oil-Gasfield Surface Engineering, 29(9):36-38 (in Chinese with English abstract).
      [8] Li, Y., Liu, J.M., 2007.Oil Field Development Geology.Petroleum Industry Press, Beijing, 100-114 (in Chinese).
      [9] Liu, C.X., Wang, Q., Shun, Y.Y., et al., 2014.Research and Application of New Technology of Polymer Flooding Field Application Boundaries.Petroleum Geology and Recovery Efficiency, 21(2):22-24 (in Chinese with English abstract).
      [10] Ma, Z.G., Wang, Y.H., Kang, H.Y., et al., 2014.Synthesis and Performance Evaluation of a Kind of Crosslinked Polymer Microspher.Journal of Xi'an Shiyou University (Natural Science Edition), 29(4):84-88 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XASY201404016.htm
      [11] Qin, J.S., Li, A.F., 2003.Reservoir Physics.Petroleum University Press, Beijing, 271-273 (in Chinese).
      [12] Shi, Y.J., Pan, B.Z., Jiang, B.C., et al., 2016.Application of Wavelet and Analysis in Identification of Tight Sandstone Gas Reservoirs.Earth Science, 41(12):2127-2135 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201612017.htm
      [13] Shi, Y.M., Huo, J., Zhang, Y.G., 2004.At the Late Stage of Oilfield Development in Continental Reservoir Fine Description.Petroleum Industry Press, Beijing, 188-206 (in Chinese).
      [14] Wu, X.C., Xiong, C.M., Han, D.K., et al., 2014.A New IOR Method for Mature Waterflooding Reservoirs:"Sweep Control Technology", SPE Asia Pacific Oil & Gas Conference & Exhibition, Adelaide.doi:10.2118/171485-MS
      [15] Wu, X.C., Xiong, C.M., Xun, H.B., et al., 2015.A Novel Particle-Type Polymer and IOR/EOR Property Evaluation.International Petroleum Exhibition and Conference, Abu Dhabi.doi:10.2118/177421-MS
      [16] Wu, X.C., Zhang, S., Xiong, C.M., et al., 2016.Successful Field Test of a New Polymer Flooding Technology for Improving Heavy Oil Reservoir Recovery-Case Study of Strongly Heterogeneous and Multi-Layer Conglomerate Heavy Oil Reservoir XJ6.SPE EOR Conference at Oil and Gas West Asia, Muscat.doi:10.2118/179791-MS
      [17] Xiong, Q.H., Wang, Z.Z., Wu, S.H., 2010.Modern Reservoir Geology:The Theory and Technical.Science Press, Beijing, 31-55 (in Chinese).
      [18] Yang, C.Z., 1999.Chemical Flooding to Enhance Oil Recovery.Petroleum Industry Press, Beijing, 40-56 (in Chinese).
      [19] Yao, J., Wang, X., Wang, C.C., et al., 2013.The Influence of Carbonate Rocks Reservoir Parameters on Microscopic Flow.Earth Science, 38(5):1047-1052 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201305016.htm
      [20] Yu, H., Mei, M., Chen, Y.L., 2015.Synthesis of a Polymericparticle.Applied Chemical Industry, 44(5):914-917 (in Chinese with English abstract).
      [21] 杜荣荣, 刘祥, 2015.反相微乳液聚合制备丙烯酰胺类聚合物微球的研究进展.化工进展, 34(8): 3065-3074. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201508030.htm
      [22] 韩大匡, 2010.关于高含水油田二次开发理念、对策和技术路线的探讨.石油勘探与开发, 37(5): 583-591. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201005011.htm
      [23] 侯维虹, 2007.聚合物驱油层吸水剖面变化规律.石油勘探与开发, 34(4): 478-482. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200704019.htm
      [24] 贾虎, 倪小龙, 周先云, 等, 2010.聚合物驱油藏适应性研究进展.油气田地面工程, 29(9): 36-38. http://www.cnki.com.cn/Article/CJFDTOTAL-YQTD201009015.htm
      [25] 李阳, 刘建民, 2007.油藏开发地质学.北京:石油工业出版社, 100-114.
      [26] 刘朝霞, 王强, 孙盈盈, 等, 2014.聚合物驱矿场应用新技术界限研究与应用.油气地质与采收率, 21(2): 22-24. http://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201402006.htm
      [27] 马智国, 王永鹤, 康宏元, 等, 2014.一种交联聚合物微球的合成及性能评价.西安石油大学学报(自然科学版), 29(4): 84-88. http://www.cnki.com.cn/Article/CJFDTOTAL-XASY201404016.htm
      [28] 秦积舜, 李爱芬, 2003.油层物理学.北京:石油大学出版社, 271-273.
      [29] 石玉江, 潘保芝, 蒋必辞, 等, 2016.小波分析在致密砂岩气层识别中的应用.地球科学, 41(12): 2127-2135. doi: 10.11764/j.issn.1672-1926.2016.12.2127
      [30] 师永民, 霍进, 张玉广, 2004.陆相油田开发中后期油藏精细描述.北京:石油工业出版社, 188-206.
      [31] 熊琦华, 王志章, 吴胜和, 2010.现代油藏地质学:理论与技术篇.北京:科学出版社, 31-55.
      [32] 杨承志, 1999.化学驱提高石油采收率.北京:石油工业出版社, 40-56.
      [33] 姚军, 王鑫, 王晨晨, 等, 2013.碳酸盐岩储层参数对微观渗流的影响.地球科学, 38(5): 1047-1052. http://www.earth-science.net/WebPage/Article.aspx?id=2786
      [34] 余昊, 梅雪, 陈吟龙, 2015.一种聚合物微球的合成.应用化工, 44(5): 914-917. http://www.cnki.com.cn/Article/CJFDTOTAL-XASY201404016.htm
    • 加载中
    图(13)
    计量
    • 文章访问数:  4112
    • HTML全文浏览量:  1766
    • PDF下载量:  12
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-03-31
    • 刊出日期:  2017-08-15

    目录

      /

      返回文章
      返回