• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于裂缝性致密储层关键渗流参数的逆向渗吸速度计算

    徐中一 程林松 曹仁义 方思冬 吴九柱 庄永涛 艾爽

    徐中一, 程林松, 曹仁义, 方思冬, 吴九柱, 庄永涛, 艾爽, 2017. 基于裂缝性致密储层关键渗流参数的逆向渗吸速度计算. 地球科学, 42(8): 1431-1440. doi: 10.3799/dqkx.2017.108
    引用本文: 徐中一, 程林松, 曹仁义, 方思冬, 吴九柱, 庄永涛, 艾爽, 2017. 基于裂缝性致密储层关键渗流参数的逆向渗吸速度计算. 地球科学, 42(8): 1431-1440. doi: 10.3799/dqkx.2017.108
    Xu Zhongyi, Cheng Linsong, Cao Renyi, Fang Sidong, Wu Jiuzhu, Zhuang Yongtao, Ai Shuang, 2017. Characterization of Key Tight Oil Parameters and Mass Transfer of Counter-Current Imbibition in Fractured Tight Oil Reservoirs. Earth Science, 42(8): 1431-1440. doi: 10.3799/dqkx.2017.108
    Citation: Xu Zhongyi, Cheng Linsong, Cao Renyi, Fang Sidong, Wu Jiuzhu, Zhuang Yongtao, Ai Shuang, 2017. Characterization of Key Tight Oil Parameters and Mass Transfer of Counter-Current Imbibition in Fractured Tight Oil Reservoirs. Earth Science, 42(8): 1431-1440. doi: 10.3799/dqkx.2017.108

    基于裂缝性致密储层关键渗流参数的逆向渗吸速度计算

    doi: 10.3799/dqkx.2017.108
    基金项目: 

    国家自然科学基金项目 51674273

    国家自然科学基金项目 51574258

    国家重点基础研究发展计划(973计划)项目 2015CB250902

    详细信息
      作者简介:

      徐中一(1989-), 男, 博士研究生, 主要从事非常规油藏微观机理研究与产能评价工作

      通讯作者:

      程林松

    • 中图分类号: P313.1

    Characterization of Key Tight Oil Parameters and Mass Transfer of Counter-Current Imbibition in Fractured Tight Oil Reservoirs

    • 摘要: 在致密油藏水平井体积压裂开采过程中,压裂液通过缝网与基质接触并发生逆向渗吸作用,由于接触面积很大渗吸作用不可忽视;但目前关于表征致密储层的渗吸作用,从而研究渗吸对水平井体积压裂生产过程影响的研究尚未深入.为了解决以上问题,首先利用毛管束模型,通过考虑致密储层中边界层的特征,建立了解析的渗流参数计算表达式,用以计算致密储层的渗透率、毛管力、相渗曲线这3个关键渗流参数;同时,基于以上关键渗流参数和渗吸控制方程建立了适用于致密储层的渗吸速度计算模型;然后,将渗吸项作为源汇项加入到考虑缝网的双孔单渗模型中.最后,在真实水平井体积压裂开采过程中,耦合渗吸作用.研究表明,相比于不考虑边界层特征的致密油藏,边界层的存在将大幅度减弱储层的渗吸能力,同时也说明了在致密储层中,边界层的存在是不可忽视的,如果在渗吸计算中忽视致密储层的边界层特征会严重高估渗吸对致密储层产能的影响.

       

    • 图  1  存在复杂缝网的逆向渗吸

      Fig.  1.  Counter-current imbibition in the presence of fracture network

      图  2  边界层对致密储层流动的影响

      a.存在边界层时流体在喉道中的流动;b.不存在边界层时流体在喉道中的流动

      Fig.  2.  The influence of boundary layer on the flow of tight throat

      图  3  致密岩心OEO渗吸实验示意

      Fig.  3.  Schematic of tight core imbibition experiments with OEO boundary conditions

      图  4  毛细管压力曲线对比

      Fig.  4.  Comparison of capillary pressure

      图  5  相渗曲线对比

      Fig.  5.  Comparison of relative permeability

      图  6  毛管力扩散系数对比

      Fig.  6.  Comparison of capillary pressure diffusion coefficient

      图  7  模型计算结果与实验数据对比

      Fig.  7.  Comparison between the calculated results and experimental data

      图  8  缝网模型

      a.微地震监测图;b.基于PEBI网格的缝网模型

      Fig.  8.  Fracture network model

      图  9  不同情况下饱和度分布

      a.初始时刻含水饱和度;b.50 d时不考虑边界层的含水饱和度;c.50 d时考虑边界层的含水饱和度

      Fig.  9.  Saturation distribution under the condition of without considering flow characteristics of tight oil reservoir

      图  10  考虑致密储层流动特征情况下的采油速度及累计采油量对比

      a.产油速度对比;b.累计采油量对比

      Fig.  10.  Comparison of oil recovery rate and cumulative oil production under tight reservoir flow characteristics

      表  1  岩心基本参数

      Table  1.   Basic parameters of imbibition experiment under different boundary conditions

      岩心编号 岩心直径(mm) 岩心长度(mm) 孔隙度(%) 束缚水饱和度(%) 模拟油密度(kg/m3) 地层水密度(kg/m3)
      S102 24.96 52.6 9.3 41.1 807 1 058
      下载: 导出CSV

      表  2  油藏基本参数

      Table  2.   Basic parameters of reservoirs

      参数名称 数值
      初始油藏压力(10-1 MPa) 250
      井底压力(10-1 MPa) 5
      致密油藏基质渗透率(考虑边界层)(mD) 1.28
      致密油藏基质渗透率(不考虑边界层)(mD) 7.56
      油藏天然裂缝渗透率(mD) 100
      水力压裂缝的渗透率(mD) 2 000
      基质的孔隙度 0.093
      裂缝介质的空隙度 0.001
      水力压裂缝的孔隙度 0.5
      水力压裂缝的平均半长(m) 150
      下载: 导出CSV
    • [1] Aronofsky, J.S., Masse, L., Natanson, S.G., 1958.A Model for the Mechanism of Oil Recovery from the Porous Matrix due to Water Invasion in Fractured Reservoirs.Society of Petroleum Engineers, 213:17-19. http://www.onepetro.org/general/SPE-932-G
      [2] Bagherinezhad, A., Pishvaie, M.R., 2014.A New Approach to Counter-Current Spontaneous Imbibition Simulation Using Green Element Method.Journal of Petroleum Science and Engineering, 119:163-168.doi: 10.1016/j.petrol.2014.05.004
      [3] Cai, J.C., Yu, B.M., 2012.Advances in Studies of Spontaneous Imbibition in Porous Media.Advances in Mechanics, 42(6):735-754 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXJZ201206006.htm
      [4] Cai, J.C., Guo, S.L., You, L.J., et al., 2013.Fractal Analysis of Spontaneous Imbibition Mechanism in Fractured-Porous Dual Media Reservoir.Acta Physica Sinica, 62(1):220-224 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-WLXB201301035.htm
      [5] Fang, S.D., Cheng, L.S., Ayala, L.F., 2017.A Coupled Boundary Element and Finite Element Method for the Analysis of Flow through Fractured Porous Media.Journal of Petroleum Science and Engineering, 152:375-390.doi: 10.1016/j.petrol.2017.02.020
      [6] Hassan, S., 2004.Analysis Scaling and Simulation of Counter-Current Imbibition (Dissertation).London Imperial College, London.
      [7] Jia, P., Cheng, L.S., Huang, S.J., et al., 2015.Transient Behavior of Complex Fracture Networks.Journal of Petroleum Science and Engineering, 132:1-17.doi: 10.1016/j.petrol.2015.04.041
      [8] Kashchiev, D., Firoozabadi, A., 2003.Analytical Solutions for 1D Countercurrent Imbibition in Water-Wet Media.SPE Journal, 8(4):401-408.doi: 10.2118/87333-pa
      [9] Li, Y., Lei, Q., Liu, X.G., 2011.Characteristics of Micro Scale Nonlinear Filtration.Petroleum Exploration & Development, 38(3):336-340 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201103018.htm
      [10] Ma, S.X., Morrow, N.R., Zhang, X.Y., 1997.Generalized Scaling of Spontaneous Imbibition Data for Strongly Water-Wet Systems.Journal of Petroleum Science and Engineering, 18(3-4):165-178.doi: 10.1016/s0920-4105(97)00020-x
      [11] Meng, Q., Liu, H.Q., Wang, J., 2017.A Critical Review on Fundamental Mechanisms of Spontaneous Imbibition and the Impact of Boundary Condition, Fluid Viscosity and Wettability.Advances in Geo-Energy Research, 1(1):1-17.
      [12] Ren, D.Z., Sun, W., Huang, H., et al., 2016.Formation Mechanism of Chang 6 Tight Sandstone Reservoir in Jiyuan Oilfield, Ordos Basin.Earth Science, 41(10):1735-1744 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201610009.htm
      [13] Schechter, D.S., Zhou, D., Orr, F.M., 1994.Low IFT Drainage and Imbibition.Journal of Petroleum Science and Engineering, 11(4):283-300.doi: 10.1016/0920-4105(94)90047-7
      [14] Tian, X.F., 2015.Non-Linear Flow Behavior and Application in Ultra-Low Permeability Reservoirs (Dissertation).China University of Petroleum, Beijing (in Chinese with English abstract).
      [15] Tian, X.F., Cheng, L.S., Cao, R.Y., et al., 2016.Characteristics of Boundary Layer in Micro and Nano Throats of Tight Sandstone Oil Reservoirs.Chinese Journal of Computational Physics, 33(6):717-725 (in Chinese with English abstract).
      [16] Wei, Q., Li, Z.P., Bai, R.T., et al., 2016.An Experimental Study on the Effect of Microscopic Pore Structure on Spontaneous Imbibition in Tight Sandstones.Petroleum Drilling Techniques, 44(5):109-116 (in Chinese with English abstract).
      [17] Wu, S.T., Zou, C.N., Zhu, R.K., et al., 2015.Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin.Earth Science, 39(11):1810-1823 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201511004.htm
      [18] Xu, Z.Y., Cheng, L.S., Cao, R.Y., et al., 2017.Simulation of Counter-Current Imbibition in Single Matrix and Field Scale Using Radical Integral Boundary Element Method.Journal of Petroleum Science and Engineering, 156:125-133.doi: 10.1016/j.petrol.2017.05.016
      [19] Zou, C.N., Zhu, R.K., Wu, S.T., et al., 2012.Types, Characteristics, Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accumulations: Taking Tight Oil and Tight Gas in China as an Instance.Acta Petrolei Sinica, 33(2):173-187 (in Chinese with English abstract). doi: 10.1038/aps.2011.203
      [20] 蔡建超, 郭士礼, 游利军, 胡祥云, 2013.裂缝-孔隙型双重介质油藏渗吸机理的分形分析.物理学报, 62(1): 220-224. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201301035.htm
      [21] 蔡建超, 郁伯铭, 2012.多孔介质自发渗吸研究进展.力学进展, 42(6): 735-754. doi: 10.6052/1000-0992-11-096
      [22] 李洋, 雷群, 刘先贵, 2011.微尺度下的非线性渗流特征.石油勘探与开发, 38(3): 336-340. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201103018.htm
      [23] 任大忠, 孙卫, 黄海, 等, 2016.鄂尔多斯盆地姬塬油田长6致密砂岩储层成因机理.地球科学, 41(10): 1735-1744. http://earth-science.net/WebPage/Article.aspx?id=3375
      [24] 田虓丰, 2015. 超低渗透油藏非线性渗流特征与应用(博士学位论文). 北京: 中国石油大学.
      [25] 田虓丰, 程林松, 曹仁义, 等, 2016.致密油藏微纳米喉道中的边界层特征.计算物理, 33(6): 717-725. http://www.cnki.com.cn/Article/CJFDTOTAL-JSWL201606011.htm
      [26] 韦青, 李治平, 白瑞婷, 等, 2016.微观孔隙结构对致密砂岩渗吸影响的试验研究.石油钻探技术, 5: 109-116. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201605024.htm
      [27] 吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 39(11): 1810-1823. http://earth-science.net/WebPage/Article.aspx?id=3188
      [28] 邹才能, 朱如凯, 吴松涛, 等, 2012.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例.石油学报, 33(2): 173-187. doi: 10.7623/syxb201202001
    • 加载中
    图(10) / 表(2)
    计量
    • 文章访问数:  4128
    • HTML全文浏览量:  1827
    • PDF下载量:  12
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-04-27
    • 刊出日期:  2017-08-15

    目录

      /

      返回文章
      返回