Multistage Magmatic Evolution and Cretaceous Peak Metallogenic Epochs of Mufushan Composite Granite Mass: Constrains from Geochronological Evidence
-
摘要: 花岗岩浆的分异过程是制约稀有金属成矿的重要因素,造山过程中多期次岩浆活动的叠加作用易导致伟晶岩熔体的大量聚集成矿.华南幕阜山复式花岗岩体由多期次多阶段的花岗岩侵入体构成,在区域持续而频繁的多期次岩浆活动作用下形成了华南地区重要的稀有金属矿集区.对幕阜山复式花岗岩体边部的断峰山含铌钽铁矿白云母钠长石伟晶岩以及岩体中部大兴含绿柱石白云母钠长石伟晶岩进行了40Ar/39Ar同位素定年研究,其白云母40Ar/39Ar坪年龄分别为127.7±0.9 Ma和130.5±0.9 Ma.结合野外观察基础及区域已有的同位素年代学数据,推断出在燕山早期至中期该地区经历了多期岩浆演化,且持续时间较长,而伟晶岩的稀有金属矿化发生在岩浆活动末期的白垩纪,体现了区域岩浆多期次的分异演化作用导致稀有金属逐渐富集成矿的过程.这些地质现象说明,幕阜山区域在印支期经历了广泛的陆陆碰撞造山作用,进入燕山期后构造背景开始由陆内碰撞挤压向伸展减薄转变,在岩石圈伸展过程中经由玄武质岩浆底侵作用的影响,下地壳发生熔融,多期次岩浆活动导致了最终的稀有金属成矿.Abstract: The differentiation process of granitic magma is an important factor constraining the metallogenic mechanism of rare metal. The superimposition of multistage magmatic activities in orogenic process could easily lead to the accumulation of metallogenic pegmatite melts. Mufushan composite granite mass, which is composed of multistage granite intrusions, formed an important rare metal ore concentration area in South China. In this paper we report muscovite 40Ar/39Ar dating results from tantalite-bearing muscovite albite pegmatite of Duanfengshan on the margin of granite mass, and beryl-bearing muscovite albite pegmatite of Daxing in its central region. The 40Ar/39Ar ages of muscovite are 127.7±0.9 Ma and 130.5±0.9 Ma. Based on the detailed field work and existing regional isotope chronological data, it is suggested that this area experienced long-lasting multistage magmatic evolution from early to middle Yanshanian. Rare metal mineralization of pegmatite occurred at the end of magmatic activities in Cretaceous, which showed the process of gradual enrichment and mineralization of rare metal led by regional multistage magmatic differentiation and evolution. These geological phenomena showed that Mufushan area has undergone a widely distributed continental collision orogeny in Indosinian and its tectonic setting shifted from continental collision to extensional thinning at Yanshanian. The multistage magmatic activities associated with regional lower crustal melting, which caused by underplating of basaltic magma during the process of lithospheric extension, led to the final rare metal mineralization.
-
Key words:
- 40Ar/39Ar dating /
- rare metal /
- magmatic activity /
- Cretaceous peak metallogenic epoch /
- granite /
- geochronology
-
图 1 幕阜山稀有金属矿集区地质矿产简图
据湖南省地质局区域地质测量队(1978)改编.a.幕阜山矿集区大地构造位置;b.幕阜山矿集区地质矿产分布
Fig. 1. Geological and mineral resources map of Mufushan rare metal ore concentration area
图 5 幕阜山复式花岗岩体岩浆分异及稀有金属矿化组合分带概略图
Fig. 5. Magmatic differentiation and rare metal mineralization zoning diagram of Mufushan composite granite mass
表 1 幕阜山地区稀有金属伟晶岩白云母40Ar/39Ar阶段升温测年数据
Table 1. 40Ar/39Ar stepwise heating analytical data for muscovite from the rare metal pegmatite in Mufushan area
T(℃) (40Ar/39Ar)m (36Ar/39Ar)m (37Ar/39Ar)m (38Ar/39Ar)m 40Ar(%) 40Ar*/39Ar 39Ar
(10-14 mol)表面年龄
(Ma)±1σ
(Ma)DFS-3-3 白云母 W=27.07 mg J=0.004 403 700 32.333 8 0.076 5 1.332 3 0.030 9 30.33 9.817 2 0.08 76.3 6.2 750 34.406 2 0.057 4 0.000 0 0.022 5 50.73 17.454 5 0.38 133.6 1.8 800 28.693 2 0.039 8 0.212 8 0.021 1 59.01 16.935 6 0.60 129.7 1.4 840 22.356 8 0.017 0 0.000 0 0.014 5 77.46 17.317 8 0.68 132.6 1.4 880 19.102 7 0.008 2 0.075 4 0.014 2 87.38 16.692 6 2.52 127.9 1.2 910 17.042 4 0.001 3 0.014 4 0.012 7 97.70 16.650 4 4.17 127.6 1.2 940 16.851 2 0.000 7 0.000 0 0.012 6 98.71 16.633 4 4.05 127.5 1.2 970 16.961 7 0.001 1 0.012 2 0.012 7 98.03 16.628 3 3.12 127.5 1.2 1 020 17.175 9 0.002 0 0.032 2 0.012 9 96.55 16.584 4 2.70 127.1 1.2 1 100 17.223 8 0.001 8 0.017 0 0.013 0 96.88 16.686 3 3.09 127.9 1.2 1 200 16.903 2 0.000 9 0.048 1 0.013 1 98.34 16.624 0 2.04 127.4 1.3 1 400 20.732 8 0.013 1 0.456 7 0.015 7 81.42 16.887 0 0.29 129.4 2.0 总气体年龄=127.7 Ma PJ-9-7-4 白云母 W=26.88 mg J=0.004 442 700 43.960 7 0.103 8 0.675 1 0.029 8 30.35 13.348 9 0.09 103.9 8.0 770 26.506 8 0.034 4 0.054 0 0.018 6 61.61 16.332 5 0.35 126.3 1.7 820 25.629 6 0.030 2 0.147 7 0.018 1 65.24 16.721 8 0.65 129.3 1.5 860 21.868 4 0.016 3 0.000 0 0.015 3 77.91 17.037 8 1.57 131.6 1.3 890 17.649 7 0.002 6 0.013 0 0.013 0 95.68 16.887 8 4.87 130.5 1.3 920 17.275 1 0.001 4 0.022 4 0.012 7 97.58 16.857 8 4.32 130.3 1.3 950 17.314 6 0.001 4 0.012 4 0.012 6 97.50 16.882 6 3.28 130.5 1.3 980 17.571 9 0.002 0 0.014 9 0.013 0 96.63 16.979 3 1.79 131.2 1.3 1 020 17.822 6 0.002 9 0.004 2 0.012 9 95.24 16.974 8 1.26 131.1 1.3 1 070 17.703 0 0.003 4 0.081 0 0.013 4 94.27 16.689 7 1.59 129.0 1.3 1 130 17.693 0 0.002 8 0.036 6 0.013 0 95.37 16.873 6 2.65 130.4 1.3 1 200 22.873 8 0.018 8 0.000 0 0.015 7 75.74 17.324 3 0.99 133.7 1.5 1 400 125.753 0 0.365 4 0.146 7 0.082 3 14.14 17.789 8 0.46 137.2 1.8 1 430 153.969 4 0.456 0 0.533 8 0.094 1 12.50 19.250 5 0.05 148.0 9.3 总气体年龄=130.6 Ma 表 2 幕阜山复式花岗岩体岩石单位时代划分
Table 2. Age division of rock units from the Mufushan composite granite mass
时代 岩体名称 侵入体
期次主要岩性特征 同位素
年龄(Ma)采样点 空间相关稀有金
属矿床/矿点主要/次要稀
有金属矿物矿点描述 代 纪、世 中生代 早白垩世 白云母二长花岗岩 中细粒(细中粒)白云母二长花岗岩 SH-z137①
K-Ar136③12 里洞铍矿点 绿柱石/
铌钽铁矿伟晶岩细脉带,脉体宽3~20 cm,可见少量绿柱石、铌钽铁矿,与围岩接触带可见白云母化、弱云英岩化、弱电气石化 黑云母花岗岩 黑云母花岗岩 K-Ar137⑤ 花岗闪长岩 细粒黑云母花岗闪长岩 - 黑云母二长花岗岩 似斑状黑云母二长花岗岩 K-Ar145③ 二云母二长花岗岩 细粒二云母二长(钾长)花岗岩 SH-z145② 11 麦市铍矿
点分布区绿柱石/
铌钽铁矿包括狮子尖、票家巷等5处小规模矿化点,脉体宽5~90 cm,半数脉体含矿,绿柱石3~6 000 g/m3,铌钽铁矿几颗约130 g/m3,与围岩接触带可见弱云英岩化 晚侏罗世 二云母二长花岗岩 第Ⅳ期 中粗粒(斑状)二云母二长花岗岩 - 第Ⅲ期 中粒(斑状)二云母二长花岗岩 SH-z146② 10 第Ⅱ期 中细粒少斑状二云母二长花岗岩 - 第Ⅰ期 细粒(少斑状)二云母二长花岗岩 - 第Ⅳ期 粗中粒(斑状)黑云母二长花岗岩 - 第Ⅲ期 中粒(少)斑状黑云母二长花岗岩 SH-z152① 8、9 通城肥猪
窝铍矿点绿柱石 主矿脉2条,其中一条长20 m,宽2~6 m,绿柱石长1~10 cm,含量为0.5 kg/m3 黑云母二长花岗岩 第Ⅱ期 细中粒(少)斑状黑云母二长花岗岩 SH-z153② 6、7 株树村
铍矿点绿柱石、
铌钽铁矿含绿柱石伟晶岩细脉带,呈分支复合,宽5~20 cm,脉体富绿柱石及铌钽铁矿,多数具风化剥蚀,地表样品铌钽平均品位35.4 g/m3 第Ⅰ期 细粒(中细粒)黑云二长花岗岩 SH-z154② 5 通城麦埚
铍矿点绿柱石/
铌钽铁矿含绿柱石伟晶岩大脉,主脉长60 m,宽50 m,分异好,交代弱,见文象带、块体长石带、矿体石英带.富集带绿柱石17.82 kg/cm3,贫矿带2.16 kg/m3,围岩中含Li2O 0.01%~0.1%. 花岗闪长岩 第Ⅲ期 细中粒黑云母二长花岗岩 - 第Ⅱ期 细中粒黑云母花岗闪长岩 SH-z155② 4 第Ⅰ期 中细粒黑云母英云闪长岩 - 黑云母石英二长岩 中细粒黑云母石英二长岩 SH-z158② 3 板江伟
晶岩段绿柱石 脉体共计7条,产于花岗岩体与冷家溪群内接触带,长20~300 m,宽2~10 m,长石开采为主,可见少量绿柱石 新元 中粒花岗闪长岩 中粒黑云母花岗闪长岩 SH-z816① 2 古代 中细粒英云闪长岩 细粒黑云母英云闪长岩 - 1 注:“-”为缺乏年龄数据;“SH-z”为Shrimp锆石U-Pb定年;“K-Ar”为云母K-Ar同位素定年.① 据通城县区域地质报告(湖北省地质调查院, 2013);② 据1/25万岳阳市幅(湖南省地质局区域地质测量队, 1978);③ 据幕阜山花岗岩区稀有金属矿产普查报告(地质部701地质队, 1965). -
Bai, D.Y., Huang, J.Z., Meng, D.B., et al., 2006.Meso-Cenozoic Thermochronological Analysis of the Uplift Process of Mountains in Southeast Hunan.Acta Geoscientica Sinica, 27(6):525-536 (in Chinese with English abstract). Bai, D.Y., Jia, B.H., Li, J.D., et al., 2007.Important Significance of Regional Tectonic Regime to Metallogenic Capacity of Indosinian and Early Yanshanian Granites in Southeastern Hunan:A Case Study of Qianlishan and Wangxianling Plutons.Mineral Deposits, 26(5):487-500 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0169136817303293 Bai, T.B., van Groos, A.F.K., 1999.The Distribution of Na, Rb, Sr, Al, Ge, Cu, W, Mo, La, and Ce between Granitic Melts and Coexisting Aqueous Fluids.Geochimica et Cosmochimica Acta, 63(7):1117-1131.doi: 10.1016/S0016-7037(98)00284-1 Bau, M., 1996.Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems:Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect.Contributions to Mineralogy and Petrology, 123(3):323-333.doi: 10.1007/s004100050159 Breaks, F.W., Moore, J.M., 1992.The Ghost Lake Batholith, Superior Province of Northwestern Ontario:A Fertile, S-Type, Peraluminous Granite-Rare-Element Pegmatite System.Can Mineralogist, 30:835-875. doi: 10.1007/s00410-003-0538-y Bureau of Geology and Mineral Resources of Hunan, 1988. Regional Geology of Hunan.Geological Publishing House, Beijing, 417-437 (in Chinese). Černý, P., 1991.Rare-Element Granitic Pegmatites.Part Ⅱ:Regional to Global Environments and Petrogenesis.Geoscience Canada, 18(2):68-80. Chen, P.R., Hua, R.M., Zhang, B.T., et al., 2002.The Yanshanian Post-Orogenic Granitoids in Nanling:Petrology Constraint and Geodynamic Setting.Science China Earth Sciences, 32(4):279-289 (in Chinese). doi: 10.1007/BF02878432 Chen, W., Zhang, Y., Zhang Y.Q., et al., 2006.Late Cenozoic Episodic Uplifting in Southeastern Part of the Tibetan Plateau—Evidence from Ar-Ar Thermochronology.Acta Petrologica Sinica, 22(4):867-872 (in Chinese with English abstract). Dong, X.F., Tang, Z.C., Chen, Z.D., et al., 2016.Geochemical Characteristics of the Basic and Magnesian Metamorphic Rocks in Longyou Area, Zhejiang Province and Their Tectonic Setting.Earth Science, 41(8):1322-1333 (in Chinese with English abstract). Fan, W.M., Wang, Y.J., Guo, F., et al., 2003.Mesozoic Mafic Magmatism in Hunan-Jiangxi Provinces and the Lithospheric Extension.Earth Science Frontiers, 10(3):159-169 (in Chinese with English abstract). doi: 10.1360/04yd0149 Fu, Z.R., Li, Z.J., Zheng, D.Y., 1999.Structural Pattern and Tectonic Evolution of NNE-Trending Strike-Slip Orogenic Belt in the Border Region of Hunan and Jiangxi Provinces.Earth Science Frontiers, 6(4):263-272 (in Chinese with English abstract). doi: 10.1007/BF02879519 Guo, F., Fan, W.M., Lin, G., et al., 1997.Chronological Study and Genesis Discussion of Gabbro Xenoliths in Daoxian, Hunan.Chinese Science Bulletin, 42(15):1661-1663 (in Chinese). doi: 10.1007%2FBF02882650.pdf Han, B.F., 2008.A Preliminary Comparison of Mesozoic Granitoids and Rare Metal Deposits in Chinese and Russian Altai Mountains.Acta Petrologica Sinica, 24(4):655-660 (in Chinese with English abstract). http://www.oalib.com/paper/1472409 He, Y., 1985.Some Views on the Division into Rock Formation Phases of the Xihuashan Granite Stock.Geological Review, 31(2):173-178 (in Chinese with English abstract). He, Z.L., Xu, D.R., Chen, G.H., et al., 2004.Gold Polymetallic Ore-Forming Geochemistry of Yanshanian Intracontinental Collision Orogen, Northeastern Hunan Province.Mineral Deposits, 23(1):39-51 (in Chinese with English abstract). Hou, H.X., Zhang, D.H., Zhang, R.Z., 2016.The Chronology, Geochemical Characteristics and Geological Significance of the Mesozoic Shiyaogou Hidden Granite at the East Qinling.Earth Science, 41(10):1665-1682 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200211001.htm Hu, K.M., Tang, Z.C., Meng, X.S., et al., 2016.Chronology of Petrogenesis and Mineralization of Datongkeng Porphyry W-Mo Deposit in West Zhejiang.Earth Science, 41(9):1435-1450 (in Chinese with English abstract). doi: 10.1007/s12583-017-0739-3 Hubei Geological Survey, 2013.1:500 000 Regional Geological Survey Report of Tongcheng Area.Hubei Geological Survey, Wuhan, 1-288 (in Chinese). Irber, W., 1999.The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites.Geochimica et Cosmochimica Acta, 63(3-4):489-508. doi: 10.1016/S0016-7037(99)00027-7 Li, J.K., Wang, D.H., Zhang, D.H., et al., 2007.Mineralizing Mechanism and Continental Geodynamics of Typical Pegmatite Deposits in Western Sichuan, China.Atomic Energy Press, Beijing, 1-154 (in Chinese). doi: 10.1007/BF02831541 Li, J.K., Zou, T.R., Liu, X.F., et al., 2015.The Metallogenetic Regularities of Lithium Deposits in China.Acta Geologica Sinica (English Edition), 89(2):652-670.doi: 10.3969/j.issn.1000-9515.2015.02.023 Li, J.W., Li, X.F., Li, Z.J., et al., 1999.Fluid Inclusions Study in the Process of Strike Slip Faulting—A Case Study in Eastern Hunan Province.Geotectonica et Metallogenia, 23(3):240-247 (in Chinese with English abstract). Li, P.C., 2006.Magmatism of Phanerozoic Granitoids in Northeastern Hunan Province, China and Its Evolution Regularity (Dissertation).Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 1-101 (in Chinese with English abstract). Li, X.F., Li, J.W., Fu, Z.R., 1999.Uranium Mineralization Related to Strike-Slip Faults, Lujing Orefield, Border Region between Eastern Hunan and Western Jiangxi.Earth Science, 24(5):476-479 (in Chinese with English abstract). Li, X.F., Yan, T.Z., Fu, Z.R., 2000.Relationship between NEN-trending Active Strike-Slip Faults and Earthquake Hot Spring Distribution in Eastern Hunan and Western Jiangxi, China.Journal of Geomechanics, 6(4):73-78 (in Chinese with English abstract). http://ticc.mines.edu/csm/learningWiki/index.php?title=User:Kendallsbs&action=edit Li, X.H., Hu, R.Z., Rao, B., 1997.Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong.Geochimica, 26(2):14-31 (in Chinese with English abstract). Li, X.H., Li, W.X., Li, Z.X., 2007.Further Discussion on the Genetic Types and Tectonic Significance of Early Yanshanian Granite.Chinese Science Bulletin, 52(9):981-991 (in Chinese). Li, X.H., Zhou, H.W., Liu, Y., et al., 1999.Petrological and Geochemical Characteristics of the Potassic Intrusive Rocks in Southeastern Guangxi.Chinese Science Bulletin, 44(18):1992-1998 (in Chinese). doi: 10.1007/s11430-009-0131-y Liu, F., Yang, F.Q., Mao, J.W., et al., 2009.Study on Chronology and Geochemistry for Abagong Granite in Altay Orogen.Acta Petrologica Sinica, 25(6):1416-1425 (in Chinese with English abstract). Liu, H.Q., Zhang, L.X., Jin, W.Q., et al., 1999.The Yanshanian Granitoids in Northeast Hunan.Geology and Mineral Resources of South China, (4):1-9 (in Chinese with English abstract). Liu, J.Y., 2003.Compound Massif and Complex Massif—The Two Basic Forms of the Massif Association of Granitoid and Their Significance.Contributions to Geology and Mineral Resources Research, 18(3):143-148 (in Chinese with English abstract). Lou, F., Wu, J., Chen, G.H., 2014.LA-ICP-MS Zircon U-Pb Dating of Indosinian Rock Mass in Paoshuling of Limu, Guangxi and Its Geological Implications.Geological Bulletin of China, 33(7):960-965 (in Chinese with English abstract). doi: 10.1007%2Fs11631-012-0553-7.pdf Morteani, G., Preinfalk, C., Horn, A.H., 2000.Classification and Mineralization Potential of the Pegmatites of the Eastern Brazilian Pegmatite Province.Mineralium Deposita, 35(7):638-655.doi: 10.1007/s001260050268 No.701 Force of Geology Department, 1965.A Survey Report on Rare Metal Minerals in the Granite Area of Mufushan.701 Force of Geology Department, Beijing, 1-176 (in Chinese). Partington, G.A., Mcnaughton, N.J., Williams, I.S., 1995.A Review of the Geology, Mineralization, and Geochronology of the Greenbushes Pegmatite, Western Australia.Economic Geology, 90(3):616-635.doi: 10.2113/gsecongeo.90.3.616 Regional Geological Survey Team of Hunan Geological Bureau, 1978.Geological Map of Pingjiang (Scale 1:250 000).Hunan Geological Bureau, Changsha, 1-87 (in Chinese). Pei, R.F., 1995.Comagmatic Complementary Differentiation and Metallogeny.Mineral Deposits, 14(4):376-379 (in Chinese). Peng, H.Q., Jia, B.H., Tang, X.S., 2004.Uplift Process of Mufushan and Thermochronology of Wangxiang Granites in Northeastern Hunan Province.Geological Science and Technology Information, 23(1):11-15 (in Chinese with English abstract). Shearer, C.K., Papike, J.J., Jolliff, B.L., 1992.Petrogenetic Links among Granites and Pegmatites in the Harney Peak Rare-Element Granite-Pegmatite System, Black Hills, South Dakota.Canadian Mineralogist, 30:785-809. doi: 10.1007/s00410-004-0580-4 Shen, W.Z., Xu, S.J., Wang, Y.X., et al., 1994.Nd-Sr Isotope Study of West Huashan Granite.Chinese Science Bulletin, 39(2):154-156 (in Chinese). Shi, H.C., Shi, X.B., Yang, X.Q., et al., 2013.The Exhumation Process of Mufushan Granite in Jiangnan Uplift since Cenozoic:Evidence from Low-Temperature Thermochronology.Chinese Journal of Geophysics, 56(6):1945-1957 (in Chinese with English abstract). Thompson, A.B., 1999.Some Time-Space Relationships for Crustal Melting and Granitic Intrusion at Various Depths.In:Castro, A., Fernandez, C., Vigner-esse, J.L., eds., Understanding Granites:Integrating New and Classical Techniques.Geological Society, London, Special Publications, 168:7-25.doi:10.1144/GSL.SP.1999.168.01.02 Tkachev, A.V., 2011.Evolution of Metallogeny of Granitic Pegmatites Associated with Orogens throughout Geologic Time.In:Sial, A.N., Bettencourt, J.S., de Campos, C.P., eds., Granite-Related Ore Deposits.Geological Society, London, Special Publications, 350:7-23.doi:10.1144/SP350.2 Wang, D.H., Chen, Y.C., Xu, Z.G., et al., 2002.Metallogenic Series and Metallogenic Regularity of Altai Metallogenic Province.Atomic Energy Press, Beijing, 1-492 (in Chinese). Wang, D.H., Zou, T.R., Xu, Z.G., et al., 2004.Advance in the Study of Using Pegmatite Deposits as the Tracer of Orogenic Process.Advances in Earth Science, 19(4):614-620 (in Chinese with English abstract). Wang, L.K., Wang, H.F., Huang, Z.L., 2000.Geochemical Indicators of Trace Element in Li-F Granite Liquid Segregation.Acta Petrologica Sinica, 16(2):145-152 (in Chinese with English abstract). http://www.oalib.com/paper/1473639 Wang, Y.J., Fan, W.M., Liang, X.Q., et al., 2005.SHRIMP Zircon U-Pb Ages of the Indosinian Granites in Hunan and Their Implications.Chinese Science Bulletin, 50(12):1259-1266 (in Chinese). Wang, Y.J., Liao, C.L., Fan, W.M., et al., 2004.Early Mesozoic OIB-Type Alkaline Basalt in Central Jiangxi Province and Its Tectonic Implications.Geochimica, 33(2):109-117 (in Chinese with English abstract). doi: 10.1007/s00531-004-0441-4 Webster, J.D., Holloway, J.R., Hervig, R.L., 1989.Partitioning of Lithophile Trace Elements between H2O and H2O+CO2 Fluids and Topaz Rhyolite Melt.Economic Geology, 84(1):116-134.doi: 10.2113/gsecongeo.84.1.116 Windley, B.F., Kroner, A., Guo J., et al., 2002.Neoproterozoic to Paleozoic Geology of the Altai Orogen, NW China:New Zircon Age Data and Tectonic Evolution.The Journal of Geology, 110:719-737.doi: 10.1086/342866 Xiao, W., Windley, B.F., Badarch, G., et al., 2004.Palaeozoic Accretionary and Convergent Tectonics of the Southern Altaids:Implications for the Growth of Central Asia.Journal of the Geological Society, 161(3):339-342.doi: 10.1144/0016-764903-165 Xie, G.Q., Mao, J.W., Hu, R.Z., et al., 2005.Discussion on Some Problems of Mesozoic and Cenozoic Geodynamics of Southeast China.Geological Review, 51(6):613-620 (in Chinese with English abstract). Xing, G.F., Lu, Q.D., Chen, R., et al., 2008.Study on the Ending Time of Late Mesozoic Tectonic Regime Transition in South China—Comparing to the Yanshan Area in North China.Acta Geologica Sinica, 82(4):451-463 (in Chinese with English abstract). doi: 10.1007/s11430-014-5006-1 Zhang, Y., Chen, W., Chen, K.L., et al., 2006.Study on the Ar-Ar Age Spectrum of Diagenetic I/S and the Mechanism of 39Ar Recoil Loss—Examples from the Clay Minerals of P-T Boundary in Changxing, Zhejiang Province.Geological Review, 52(4):556-561 (in Chinese with English abstract). Zhang, Z.J., Zhang, X.H., Yi, S.H., 2003.Intraplate Tectonic Deformation of the Precambrian in the Mufu and Jiuling Mountains Area, North-West Jiangxi.Geological Journal of China Universities, 9(1):81-88 (in Chinese with English abstract). doi: 10.1007/978-3-540-78558-3_1 Zou, T.R., Zhang, X.C., Jia, F.Y., et al., 1986.The Origin of No.3 Pegmatite in Altay, Xinjiang.Mineral Deposits, 5(4):36-50 (in Chinese with English abstract). 柏道远, 黄建中, 孟德保, 等, 2006.湘东南地区中、新生代山体隆升过程的热年代学研究.地球学报, 27(6): 525-536. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200606001.htm 柏道远, 贾宝华, 李金冬, 等, 2007.区域构造体制对湘东南印支期与燕山早期花岗岩成矿能力的重要意义——以千里山岩体和王仙岭岩体为例.矿床地质, 26(5): 487-500. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200705002.htm 湖南省地质矿产局, 1988.湖南区域地质志.北京:地质出版社, 417-437. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD198603002.htm 陈培荣, 华仁民, 章邦桐, 等, 2002.南岭燕山早期后造山花岗岩类:岩石学制约和地球动力学背景.中国科学:地球科学, 32(4): 279-289. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200204002.htm 陈文, 张彦, 张岳桥, 等, 2006.青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据.岩石学报, 22(4): 867-872. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-HWLX200708002047.htm 董学发, 唐增才, 陈忠大, 等, 2016.浙江龙游地区基性及镁质变质岩的地球化学特征及其构造环境.地球科学, 41(8): 1322-1333. http://earth-science.net/WebPage/Article.aspx?id=3340 范蔚茗, 王岳军, 郭锋, 等, 2003.湘赣地区中生代镁铁质岩浆作用与岩石圈伸展.地学前缘, 10(3): 159-169. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303022.htm 傅昭仁, 李紫金, 郑大瑜, 1999.湘赣边区NNE向走滑造山带构造发展样式.地学前缘, 6(4): 263-272. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY199904014.htm 郭锋, 范蔚茗, 林舸, 等, 1997.湘南道县辉长岩包体的年代学研究及成因探讨.科学通报, 42(15): 1661-1663. doi: 10.3321/j.issn:0023-074X.1997.15.022 韩宝福, 2008.中俄阿尔泰山中生代花岗岩与稀有金属矿床的初步对比分析.岩石学报, 24(4): 655-660. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804005.htm 赫英, 1985.关于西华山花岗岩株成岩阶段划分问题的几点看法.地质论评, 31(2): 173-178. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP198502012.htm 贺转利, 许德如, 陈广浩, 等, 2004.湘东北燕山期陆内碰撞造山带金多金属成矿地球化学.矿床地质, 23(1): 39-51. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200401004.htm 侯红星, 张德会, 张荣臻, 2016.东秦岭中生代石瑶沟隐伏花岗岩年代学、地球化学特征及地质意义.地球科学, 41(10): 1665-1682. http://earth-science.net/WebPage/Article.aspx?id=3370 胡开明, 唐增才, 孟祥随, 等, 2016.浙西大铜坑斑岩型钨钼矿床成岩成矿年代学.地球科学, 41(9): 1435-1450. http://earth-science.net/WebPage/Article.aspx?id=3349 湖北省地质调查院, 2013. 1: 50万通城县区幅区域地质调查报告. 武汉: 湖北省地质调查院, 1-288. 李建康, 王登红, 张德会, 等, 2007.川西伟晶岩型矿床的形成机制及大陆动力学背景.北京:原子能出版社, 1-154. http://cdmd.cnki.com.cn/Article/CDMD-11415-2006065358.htm 李建威, 李先福, 李紫金, 等, 1999.走滑变形过程中的流体包裹体研究——以湘东地区为例.大地构造与成矿, 23(3): 240-247. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK199903005.htm 李鹏春, 2006. 湘东北地区显生宙花岗岩岩浆作用及其演化规律(博士学位论文). 广州: 中国科学院广州地球化学研究所, 1-101. http://cdmd.cnki.com.cn/Article/CDMD-80165-2006106407.htm 李先福, 李建威, 傅昭仁, 1999.湘赣边鹿井矿田与走滑断层有关的铀矿化作用.地球科学, 24(5): 476-479. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199905007.htm 李先福, 晏同珍, 傅昭仁, 2000.湘东-赣西NNE向走滑断裂与地震、地热的关系.地质力学学报, 6(4): 73-78. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200004010.htm 李献华, 胡瑞忠, 饶冰, 1997.粤北白垩纪基性岩脉的年代学和地球化学.地球化学, 26(2): 14-31. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX702.003.htm 李献华, 李武显, 李正祥, 2007.再论南岭燕山早期花岗岩的成因类型与构造意义.科学通报, 52(9): 981-991. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200709000.htm 李献华, 周汉文, 刘颖, 等, 1999.桂东南钾玄质侵入岩带及其岩石学和地球化学特征.科学通报, 44(18): 1992-1998. doi: 10.3321/j.issn:0023-074X.1999.18.017 刘锋, 杨富全, 毛景文, 等, 2009.阿尔泰造山带阿巴宫花岗岩体年代学及地球化学研究.岩石学报, 25(6): 1416-1425. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200906012.htm 刘姤群, 张录秀, 金维群, 等, 1999.湘东北燕山期花岗岩.华南地质与矿产, (4): 1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-HNKC199904000.htm 刘家远, 2003.复式岩体和杂岩体-花岗岩类岩体组合的两种基本形式及其意义.地质找矿论丛, 18(3): 143-148. http://www.cnki.com.cn/Article/CJFDTOTAL-DZZK200303001.htm 娄峰, 伍静, 陈国辉, 2014.广西栗木泡水岭印支期岩体LA-ICP-MS锆石U-Pb年龄及其地质意义.地质通报, 33(7): 960-965. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201407003.htm 地质部701地质队, 1965. 1: 5万幕阜山花岗岩区稀有金属矿产普查报告. 北京: 地质部701地质队, 1-176. 湖南省地质局区域地质测量队, 1978. 1: 25万地质图——平江幅. 长沙: 湖南省地质局, 1-87. 裴荣富, 1995.共(源)岩浆补余分异作用与成矿.矿床地质, 14(4): 376-379. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ504.010.htm 彭和求, 贾宝华, 唐晓珊, 2004.湘东北望湘岩体的热年代学与幕阜山隆升.地质科技情报, 23(1): 11-15. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200401003.htm 沈渭洲, 徐士进, 王银喜, 等, 1994.西华山花岗岩的Nd-Sr同位素研究.科学通报, 39(2): 154-156. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199402017.htm 石红才, 施小斌, 杨小秋, 等, 2013.江南隆起带幕阜山岩体新生代剥蚀冷却的低温热年代学证据.地球物理学报, 56(6): 1945-1957. doi: 10.6038/cjg20130617 王登红, 陈毓川, 徐志刚, 等, 2002.阿尔泰成矿省的成矿系列及成矿规律研究.北京:原子能出版社, 1-492. 王登红, 邹天人, 徐志刚, 等, 2004.伟晶岩矿床示踪造山过程的研究进展.地球科学进展, 19(4): 614-620. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200404019.htm 王联魁, 王慧芬, 黄智龙, 2000.Li-F花岗岩液态分离的微量元素地球化学标志.岩石学报, 16(2): 145-152. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200002000.htm 王岳军, 范蔚茗, 梁新权, 等, 2005.湖南印支期花岗岩SHRIMP锆石U-Pb年龄及其成因启示.科学通报, 50(12): 1259-1266. doi: 10.3321/j.issn:0023-074X.2005.12.018 王岳军, 廖超林, 范蔚茗, 等, 2004.赣中地区早中生代OIB碱性玄武岩的厘定及构造意义.地球化学, 33(2): 109-117. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200402000.htm 谢桂青, 毛景文, 胡瑞忠, 等, 2005.中国东南部中-新生代地球动力学背景若干问题的探讨.地质论评, 51(6): 613-620. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200506002.htm 邢光福, 卢清地, 陈荣, 等, 2008.华南晚中生代构造体制转折结束时限研究——兼与华北燕山地区对比.地质学报, 82(4): 451-463. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200804003.htm 张彦, 陈文, 陈克龙, 等, 2006.成岩混层(I/S)Ar-Ar年龄谱型及39Ar核反冲丢失机理研究——以浙江长兴地区P-T界线粘土岩为例.地质论评, 52(4): 556-561. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200604018.htm 章泽军, 张雄华, 易顺华, 2003.赣西北幕阜山-九岭山一带前震旦纪构造变形.高校地质学报, 9(1): 81-88. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200301009.htm 邹天人, 张相宸, 贾富义, 等, 1986.论阿尔泰3号伟晶岩脉的成因.矿床地质, 5(4): 36-50. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198604005.htm