• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    琼东南盆地西区梅山组海底扇岩相-地球化学特征及源区意义

    尤丽 刘才 钟佳 李才 吴仕玖 代龙

    尤丽, 刘才, 钟佳, 李才, 吴仕玖, 代龙, 2017. 琼东南盆地西区梅山组海底扇岩相-地球化学特征及源区意义. 地球科学, 42(9): 1531-1540. doi: 10.3799/dqkx.2017.503
    引用本文: 尤丽, 刘才, 钟佳, 李才, 吴仕玖, 代龙, 2017. 琼东南盆地西区梅山组海底扇岩相-地球化学特征及源区意义. 地球科学, 42(9): 1531-1540. doi: 10.3799/dqkx.2017.503
    You Li, Liu Cai, Zhong Jia, Li Cai, Wu Shijiu, Dai Long, 2017. Petrography-Geochemistry and Source Significance of Submarine Fan from West Area of Qiongdongnan Basin. Earth Science, 42(9): 1531-1540. doi: 10.3799/dqkx.2017.503
    Citation: You Li, Liu Cai, Zhong Jia, Li Cai, Wu Shijiu, Dai Long, 2017. Petrography-Geochemistry and Source Significance of Submarine Fan from West Area of Qiongdongnan Basin. Earth Science, 42(9): 1531-1540. doi: 10.3799/dqkx.2017.503

    琼东南盆地西区梅山组海底扇岩相-地球化学特征及源区意义

    doi: 10.3799/dqkx.2017.503
    基金项目: 

    十三五国家重大专项 2016ZX05026-002

    中海石油有限公司湛江分公司自有科研项目 ZYKY-2016-ZJ-02

    详细信息
      作者简介:

      尤丽(1983-), 女, 高级工程师, 主要从事沉积学与储层地质学研究

    • 中图分类号: P595

    Petrography-Geochemistry and Source Significance of Submarine Fan from West Area of Qiongdongnan Basin

    • 摘要: 南海北部琼东南盆地西区乐东-陵水凹陷梅山组海底扇是当前天然气勘探重点领域,通过研究其岩石类型、轻/重矿物与地球化学特征,判断沉积源区性质,为储层评价及预测提供地质基础.结果表明:岩性以细砂岩为主,发育粉、中-粗砂岩,岩石类型为石英砂岩、岩屑石英砂岩、长石岩屑砂岩,重矿物组合表现为磁铁矿+锆石+电气石+白钛矿;由于发育高铁镁质矿物及粘土矿物,泥岩较砂岩SiO2含量明显低,Fe2O3、MgO、CaO、K2O含量与稀土总量偏高.说明源区富石英、贫钾长石且含有大量粘土矿物,主要为石英质沉积源区,局部为中性火成岩源区,且经历了低-中等程度的风化作用,是再循环沉积而成.

       

    • 图  1  研究区构造位置与井点示意

      Fig.  1.  Location of studied area and wells

      图  2  琼东南盆地乐东-陵水凹陷梅山组海底扇砂岩岩石类型

      Fig.  2.  Sandstone composition classification of submarine fans in Meishan Formation, Ledong-Lingshui sag, Qiongdongnan basin

      图  3  琼东南盆地乐东-陵水凹陷梅山组储集岩岩石类型显微照片

      a.S-1,3 628 m,石英极细砂岩,壁心(-);b.SW-2,3 837 m,岩屑石英细砂岩,壁心(+);c.S-2,3 795.14 m,岩屑石英细砂岩,岩心(+);d.S-2,3 796.58 m,长石岩屑细砂岩,岩心(+);e.C-1,3 976 m,岩屑中砂岩,壁心(+);f.C-1,4 002 m,岩屑石英细砂岩,壁心(+)

      Fig.  3.  Micro-images of reservoir rocks in Meishan Formation, Ledong-Lingshui sag, Qiongdongnan basin

      图  4  琼东南盆地乐东-陵水凹陷梅山组储层重矿物及母岩类型分布

      图中数字标注代表各重矿物相对百分含量,单位为%;ZTR代表重矿物成分成熟度指数,是钻石、电气石及金红石的和

      Fig.  4.  Mother rock type and heavy mineral resultant of Meishan Formation, Ledong-Lingshui sag

      图  5  琼东南盆地乐东-陵水凹陷海底扇稀土元素分布

      a.砂、泥岩稀土元素球粒陨石标准化分布模式;b.砂、泥岩(La/Yb)N与σEu关系

      Fig.  5.  The REE distribution of submarine fans in Meishan Formation, Ledong-Lingshui sag, Qiongdongnan basin

      图  6  琼东南盆地乐东-陵水凹陷梅山组海底扇沉积母岩性质判别

      a.主量元素石英富集程度判别图(Crook在1974年提出(肖斌,2014));b.F1F2函数判别图(Roser and Korsch在1988年提出(Srivastava et al., 2013Perri,2014));c.La/Yb与∑REE判别图.A.沉积岩; B.大洋拉斑玄武岩; C.玄武岩区域; D.大陆拉斑玄武岩; E.碱性玄武岩; F.花岗岩; G.金伯利岩; H.碳酸盐岩区

      Fig.  6.  Discrimination for provenance of submarine fans in Meishan Formation, Ledong-Lingshui sag, Qiongdongnan basin

      表  1  琼东南盆地乐东-陵水凹陷梅山组海底扇砂、泥岩样品主量(%)、微量/稀土元素(10-6)分析结果

      Table  1.   Major (%), trace/rare (10-6) element analysis of sandstone and mudstone samples of submarine fans from Meishan Formation in Ledong-Lingshui sag of Qiongdongnan basin

      样号 MS1 MS2 MS3 MS4 MS5 MS6 MS7 SS1 SS3 SS4 SS5 SS6 SS7 SS8 SS9 SS2
      SiO2 63.90 58.44 67.32 51.13 47.76 45.01 45.91 80.47 88.40 57.05 65.64 69.59 76.21 76.34 76.54 54.08
      TiO2 0.93 0.59 0.66 0.62 0.60 0.55 0.58 0.39 0.14 0.60 0.41 0.39 0.39 0.37 0.37 0.26
      Al2O3 15.02 7.61 10.53 11.69 13.71 12.37 10.86 6.95 5.90 10.74 7.36 6.32 6.49 6.07 6.15 5.20
      Fe2O3 5.75 4.24 6.73 5.09 4.16 4.00 4.40 3.80 0.86 5.33 3.80 4.03 3.24 2.99 3.48 4.00
      MnO 0.024 0.030 0.080 0.102 0.074 0.043 0.120 0.023 0.001 0.087 0.087 0.076 0.075 0.061 0.061 0.063
      MgO 1.78 0.50 1.58 1.84 1.61 1.78 3.96 0.89 0.06 1.58 1.13 0.10 1.04 1.00 0.98 0.81
      CaO 1.56 14.70 1.93 4.36 9.08 10.92 9.66 0.85 0.10 4.45 3.34 1.78 1.71 2.28 1.55 17.02
      Na2O 0.94 0.16 0.97 0.90 1.72 1.91 1.34 1.09 0.19 1.03 1.21 1.04 0.92 0.91 0.92 0.76
      K2O 3.51 2.38 2.46 3.38 3.11 3.46 3.38 1.98 2.3 3.06 2.32 1.79 2.04 1.98 2.07 1.56
      LOI 6.26 11.00 7.36 12.20 16.94 18.64 18.48 3.25 1.68 11.56 9.43 6.99 6.64 6.84 6.42 16.01
      SiO2/Al2O3 4.3 7.7 6.4 4.4 3.5 3.6 4.2 11.6 15.0 5.3 8.9 11.0 11.7 12.6 12.4 10.4
      K2O/Na2O 3.7 14.9 2.5 3.8 1.8 1.8 2.5 1.8 12.1 3.0 1.9 1.7 2.2 2.2 2.3 2.1
      Al2O3/TiO2 16.2 12.9 16.0 19.0 22.9 22.5 18.7 17.8 42.1 17.9 17.9 16.2 16.6 16.4 16.6 20.0
      K2O/Al2O3 0.2 0.3 0.2 0.3 0.2 0.3 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3
      CIA 71.4 30.6 66.3 57.5 49.6 43.2 43.0 63.9 69.5 55.7 51.7 57.8 58.2 54.0 57.5 21.2
      CIW 85.7 33.9 78.4 69.0 55.9 49.1 49.7 78.2 95.3 66.2 61.8 69.2 71.2 65.6 71.3 22.6
      ICV 1.0 3.0 1.4 1.4 1.5 1.8 2.2 1.3 0.6 1.5 1.7 1.6 1.5 1.6 1.5 4.7
      微量/稀土元素
      Sc 12.90 5.76 8.94 11.97 12.80 11.80 10.50 5.77 1.29 10.29 6.45 5.95 5.29 4.89 4.59 5.68
      V 121.0 40.2 89.4 83.5 96.3 86.3 75.7 64.2 15.7 72.3 48.9 49.5 44.6 41.6 41.6 46.3
      Cr 91.4 41.0 71.4 80.1 64.7 62.1 54.8 60.7 13.2 160.4 85.2 47.3 37.9 38.9 38.3 43.9
      Co 15.00 5.56 6.26 11.39 10.90 10.10 9.66 6.39 1.49 11.07 7.01 7.76 6.25 6.58 5.58 4.91
      Ni 34.0 11.0 14.8 30.4 34.6 36.5 31.1 12.4 4.8 29.5 14.9 14.2 16.3 14.6 15.2 8.5
      Cu 17.30 8.65 9.83 36.40 38.60 34.20 27.70 7.25 10.40 23.03 12.39 17.77 7.53 6.00 6.07 3.80
      Zn 114.0 56.2 74.8 205.4 118.0 79.0 97.5 62.1 19.2 125.9 88.0 188.4 54.9 52.6 48.6 47.4
      Sr 140 332 222 1 213 454 537 363 69 143 586 427 440 217 238 314 161
      Y 20.4 18.4 18.4 16.9 19.6 19.0 18.3 18.3 6.1 16.5 12.3 18.3 13.1 13.4 12.3 26.6
      Zr 370 128 154 146 153 132 133 181 16 125 94 994 884 79 77 85
      Nb 22.6 11.4 16.4 15.2 12.6 10.5 9.6 9.7 1.8 18.5 12.6 13.5 10.7 9.6 6.6 3.4
      Ba 514 338 659 53 013 8 408 8 715 9 111 421 1 182 18 630 14 526 24 760 8 132 7 480 9 671 228
      Th 20.80 13.90 14.20 13.79 13.30 11.60 11.00 12.60 3.44 13.65 11.52 10.94 9.00 8.58 8.07 8.44
      U 4.96 2.54 1.95 2.11 2.63 2.47 2.00 1.66 0.63 2.02 1.37 1.31 1.16 1.24 1.08 1.09
      Pb 32.5 26.5 24.3 195.7 34.9 36.1 30.0 17.2 37.0 121.2 103.4 138.8 22.6 20.4 20.6 9.1
      Sr/Ba 0.27 0.98 0.34 0.02 0.05 0.06 0.04 0.16 0.12 0.03 0.03 0.02 0.03 0.03 0.03 0.71
      Th/U 4.19 5.47 7.28 6.53 5.06 4.70 5.50 7.59 5.46 6.74 8.39 8.33 7.76 6.92 7.47 7.74
      Th/Sc 1.61 2.41 1.59 1.15 1.04 0.98 1.05 2.18 2.67 1.33 1.79 1.84 1.70 1.75 1.76 1.49
      La/V 0.53 0.89 0.41 0.39 0.36 0.35 0.41 0.44 0.71 0.45 0.57 0.57 0.63 0.68 0.67 0.58
      La 64.2 35.8 36.4 32.5 34.9 30.5 30.8 28.2 11.2 32.6 28.0 28.0 28.2 28.4 27.8 27.0
      Ce 120.0 70.8 74.2 62.6 65.4 57.2 57.4 57.6 20.3 65.0 58.2 59.5 56.2 57.0 54.5 55.1
      Pr 13.50 8.24 8.00 7.26 7.69 6.85 6.63 6.58 2.39 7.53 6.71 6.73 6.27 6.34 6.09 6.23
      Nd 47.4 30.8 30.4 25.5 28.6 25.4 24.7 25.1 8.6 28.6 25.1 23.4 23.8 24.0 23.1 24.2
      Sm 7.58 5.51 6.05 5.02 5.32 4.72 4.61 5.03 1.54 5.43 4.70 4.75 4.50 4.58 4.43 5.12
      Eu 1.17 0.90 1.19 13.26 2.06 2.00 1.97 0.97 0.52 4.76 4.07 6.53 1.76 1.70 1.93 1.08
      Gd 4.93 4.47 5.30 3.99 5.22 4.72 4.90 4.49 1.22 4.24 3.87 3.92 4.31 4.38 4.13 5.26
      Tb 0.77 0.70 0.78 0.63 0.70 0.61 0.64 0.69 0.20 0.66 0.68 0.79 0.54 0.58 0.55 0.84
      Dy 4.14 3.66 3.94 3.27 3.84 3.47 3.54 3.71 1.09 4.15 2.94 3.09 2.79 2.86 2.67 4.78
      Ho 0.80 0.69 0.72 0.68 0.74 0.70 0.69 0.70 0.21 0.69 0.55 0.62 0.51 0.52 0.48 0.90
      Er 2.34 1.87 1.90 1.91 2.05 1.92 1.90 1.85 0.54 1.84 1.36 1.54 1.33 1.38 1.26 2.41
      Tm 0.43 0.31 0.32 0.31 0.36 0.34 0.34 0.32 0.05 0.28 0.19 0.23 0.22 0.22 0.21 0.38
      Yb 2.65 1.86 1.91 2.29 2.40 2.25 2.20 1.83 0.54 2.03 1.56 1.75 1.56 1.60 1.54 2.12
      Lu 0.48 0.30 0.31 0.52 0.48 0.46 0.46 0.30 0.06 0.36 0.24 0.33 0.32 0.31 0.33 0.33
      ∑REE 270.4 165.9 171.4 159.8 159.8 141.1 140.8 137.4 48.4 158.2 138.3 141.1 132.3 133.9 129.0 135.8
      LREE/HREE 15.3 11.0 10.3 10.8 9.1 8.8 8.6 8.9 11.4 10.1 11.1 10.5 10.4 10.3 10.6 7.0
      δEu 0.19 0.18 0.21 2.94 0.39 0.42 0.41 0.20 0.38 0.98 0.95 1.51 0.40 0.38 0.45 0.21
      (La/Yb)N 24.23 19.25 19.06 14.18 14.54 13.56 14.00 15.41 20.74 16.12 17.97 16.03 18.08 17.75 18.05 12.74
        注:CIW=Al2O3/(Al2O3+CaO+Na2O),CIA=Al2O3/(Al2O3+CaO+Na2O+K2O),ICV(CaO+Fe2O3+K2O+MgO+MnO+Na2O+TiO2)/SiO2,δEu=2EuN/(SmN×GdN),下标N为球粒陨石标准化值(Wakita et al., 1971).MS1.泥岩, S-2井3 802.06 m深度处的岩心;MS2.泥岩,C-1井3 947.00 m深度处的壁心;MS3.泥岩, C-1井深度4 045.00 m深度处的壁心;MS4.泥岩,B-2井4 840.22 m深度处的岩屑;MS5.泥岩,W-1井4 358.00 m深度处的岩屑;MS6.泥岩,W-1井4 370.00 m深度处的岩屑;MS7.泥岩,W-1井4 392.00 m深度处的岩屑;SS1.极细砂岩,S-2井3 796.68 m深度处的岩心;SS3.中-粗砂岩,C-1井3 965.00 m深度处的壁心;SS4.砂砾岩,B-2井4 846.32 m深度处的岩屑;SS5.细砂岩,B-2井4 904.23 m深度处的岩屑;SS6.细砂岩,B-2井5 047.49 m深度处的岩屑;SS7.细砂岩,W-1井4 400.00 m深度处的岩屑;SS8.细砂岩,W-1井4 412.00 m深度处的岩屑;SS9.细砂岩,W-1井4 430.00 m深度处的岩屑;SS2.钙质砂岩,S-2井3 800.13 m深度处的岩心.
      下载: 导出CSV
    • [1] Fan, C.W., Li, X.S., Liu, K., et al., 2016.Hydrocarbon Accumulation Condition of Miocene Litho-Stratigraphic Trap in Ledong & Lingshui Sags, Qiongdongnan Basin. China Offshore Oil and Gas, 28(2):53-59(in Chinese with English abstract).
      [2] Gao, D., Cheng, R.H., Shen, Y.J., et al., 2016.Southwestern Provenance-Sedimentary System and Provenance Tectonic Setting of Eastern Sag in the North Yellow Sea Basin. Earth Science, 41(7):1171-1187(in Chinese with English abstract).
      [3] Guo, L., Jia, C.C., Du, W., 2016.Geochemistry of Lower Silurian Shale of Longmaxi Formation, Southeastern Sichuan Basin, China:Implications for Provenance and Source Weathering. Journal of Central South University, 23(3):669-676.doi: 10.1007/s11771-016-3112-2
      [4] Hu, G.H., Zhou, Y.Y., Zhao, T.P., 2012.Geochemistry of Proterozoic Wufoshan Group Sedimentary Rocks in the Songshan Area, Henan Province:Implications for Provenance and Tectonic Setting. Acta Petrologica Sinica, 28(11):3692-3704(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201211021.htm
      [5] Jian, X., Guan, P., Zhang, W., et al., 2013.Geochemistry of Mesozoic and Cenozoic Sediments in the Northern Qaidam Basin, Northeastern Tibetan Plateau:Implications for Provenance and Weathering. Chemical Geology, 360-361:74-88.doi: 10.1016/j.chemgeo.2013.10.011
      [6] Lei, C., Ren, J.Y., Li, X.S., et al., 2011a.Structural Characteristics and Petroleum Exploration Potential in the Deep-Water Area of the Qiongdongnan Basin, South China Sea. Petroleum Exploration and Development, 38(5):560-569(in Chinese with English abstract).
      [7] Lei, C., Ren, J.Y., Pei, J.X., et al., 2011b.Tectonic Framework and Multiple Episode Tectonic Evolution in Deepwater Area of Qiongdongnan Basin, Northern Continental Margin of South China Sea. Earth Science, 36(1):151-162(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201101017.htm
      [8] Li, L., Yao, G.Q., Liu, Y.H., et al., 2015.Major and Trace Elements Geochemistry and Geological Implications of Dolomite-Bearing Mudstones in Lower Part of Shahejie Formation in Tanggu Area, Eastern China. Earth Science, 40(9):1480-1496(in Chinese with English abstract).
      [9] Li, Y., Zheng, R.C., Zhu, G.J., et al., 2011.Facies and Depositional Model of a Deepwater Fan in the Zhujiang Formation, Liwan 3-1 Gasfield, Baiyun Sag, Pearl River Mouth Basin. Acta Sedimentologica Sinica, 29(4):665-676 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CJXB201104006.htm
      [10] Liao, W.L., Xiao, L., Zhang, L., et al., 2015.Provenance and Tectonic Settings of Early Carboniferous Sedimentary Strata in Western Junggar, Xinjiang. Earth Science, 40(3):485-503(in Chinese with English abstract).
      [11] Lin, Y., Wu, S.H., Wang, X., et al., 2014.Reservoir Quality Differences of Submarine Fans in Deep-Water Oilfield a in Niger Delta Basin, West Africa. Oil & Gas Geology, 35(4):494-502(in Chinese with English abstract).
      [12] Liu, F., Pei, J.X., Wang, Y., et al., 2015.Palaeogeomorphologic Control on Sedimentary Process of Submarine Fans and Hydrocarbon Accumulation:A Case Study of Member 1 of Huangliu Formation in DF Area, Yinggehai Basin. China Offshore Oil and Gas, 27(4):37-46(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD201504005.htm
      [13] Mao, G.Z., Liu, C.Y., 2011.Application of Geochemistry in Provenance and Depositional Setting Analysis. Journal of Earth Sciences and Environment, 33(4):337-348(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX201104001.htm
      [14] Özkan, A.M., Elmas, A., 2012.Petrographic and Geochemicial Characteristics of the Klzlloren Formation (Upper Triassic-Lower Jurassic) in the Akplnar (Konya, Turkey) Area. Acta Geologica Sinica (English Edition), 86(6):1455-1470.doi: 10.1111/1755-6724.12014
      [15] Perri, F., 2014.Composition, Provenance and Source Weathering of Mesozoic Sandstones from Western-Central Mediterranean Alpine Chains. Journal of African Earth Sciences, 91:32-43.doi: 10.1016/j.jafrearsci.2013.12.002
      [16] Saminpanya, S., Duangkrayom, J., Jintasakul, P., et al., 2014.Petrography, Mineralogy and Geochemistry of Cretaceous Sediment Samples from Western Khorat Plateau, Thailand, and Considerations on Their Provenance. Journal of Asian Earth Sciences, 83:13-34.doi: 10.1016/j.jseaes.2014.01.007
      [17] Song, L.J., Liu, C.Y., Zhao, H.G., et al., 2016.Geochemical Characteristics, Sedimentary Environment and Tectonic Setting of Huangqikou Formation, Ordos Basin. Earth Science, 41(8):1295-1308, 1321(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201002010.htm
      [18] Srivastava, A.K., Randive, K.R., Khare, N., 2013.Mineralogical and Geochemical Studies of Glacial Sediments from Schirmacher Oasis, East Antarctica. Quaternary International, 292:205-216.doi: 10.1016/j.quaint.2012.07.028
      [19] Tao, H.F., Sun, S., Wang, Q.C., et al., 2014.Petrography and Geochemistry of Lower Carboniferous Greywacke and Mudstones in Northeast Junggar, China:Implications for Provenance, Source Weathering, and Tectonic Setting. Journal of Asian Earth Sciences, 87:11-25.doi: 10.1016/j.jseaes.2014.02.007
      [20] Wakita, H., Hey, P., Schmitt, R.A., 1971.Abundances of the 14 Rareearth Elements and 12 Other Trace Elements in Apollo 12 Samples:Five Igneous and One Breccia Rocks and Four Soils.In:Vobecky, M., Frána, J., Bauer, J., Proceedings of the Second Lunar Science Conference.The MIT Press, Cambridge, 2:1319-1329.
      [21] Wang, C., Liang, X.Q., Tong, C.X., et al., 2014.Characteristics and Geological Implications of Heavy Minerals from Seven Rivers in Adjacent Areas of Northeastern Yinggehai Basin. Acta Sedimentologica Sinica, 32(2):228-237(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201402006.htm
      [22] Wang, Y., Lü, M., 2009.Reservoir Characteristics Sediment in Nigeria Deep-Water Area. Natural Gas Geoscience, 20(2):228-236(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX200902012.htm
      [23] Wang, Y.F., Wang, Y.M., Li, D., et al., 2011.Features and Source Analysis on Early Pliocene Sedimentary Rare Earth Element (REE) in Central Canyon of Qiongdongnan Basin. Journal of Oil and Gas Technology, 33(6):50-52, 68 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JHSX201106011.htm
      [24] Wang, Y.H., Zhang, D.J., Chen, Y., et al., 2014.Characteristics and Controlling Factors of Meishan Deep-Water Fans in Lingshui Sag, Qiongdongnan Basin. Xinjiang Petroleum Geology, 35(6):664-667(in Chinese with English abstract).
      [25] Wang, Y.M., Xu, Q., Li, D., et al., 2011.Late Miocene Red River Submarine Fan, Northwestern South China Sea. Chinese Science Bulletin, 56(10):781-788 (in Chinese with English abstract). doi: 10.1007%2Fs11434-011-4441-z.pdf
      [26] Wang, Z.S., Liu, Z., Sun, Z.P., et al., 2014.Preliminary Prediction and Evaluation of Oligocene Source Rocks in Ledong-Lingshui Sag in Deep-Water Area of Qiongdongnan Basin. Journal of Central South University (Science and Technology), 45(3):876-888 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZNGD201403031.htm
      [27] Xiao, B., 2014.Geochemistry of Sandstones from Bayin Gebi Formation and Suhongtu Formation of Lower Cretaceous in Chagan Sag of Yin-E Basin. Bulletin of Mineralogy, Petrology and Geochemistry, 33(4):517-525(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201404017.htm
      [28] Xie, Y.H., Fan, C.W., Zhou, J.X., et al., 2016.Sedimentary Features and Controlling Factors of the Gravity Flows in Submarine Fan of Middle Miocene in the Qiongdongnan Basin. Natural Gas Geoscience, 27(2):220-228(in Chinese with English abstract).
      [29] Yang, J.H., Du, Y.S., Cawood, P.A., et al., 2012.Modal and Geochemical Compositions of the Lower Silurian Clastic Rocks in North Qilian, NW China:Implications for Provenance, Chemical Weathering, and Tectonic Setting. Journal of Sedimentary Research, 82(2):92-103.doi: 10.2110/jsr.2012.6
      [30] Yu, J.F., Pei, J.X., Wang, L.F., et al., 2014.Gas Pool Properties and Its Exploration Implications of the Dongfang13-2 Gravity Reservoir-Overpressure Gas Field in Yinggehai Basin. Acta Petrolei Sinica, 35(5):829-838(in Chinese with English abstract).
      [31] Zhao, M., Shao, L., Liang, J.S., et al., 2013.REE Character of Sediment from the Paleo-Red River and Its Implication of Preovenance. Earth Science, 38(Suppl.1):61-69 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX2013S1008.htm
      [32] 范彩伟, 李绪深, 刘昆, 等, 2016.琼东南盆地乐东、陵水凹陷中新统岩性地层圈闭成藏条件.中国海上油气, 28(2):53-59. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201602006.htm
      [33] 高丹, 程日辉, 沈艳杰, 等, 2016.北黄海盆地东部坳陷侏罗纪西南物源-沉积体系与源区构造背景.地球科学, 41(7):1171-1187. http://www.earth-science.net/WebPage/Article.aspx?id=3326
      [34] 胡国辉, 周艳艳, 赵太平, 2012.河南嵩山地区元古宙五佛山群沉积岩的地球化学特征及其对物源区和构造环境的制约.岩石学报, 28(11):3692-3704. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211021.htm
      [35] 雷超, 任建业, 李绪深, 等, 2011a.琼东南盆地深水区结构构造特征与油气勘探潜力.石油勘探与开发, 38(5):560-569. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201105008.htm
      [36] 雷超, 任建业, 裴健翔, 等, 2011b.琼东南盆地深水区构造格局和幕式演化过程.地球科学, 36(1):151-162. http://www.earth-science.net/WebPage/Article.aspx?id=2074
      [37] 李乐, 姚光庆, 刘永河, 等, 2015.塘沽地区沙河街组下部含云质泥岩主微量元素地球化学特征及地质意义.地球科学, 40(9):1480-1496. http://www.earth-science.net/WebPage/Article.aspx?id=3152
      [38] 李云, 郑荣才, 朱国金, 等, 2011.珠江口盆地荔湾3-1气田珠江组深水扇沉积相分析.沉积学报, 29(4):665-676. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201104006.htm
      [39] 廖婉琳, 肖龙, 张雷, 等, 2015.新疆西准噶尔早石炭世沉积地层的物源及构造环境.地球科学, 40(3):485-502. http://www.earth-science.net/WebPage/Article.aspx?id=3031
      [40] 林煜, 吴胜和, 王星, 等, 2014.尼日尔三角洲盆地深水油田A海底扇储层质量差异.石油与天然气地质, 35(4):494-502. doi: 10.11743/ogg20140408
      [41] 刘峰, 裴健翔, 汪洋, 等, 2015.古地貌对海底扇沉积过程的控制及与油气富集的关系——以莺歌海盆地东方区黄流组一段为例.中国海上油气, 27(4):37-46. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201504005.htm
      [42] 毛光周, 刘池洋, 2011.地球化学在物源及沉积背景分析中的应用.地球科学与环境学报, 33(4):337-348. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201104001.htm
      [43] 宋立军, 刘池阳, 赵红格, 等, 2016.鄂尔多斯地区黄旗口组地球化学特征及其沉积环境与构造背景.地球科学, 41(8):1295-1308, 1321. http://www.earth-science.net/WebPage/Article.aspx?id=3338
      [44] 王策, 梁新权, 童传新, 等, 2014.莺歌海盆地东北部邻区7条主要入海河流重砂矿物特征及其地质意义.沉积学报, 32(2):228-237. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201402006.htm
      [45] 王颖, 吕明, 2009.深水沉积储层特征——以尼日利亚OML130区块为例.天然气地球科学, 20(2):228-236. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200902012.htm
      [46] 王永凤, 王英民, 李冬, 等, 2011.琼东南盆地中央峡谷早上新世沉积物稀土元素特征及物源分析.石油天然气学报, 33(6):50-52, 68. http://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201106011.htm
      [47] 王亚辉, 张道军, 陈杨, 等, 2014.琼东南盆地陵水凹陷梅山组深水扇特征及控制因素.新疆石油地质, 35(6):664-667. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201406009.htm
      [48] 王英民, 徐强, 李冬, 等, 2011.南海西北部晚中新世的红河海底扇.科学通报, 56(10):781-787. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201110012.htm
      [49] 王子嵩, 刘震, 孙志鹏, 等, 2014.琼东南深水区乐东-陵水凹陷渐新统烃源岩早期预测及评价.中南大学学报(自然科学版), 45(3):876-888. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201403031.htm
      [50] 肖斌, 2014.银额盆地查干凹陷下白垩统巴音戈壁组-苏红图组砂岩地球化学.矿物岩石地球化学通报, 33(4):517-525. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201404017.htm
      [51] 谢玉洪, 范彩伟, 周家雄, 等, 2016.琼东南盆地中中新世重力流海底扇沉积特征及控制因素.天然气地球科学, 27(2):220-228. doi: 10.11764/j.issn.16721926.2016.02.0220
      [52] 于俊峰, 裴健翔, 王立锋, 等, 2014.莺歌海盆地东方13-2重力流储层超压气田气藏性质及勘探启示.石油学报, 35(5):829-838. doi: 10.7623/syxb201405002
      [53] 赵梦, 邵磊, 梁建设, 等, 2013.古红河沉积物稀土元素特征及其物源指示意义.地球科学, 38(增刊1):61-69. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2013S1008.htm
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  5410
    • HTML全文浏览量:  1680
    • PDF下载量:  20
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-12-03
    • 刊出日期:  2017-09-15

    目录

      /

      返回文章
      返回