• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    核磁共振技术在非常规油气藏的应用基础

    杨正明 张亚蒲 李海波 郑兴范 雷启鸿

    杨正明, 张亚蒲, 李海波, 郑兴范, 雷启鸿, 2017. 核磁共振技术在非常规油气藏的应用基础. 地球科学, 42(8): 1333-1339. doi: 10.3799/dqkx.2017.506
    引用本文: 杨正明, 张亚蒲, 李海波, 郑兴范, 雷启鸿, 2017. 核磁共振技术在非常规油气藏的应用基础. 地球科学, 42(8): 1333-1339. doi: 10.3799/dqkx.2017.506
    Yang Zhengming, Zhang Yapu, Li Haibo, Zheng Xingfan, Lei Qihong, 2017. Application Basis of Nuclear Magnetic Resonance Technology in the Unconventional Reservoirs. Earth Science, 42(8): 1333-1339. doi: 10.3799/dqkx.2017.506
    Citation: Yang Zhengming, Zhang Yapu, Li Haibo, Zheng Xingfan, Lei Qihong, 2017. Application Basis of Nuclear Magnetic Resonance Technology in the Unconventional Reservoirs. Earth Science, 42(8): 1333-1339. doi: 10.3799/dqkx.2017.506

    核磁共振技术在非常规油气藏的应用基础

    doi: 10.3799/dqkx.2017.506
    基金项目: 

    国家科技重大专项 2017ZX05013-001

    中国石油天然气集团公司重大基础科技攻关课题 2014B-1203

    详细信息
      作者简介:

      杨正明(1969-), 男, 高级工程师, 主要从事低渗/致密油气田物理模拟、渗流理论和三次采油方面的研究工作

    • 中图分类号: P631

    Application Basis of Nuclear Magnetic Resonance Technology in the Unconventional Reservoirs

    • 摘要: 核磁共振技术在非常规油气藏应用解释中有较多争议.结合渗流流体的概念,提出了针对核磁共振图谱解释流体动用性质的新方法,并应用于非常规油气藏.研究表明:致密油和致密砂岩气藏岩心的核磁共振图谱左峰和右峰是连续而不是截然分开的,说明难动用流体与易动用流体的性质是连续渐变的,不是独立分开的;而页岩和煤层气藏岩心核磁共振图谱则反之.在非常规油气藏岩心中,难动用流体占主导地位,致密油和致密砂岩气藏岩心的易动用流体多于页岩和煤层气藏岩心.致密油和致密砂岩气藏的采出程度提高取决于易动用流体的采出;而页岩和煤层气藏的采出程度提高则取决于难动用流体的采出.

       

    • 图  1  饱和水及不同离心力条件下典型致密油岩样核磁共振谱

      图中红线的左边为难动用流体;红线的右边为易动用流体

      Fig.  1.  NMR spectrum of water saturated and after different centrifugal force in typical tight oil sample

      图  2  不同渗透率致密油岩样的核磁共振图谱

      Fig.  2.  NMR spectrum in different permeability cores from tight oil reservoir

      图  3  不同渗透率致密砂岩气藏岩样的核磁共振图谱

      Fig.  3.  NMR spectrum in different permeability cores from tight sandstone gas reservoir

      图  4  5块页岩气藏岩心核磁共振图谱

      Fig.  4.  NMR spectrum of 5 shale gas reservoir cores

      图  5  典型致密页岩岩样饱和水及不同离心力的核磁共振图谱

      Fig.  5.  NMR spectrum of water saturated and after different centrifugal force in typical shale samples

      图  6  5块煤层气藏岩心核磁共振图谱

      Fig.  6.  NMR spectrum of 5 CBM reservoir cores

      表  1  不同离心力下所采出易动用流体和难动用流体占总流体的百分数

      Table  1.   The percentage of body fluid and boundary fluid of total fluid produced by different centrifugal force

      离心力(MPa) 采出流体占总流体的百分数(%)
      易动用流体 难动用流体
      0.14 5.74 0.94
      0.27 19.42 2.39
      1.37 39.10 9.81
      2.74 44.15 13.66
      下载: 导出CSV

      表  2  5块实验样品的物性数据和测试结果

      Table  2.   The physical properties and test data of 5 experimental samples

      序号 长度(cm) 直径(cm) 孔隙度(%) 渗透率(mD) 易动用流体所占流体比例(%) 难动用流体所占流体比例(%)
      1 3.240 2.52 1.62 0.000 49 0.31 99.69
      2 2.520 2.46 7.79 0.012 00 23.38 76.62
      3 2.523 2.49 6.42 0.070 00 42.56 57.44
      4 2.520 2.48 6.54 0.167 00 51.15 48.85
      5 2.522 2.38 10.57 0.212 00 51.61 48.39
      下载: 导出CSV

      表  3  6块实验样品的物性数据和测试结果

      Table  3.   The physical properties and test data of 6 experimental samples

      序号 长度(cm) 直径(cm) 孔隙度(%) 渗透率(mD) 易动用流体所占流体比例(%) 难动用流体所占流体比例(%)
      1 3.240 2.52 1.62 0.001 2 0 100
      2 2.520 2.46 7.79 0.003 8 16.87 83.13
      3 2.523 2.49 6.42 0.011 0 35.50 64.50
      4 2.520 2.48 6.54 0.085 0 43.95 56.05
      5 2.522 2.38 10.57 0.120 0 45.26 54.74
      6 2.523 2.41 12.46 0.430 0 49.33 50.67
      下载: 导出CSV

      表  4  5块实验样品的物性数据和测试数据

      Table  4.   The physical properties and test data of 4 experimental samples

      序号 长度(cm) 直径(cm) 渗透率(mD) 易动用流体所占流体比例(%) 难动用流体所占流体比例(%)
      1 3.38 2.51 0.000 854 0 100
      2 3.25 2.52 0.002 968 1.97 98.03
      3 3.32 2.51 0.022 447 2.96 97.04
      4 3.33 2.51 0.121 304 3.52 96.48
      5 3.35 2.51 0.589 073 12.62 87.38
      下载: 导出CSV

      表  5  不同离心力下所采出易动用流体和难动用流体占总流体的百分数

      Table  5.   The percentage of body fluid and boundary fluid of total fluid produced by different centrifugal force

      离心力(MPa) 采出流体占总流体的百分数(%)
      易动用流体 难动用流体
      1.38 4.15 6.43
      2.06 7.73 14.23
      2.76 7.73 21.74
      下载: 导出CSV

      表  6  实验样品的物性数据及测试数据

      Table  6.   The physical properties and test data in different experimental samples

      岩心 井号 孔隙度(%) 渗透率(mD) 易动用流体所占流体比例(%) 难动用流体所占流体比例(%)
      1 晋试8井 1.36 0.088 4.61 95.39
      2 晋试9井 2.95 0.182 5.45 94.55
      3 晋试11井 4.70 0.781 7.42 92.58
      4 晋试12井 4.80 1.124 8.77 91.23
      5 晋试7井 2.23 1.824 21.17 78.83
      下载: 导出CSV

      表  7  不同类型油气藏核磁共振特征对比

      Table  7.   Comparison of NMR characteristics in different type reservoirs

      油气藏类型 T2谱特征 易动用流体比例 难动用流体比例
      致密油 连续的双峰或单峰 低或相对较高 高或相对较低
      致密砂岩气 连续的双峰或单峰 低或相对较高 高或相对较低
      页岩 单峰或不连续的双峰 很低或较低 很高或较高
      煤层气 单峰或不连续的双峰 很低或较低 很高或较高
      下载: 导出CSV
    • [1] Guo, Y.C., Song, Y., Pang, X.Q., et al., 2016.Characteristics and Genetic Mechanism of Near-Source Accumulated Accumulation for Continuous-Type Tight Sand Gas.Earth Science, 41(3):433-440 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201603009.htm
      [2] Huang, Y.Z., 1998.Percolating Flow Mechanism of Low Permeability Reservoir.Petroleum Industry Press, Beijing, 12 (in Chinese).
      [3] Mai, A., Kantzas, A., 2002.An Evaluation of the Application of Low Field NMR in the Characterization of Carbonate Reservoirs.SPE Annual Technical Conference and Exhibition, San Antonio.doi:10.2118/77401-MS
      [4] Meng, Z.Q., 2014.Research on Pore Structure Characteristics of Tight Oil Reservoirs—Illustrated by the Case of Ordos Basin and Sichuan Basin (Dissertation).University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
      [5] Sun, J.C., 2013.Study on Physical Simulation Method and Its Application of Ultra-Low Permeability Petroleum Reservoir (Dissertation).University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
      [6] Sun, Z.D., Jia, C.Z., Li, X.F., et al., 2011.Unconventional Oil & Gas Exploration and Development:Volume 1.Petroleum Industry Press, Beijing (in Chinese).
      [7] Wang, S.W., Chen, Z.H., Zhang, M., 1995.Pore and Microfracture of Coal Matrix Block and Their Effects on the Recovery of Methane from Coal.Earth Science, 20(5):557-560 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX505.013.htm
      [8] Wang, W.M., Lang, D.J., Liu, W., 1996.The Application of NMR Imaging to the Studies of Enhanced Oil Recovery in China.Magnetic Resonance Imaging, 14(7):951-953.doi: 10.1016/S0730-725X(96)00192-0
      [9] Wang, W.M., Guo, H.K., Ye, C.H., 2001.The Evaluation of Development Potential in Low Permeability Oilfield by the Aid of NMR Movable Fluid Detecting Technology.Acta Petrolei Sinica, 22(6):40-44 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200106008.htm
      [10] Wu, S.T., Zou, C.N., Zhu, R.K., et al., 2015.Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin.Earth Science, 40(11):1810-1823 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201511004.htm
      [11] Xiao, L.Z., Xie, R.H., Liao, G.Z., 2012.Nuclear Magnetic Resonance (NMR) Logging Theory and Method in Chinese Complex Reservoirs.Science Press, Beijing, 30-31 (in Chinese).
      [12] Xu, S.L., Yue, X.A., 2007.Experimental Research on Nonlinear Flow Characteristics at Low Velocity.Journal of China University of Petroleum (Edition of Natural Science), 31(5):60-63 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX200705014.htm
      [13] Yang, Z.M., Guo, H.K., Jiang, H.Q., et al., 2009.Experimental Study on Different Lithologic Rock of Volcanic Gas Reservoir Using Nuclear Magnetic Resonance Technique.Acta Petrolei Sinica, 30(3):400-403 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200903016.htm
      [14] Yang, Z.M., Guo, H.K., Liu, X.W., et al., 2012.Characteristic Experimental Technology of an Extra-Ultra Low Permeability Reservoir.Petroleum Industry Press, Beijing, 135-155 (in Chinese).
      [15] Yang, Z.M., Jiang, H.Q., Zhu, G.Y., et al., 2008.Research on Reservoir Evaluation Index for Low-Permeability Water-Bearing Gas Reservoir.Acta Petrolei Sinica, 29(2):252-255 (in Chinese with English abstract). doi: 10.1111/aphs.2008.29.issue-2
      [16] Yang, Z.M., Miao, S., Liu, X.G., et al., 2007.Percentage Parameter of the Movable Fluid in Ultra-Low Permeability Reservoir and Its Application.Journal of Xi'an Shiyou University (Natural Science Edition), 22(2):96-99 (in Chinese with English abstract).
      [17] Zhang, Y.P., He, Y.F., Yang, Z.M., et al., 2010.The Application of Nuclear Magnetic Resonance (NMR) Technology in Coalbed Methane Reservoir Evaluation.Journal of Oil and Gas Technology, 32(2):277-279 (in Chinese).
      [18] Zhang, Z.H., Yang, Z.M., Liu, X.G., et al., 2012.A Grading Evaluation Method for Low-Permeability Reservoirs and Its Application.Acta Petrolei Sinica, 33(3):437-441 (in Chinese with English abstract).
      [19] Zhao, Z.Z., Du, J.H., Zou, C.N., et al., 2012.Tight Oil & Gas.Petroleum Industry Press, Beijing (in Chinese).
      [20] Zhou, B., Wang, W.M., Guo, H.K., et al., 2004.Measurement on Scale of Wettability of Porous Media with NMR Methods.Earth Science, 29(4):495-499 (in Chinese with English abstract).
      [21] Zou, C.N., Zhang, G.S., Yang, Z., et al., 2013.Geological Concepts, Characteristics, Resource Potential and Key Techniques of Unconventional Hydrocarbon:On Unconventional Petroleum Geology.Petroleum Exploration and Development, 40(4):385-399, 454 (in Chinese with English abstract).
      [22] Zou, C.N., Zhu, R.K., Bai, B., et al., 2015.Significance, Geologic Characteristics, Resource Potential and Future Challenges of Tight Oil and Shale Oil.Bulletin of Mineralogy, Petrology and Geochemistry, 34(1):3-17 (in Chinese with English abstract).
      [23] 郭迎春, 宋岩, 庞雄奇, 等, 2016.连续型致密砂岩气近源累计聚集的特征及成因机制.地球科学, 41(3): 433-440. doi: 10.11764/j.issn.1672-1926.2016.03.0433
      [24] 黄延章, 1998.低渗透油层渗流机理.北京:石油工业出版社, 12.
      [25] 孟智强, 2014. 致密油储层孔隙结构特征研究——以鄂尔多斯盆地、四川盆地为例(硕士学位论文). 北京: 中国科学院大学.
      [26] 孙军昌, 2013. 特低渗储层物性参数测试方法及应用研究(博士学位论文). 北京: 中国科学院大学.
      [27] 孙赞东, 贾承造, 李相方, 等, 2011.非常规油气勘探与开发:上册.北京:石油工业出版社.
      [28] 王生维, 陈钟惠, 张明, 1995.煤基岩块孔裂隙特征及其在煤层气产出中的意义.地球科学, 20(5): 557-560. http://www.earth-science.net/WebPage/Article.aspx?id=327
      [29] 王为民, 郭和坤, 叶朝辉, 2001.利用核磁共振可动流体评价低渗透油田开发潜力.石油学报, 22(6): 40-44. doi: 10.7623/syxb200106009
      [30] 吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 40(11): 1810-1823. http://www.earth-science.net/WebPage/Article.aspx?id=3188
      [31] 肖立志, 谢然红, 廖广志, 2012.中国复杂油气藏核磁共振测井理论和方法.北京:科学出版社, 30-31.
      [32] 徐绍良, 岳湘安, 2007.低速非线性流动特性的实验研究.中国石油大学学报(自然科学版), 31(5): 60-63. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200705014.htm
      [33] 杨正明, 郭和坤, 姜汉桥, 等, 2009.火山岩气藏不同岩性核磁共振实验研究.石油学报, 30(3): 400-403. doi: 10.7623/syxb200903014
      [34] 杨正明, 郭和坤, 刘学伟, 等, 2012.特低-超低渗透油气藏特色实验技术.北京:石油工业出版社, 135-155.
      [35] 杨正明, 姜汉桥, 朱光亚, 等, 2008.低渗透含水气藏储层评价参数研究.石油学报, 29(2): 252-255. doi: 10.7623/syxb200802017
      [36] 杨正明, 苗盛, 刘先贵, 等, 2007.特低渗透油藏可动流体百分数参数及其应用.西安石油大学学报(自然科学版), 22(2): 96-99. http://www.cnki.com.cn/Article/CJFDTOTAL-XASY200702024.htm
      [37] 张亚蒲, 何应付, 杨正明, 等, 2010.核磁共振技术在煤层气储层评价中的应用.石油天然气学报, 32(2): 277-279. http://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201002071.htm
      [38] 张仲宏, 杨正明, 刘先贵, 等, 2012.低渗透油藏储层分级评价方法及应用.石油学报, 33(3): 437-441. doi: 10.7623/syxb201203013
      [39] 赵政璋, 杜金虎, 邹才能, 等, 2012.致密油气.北京:石油工业出版社.
      [40] 周波, 王为民, 郭和坤, 等, 2004.孔隙介质润湿性的核磁共振刻度特征的测量.地球科学, 29(4): 495-499. http://www.earth-science.net/WebPage/Article.aspx?id=1514
      [41] 邹才能, 张国生, 杨智, 等, 2013.非常规油气概念、特征、潜力及技术——兼论非常规油气地质学.石油勘探与开发, 40(4): 385-399, 454. doi: 10.11698/PED.2013.04.01
      [42] 邹才能, 朱如凯, 白斌, 等, 2015.致密油与页岩油内涵、特征、潜力及挑战.矿物岩石地球化学通报, 34(1): 3-17. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201501002.htm
    • 加载中
    图(6) / 表(7)
    计量
    • 文章访问数:  4590
    • HTML全文浏览量:  1735
    • PDF下载量:  17
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-12-20
    • 刊出日期:  2017-08-15

    目录

      /

      返回文章
      返回