• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    成煤母质形成环境对热成因煤层气氢碳同位素的影响:不同气候环境的草本沼泽泥炭热模拟实验

    段毅 段明辰 吴应忠 姚泾利 罗安湘 邓秀芹 齐亚林

    段毅, 段明辰, 吴应忠, 姚泾利, 罗安湘, 邓秀芹, 齐亚林, 2017. 成煤母质形成环境对热成因煤层气氢碳同位素的影响:不同气候环境的草本沼泽泥炭热模拟实验. 地球科学, 42(9): 1541-1548. doi: 10.3799/dqkx.2017.520
    引用本文: 段毅, 段明辰, 吴应忠, 姚泾利, 罗安湘, 邓秀芹, 齐亚林, 2017. 成煤母质形成环境对热成因煤层气氢碳同位素的影响:不同气候环境的草本沼泽泥炭热模拟实验. 地球科学, 42(9): 1541-1548. doi: 10.3799/dqkx.2017.520
    Duan Yi, Duan Mingchen, Wu Yingzhong, Yao Jingli, Luo Anxiang, Deng Xiuqin, Qi Yalin, 2017. Impact of Formation Environment of Coal-Forming Material on Hydrogen and Carbon Isotopic Compositions of Thermogenic Coalbed Gas:Thermal Simulation of Herbaceous Marsh Peats Formed under Different Climatic Environments. Earth Science, 42(9): 1541-1548. doi: 10.3799/dqkx.2017.520
    Citation: Duan Yi, Duan Mingchen, Wu Yingzhong, Yao Jingli, Luo Anxiang, Deng Xiuqin, Qi Yalin, 2017. Impact of Formation Environment of Coal-Forming Material on Hydrogen and Carbon Isotopic Compositions of Thermogenic Coalbed Gas:Thermal Simulation of Herbaceous Marsh Peats Formed under Different Climatic Environments. Earth Science, 42(9): 1541-1548. doi: 10.3799/dqkx.2017.520

    成煤母质形成环境对热成因煤层气氢碳同位素的影响:不同气候环境的草本沼泽泥炭热模拟实验

    doi: 10.3799/dqkx.2017.520
    基金项目: 

    国家自然科学基金 41272125

    国家自然科学基金 41472121

    国家自然科学基金 41772108

    详细信息
      作者简介:

      段毅(1956-), 男, 研究员, 主要从事油气地球化学、石油地质学和有机地球化学等方面的研究和教学工作

    • 中图分类号: P593

    Impact of Formation Environment of Coal-Forming Material on Hydrogen and Carbon Isotopic Compositions of Thermogenic Coalbed Gas:Thermal Simulation of Herbaceous Marsh Peats Formed under Different Climatic Environments

    • 摘要: 煤层气的成因研究可以为煤层气勘探与开发提供科学依据,然而,煤层气的氢碳同位素组成受多种因素的影响,以前较多的研究是成气母质性质和成熟度对煤层气氢碳同位素的影响,对于成煤物质形成的气候环境对热解煤层气同位素的影响尚不清楚.热解模拟了高纬度寒冷干旱和低纬度热带湿润环境的草本泥炭,对热解烃类气体的氢碳同位素组成及其差异性进行了研究.研究结果表明:与低纬度热带湿润环境中形成的草本泥炭相比较,高纬度寒冷干旱环境的草本泥炭热解甲烷、乙烷和丙烷具有轻的氢同位素组成和重的碳同位素组成,并且从泥炭连续热解至Ro分别为2.5%、3.5%和5.5%时,甲烷、乙烷和丙烷δD值分别平均降低-17‰~-10‰、-32‰~-28‰和-25‰~-17‰,甲烷和乙烷δ13C值分别平均升高2.9‰~3.6‰和0.9‰~1.1‰.认为这种同位素差异起因于气候环境对形成泥炭的植物氢碳同位素组成的影响.建立了高纬度寒冷干旱和低纬度热带湿润环境中形成的成煤有机质热解烃类气体氢碳同位素组成与Ro之间的关系式,同时也建立了烃类气体的碳和氢同位素之间的关系式.这些研究成果为不同气候环境下形成的成煤有机质生成的煤层气成因研究提供了科学依据.

       

    • 图  1  甲烷(a)、乙烷(b)δD值与热解温度的关系

      Fig.  1.  δD of CH4 (a) and C2H6 (b) vs. pyrolysis temperature

      图  2  甲烷(a)、乙烷(b)δD值与Ro值的关系

      Fig.  2.  δD of CH4 (a) and C2H6 (b) vs. Ro

      图  3  甲烷(a)、乙烷(b)δ13C值与Ro值的关系

      Fig.  3.  δ13C of CH4 (a) and C2H6 (b) vs. Ro

      图  4  甲烷δD值与δ13C值(a)和乙烷δD值与δ13C值(b)的关系

      Fig.  4.  δD vs. δ13C of CH4 (a) and δD vs. δ13C of C2H6 (b)

      表  1  样品参数

      Table  1.   Parameters of the samples

      地区 样号 样品 海拔(m) 气候 TOC (%) 雨水δD值(‰) 年均降雨量(mm) 年均蒸发量(mm) 年均气温(℃)
      阿尔泰 Alt 草本泥炭 2 560 寒冷干旱 32.3 -100 350~600 1 816 -3.8~1.8
      湛江 Zwx-3 草本泥炭 28 热带湿润 34.5 -53 1 393~1 798 1 700~2 200 23.4
      下载: 导出CSV

      表  2  不同演化阶段烃类气体平均氢同位素组成

      Table  2.   Average δD value of hydrocarbon gas generated from peats at different evolution stages

      温度(℃) Ro(%) δDCH4 (‰) δDC2H6 (‰) δDC3H8 (‰) δDCH4 (‰) δDC2H6 (‰) δDC3H8 (‰) ΔCH4 (‰) ΔC2H6 (‰) ΔC3H8 (‰)
      Alt Alt Alt Zwx-3 Zwx-3 Zwx-3 Alt-Zwx-3 Alt-Zwx-3 Alt-Zwx-3
      250~400 <2.5 -337.1 -261.7 -248.4 -326.8 -233.4 -231.2 -10 -28 -17
      250~500 <3.5 -310.4 -225.7 -229.3 -297.9 -194.0 -204.4 -13 -32 -25
      250~650 <5.5 -257.9 -225.7 -229.3 -241.4 -194.0 -204.4 -17 -32 -25
      下载: 导出CSV

      表  3  不同演化阶段烃类气体平均碳同位素组成

      Table  3.   Average δ13C value of hydrocarbon gas generated from peats at different evolution stages

      温度(℃) Ro(%) δ13CCH4 (‰) δ13CC2H6 (‰) δ13CC3H8 (‰) δ13CCH4 (‰) δ13CC2H6 (‰) δ13CC3H8 (‰) ΔCH4 (‰) ΔC2H6 (‰)
      Alt Alt Alt Zwx-3 Zwx-3 Zwx-3 Alt-Zwx-3 Alt-Zwx-3
      250~400 <2.5 -41.4 -31.9 -32.6 -44.3 -32.8 -31.0 2.9 0.9
      250~500 <3.5 -38.8 -30.1 -28.2 -42.4 -31.2 -28.0 3.6 1.1
      250~650 <5.5 -36.2 -30.1 -28.2 -39.6 -31.2 -28.0 3.4 1.1
      下载: 导出CSV
    • Berner, U., Faber, E., 1988.Maturity Related Mixing Model for Methane, Ethane and Propane, Based on Carbon Isotopes. Organic Geochemistry, 13(1-3):67-72.doi: 10.1016/0146-6380(88)90026-5
      Bi, X.H., Sheng, G.Y., Liu, X.H., et al., 2005.Molecular and Carbon and Hydrogen Isotopic Composition of n-Alkanes in Plant Leaf Waxes. Organic Geochemistry, 36(10):1405-1417.doi: 10.1016/j.orggeochem.2005.06.001
      Chikaraishi, Y., Naraoka, H., 2007. δ 13C and δ D Relationships among Three n-Alkyl Compound Classes (n-Alkanoic Acid, n-Alkane and n-Alkanol) of Terrestrial Higher Plants. Organic Geochemistry, 38:198-215. doi: 10.1016/j.orggeochem.2006.10.003
      Chikaraishi, Y., Naraoka, H., Poulson, S.R., 2004.Hydrogen and Carbon Isotopic Fractionations of Lipid Biosynthesis among Terrestrial (C3, C4 and CAM) and Aquatic Plants. Phytochemistry, 65(10):1369-1381.doi: 10.1016/j.phytochem.2004.03.036
      Clayton, J.L., 1998.Geochemistry of Coalbed Gas-A Review. International Journal of Coal Geology, 35(1-4):159-173.doi: 10.1016/s0166-5162(97)00017-7
      Criss, R.E., 1999.Principles of Stable Isotope Distribution.Oxford University Press Inc, New York.
      Dai, J.X., Qi, H.F., Song, Y., et al., 1986.Composition, Carbon Isotope Characteristics and the Origin of Coalbed Gases in China and Their Implications. Chinese Science Bulletin, 30(12):1324-1337(in Chinese). doi: 10.1360/yb1987-30-12-1324
      Dai, J.X., Qi, H.F., 1989.The Relationship between δ13C and Ro of Coal-Derived Gas in China. Chinese Science Bulletin, 34(9):690-692 (in Chinese).
      Dansgaard, W., 1964.Stable Isotopes in Precipitation. Tellus, 16(4):436-468.doi: 10.3402/tellusa.v16i4.8993
      Duan, Y., Duan, M.C., Sun, T., et al., 2016.Thermal Simulation Study on the Influence of Coal-Forming Material on the Isotopic Composition of Thermogenic Coalbed Gas. Geochemical Journal, 50(1):81-88.doi: 10.2343/geochemj.2.0386
      Duan, Y., He, J.X., Wu, B.X., et al., 2011.Composition and Genesis of n-Alkanes and their Hydrogen Isotope in Sediments from Saline Lake, China. Earth Science, 36(1):53-61(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201101007.htm
      Duan, Y., Wu, B.X., 2009.Hydrogen Isotopic Compositions and Their Environmental Significance for Individual n-Alkanes in Typical Plants from Land in China. Chinese Science Bulletin, 54(3):461-467.doi: 10.1007/s11434-008-0443-x
      Duan, Y., Wu, B.X., He, J.X., et al., 2011.Characterization of Gases and Solid Residues from Closed System Pyrolysis of Peat and Coals at Two Heating Rates. Fuel, 90(3):974-979.doi: 10.1016/j.fuel.2010.10.039
      Duan, Y., Wu, Y.Z., Yao, J.L., et al., 2013.Carbon and Hydrogen Isotopic Compositions and Their Evolutions of Gases Generated by Forest Marsh Peat at Different Thermal Maturity Stages. Earth Science, 38(1):87-93(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201301012.htm
      Edwards, T.W.D., Graf, W., Trimborn, P., et al., 2000. δ13C Response Surface Resolves Humidity and Temperature Signals in Trees. Geochimica et Cosmochimica Acta, 64:161-167. doi: 10.1016/S0016-7037(99)00289-6
      Francey, R.J., Farquhar, G.D., 1982.An Explanation of 13C/12C Variations in Tree Rings. Nature, 297(5861):28-31.doi: 10.1038/297028a0
      Gu, S., Cai, J.H., Chang, D.W., et al., 2015.Reducing Formation Damage to Low-Porosity and Low-Permeability CBM Reservoirs Using Calcium Carbonate Nanoparticles. Earth Science, 40(6):1093-1100(in Chinese with English abstract).
      Kotarba, M.J., Rice, D.D., 2001.Composition and Origin of Coalbed Gases in the Lower Silesian Basin, Southwest Poland. Applied Geochemistry, 16(7-8):895-910.doi: 10.1016/s0883-2927(00)00058-5
      Kotarba, M., 1990.Isotopic Geochemistry and Habitat of the Natural Gases from the Upper Carboniferous Žacle Coal-Bearing Formation in the Nowa Ruda Coal District (Lower Silesia, Poland). Organic Geochemistry, 16(1-3):549-560.doi: 10.1016/0146-6380(90)90069-c
      Liu, Q.Y., Liu, W.H., Dai, J.X., 2007.Characterization of Pyrolysates from Maceral Components of Tarim Coals in Closed System Experiments and Implications to Natural Gas Generation. Organic Geochemistry, 38(6):921-934.doi: 10.1016/j.orggeochem.2007.02.002
      Pedentchouk, N., Sumner, W., Tipple, B., et al., 2008. δ13C and δ D Compositions of n-Alkanes from Modern Angiosperms and Conifers:An experimental Set up in Central Washington State, USA. Organic Geochemistry, 39:1066-1071. doi: 10.1016/j.orggeochem.2008.02.005
      Qin, Y., Tang, X.Y., Ye, J.P., et al., 2000.Characteristics and Origins of Stable Carbon Isotope in Coalbed Methane of China. Journal of China University of Mining & Technology, 29(2):113-119(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD200002000.htm
      Rao, P.L.S., Rasheed, M.A, Hasan, S.Z, et al., 2014.Role of Geochemistry in Coalbed Methane-A Review. Geosciences, 4(2):29-32. http://www.sapub.org/global/showpaperpdf.aspx?doi=10.5923/j.geo.20140402.01
      Rice, D.D., 1993.Composition and Origins of Coalbed Gas.Hydrocarbons from Coal.In:Law, B.E., Rice, D.D., eds., Hydrocarbons from Coal.AAPG Studies in Geology Series 38, AAPG, Tulsa, 159-184. http://www.searchanddiscovery.com/documents/rice/index.htm
      Rice, D.D., 1993.Composition and Origins of Coalbed Gas.In:Law, B.E., Rice, D.D., eds., Hydrocarbons from Coal.AAPG Studies in Geology Series 38, Tulsa, 159-184.
      Rozanski, K., Arguas, L., Gongiantini, R., 1993.Isotope Patterns in Modern Global Precipitation, In:Swart, P.K., Lohmann, K.C., McKenzie, J., et al., eds., Climate Change in Continental Isotope Records.American Geophysical Union, Geophysical Monograph 78, Washington, D.C., 1-36.
      Sessions, A.L., 2006.Seasonal Changes in D/H Fractionation Accompanying Lipid Biosynthesis in Spartina Alterniflora. Geochimica et Cosmochimica Acta, 70(9):2153-2162.doi: 10.1016/j.gca.2006.02.003
      Song, Y., Liu, S.B., Hong, F., et al., 2012.Geochemical Characteristics and Genesis of Coalbed Methane in China. Acta Petrolei Sinica, 33(z1):99-106(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB2012S1014.htm
      Song, Y., Liu, S.B., Zhang, Q., et al., 2012.Coalbed Methane Genesis, Occurrence and Accumulation in China. Petroleum Science, 9(3):269-280.doi: 10.1007/s12182-012-0209-6
      Stahl, W.J., Carey, B.D., 1975.Source-Rock Identification by Isotope Analyses of Natural Gases from Fields in the Val Verde and Delaware Basins, West Texas. Chemical Geology, 16(4):257-267.doi: 10.1016/0009-2541(75)90065-0
      Wang, G., Qin, Y., Xie, Y.W., et al., 2016.Geochemical Characteristics and Its Origin of Cbm in Gujiao Blocks. Journal of China Coal Society, 41(5):1180-1187(in Chinese with English abstract).
      Zhang, L., Luo, J., Cui, G.D., et al., 2016.Mechanisms of Cold Shock during Coalbed Fracturing Assisted with Cryogenic Gases. Earth Science, 41(4):664-674(in Chinese with English abstract).
      戴金星, 戚厚发, 1989.我国煤成气的δ13C-Ro关系.科学通报, 34(9):690-692.
      段毅, 吴应忠, 姚泾利, 等, 2013.森林沼泽泥炭不同演化阶段气体碳氢同位素演化特征.地球科学, 38(1):87-93. http://www.earth-science.net/WebPage/Article.aspx?id=2346
      段毅, 何金先, 吴保祥, 等, 2011.咸水湖泊沉积物中正构烷烃及其氢同位素组成与成因.地球科学, 36(1):53-61. http://www.earth-science.net/WebPage/Article.aspx?id=2064
      谷穗, 蔡记华, 常德武, 等, 2015.使用纳米碳酸钙降低低孔低渗煤层气储层伤害.地球科学, 40(6):1093-1100. http://www.earth-science.net/WebPage/Article.aspx?id=3095
      秦勇, 唐修义, 叶建平, 等, 2000.中国煤层甲烷稳定碳同位素分布与成因探讨.中国矿业大学学报, 29(2):113-119. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200002000.htm
      宋岩, 柳少波, 洪峰, 等, 2012.中国煤层气地球化学特征及成因.石油学报, 33(z1):99-106. doi: 10.3969/j.issn.1001-8719.2012.z1.023
      汪岗, 秦勇, 解奕炜, 等, 2016.古交区块煤层气地球化学特征及其成因.煤炭学报, 41(5):1180-1187. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201605017.htm
      张亮, 罗炯, 崔国栋, 等, 2016.低温气体辅助煤层气压裂中的冷冲击机理.地球科学, 41(4):664-674. http://www.earth-science.net/WebPage/Article.aspx?id=3283
    • 加载中
    图(4) / 表(3)
    计量
    • 文章访问数:  4406
    • HTML全文浏览量:  2356
    • PDF下载量:  24
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-12-28
    • 刊出日期:  2017-09-15

    目录

      /

      返回文章
      返回