Influence of Water-Soluble Gas Releasing on Gas-Water Interface for Yinggehai Basin High Temperature and Overpressured Gas Field
-
摘要: 莺歌海盆地X区属于高温高压气藏,水溶气含量大,水溶气释放对气水界面及水侵规律的影响不明.通过PVT物性分析仪,采用复配的天然气和地层水测试了X区不同区块水溶气溶解度变化规律.设计可视化填砂管实验,探索了水溶气释放对气水界面的影响规律.研究表明:水溶气溶解度受温度、压力、地层水矿化度和天然气组分的影响,随压力的增大逐渐增大,随温度的增大先减小后增大,拐点温度为80~90℃,地层温压条件下(145℃,54 MPa)X-1区块水溶气含量为22.5 m3/m3,X-2区块为8.7 m3/m3.可视化填砂管实验研究表明:衰竭开采过程中,水溶气不断释放且携带地层水运移,同时在地层水自身泄压及毛管力作用下,气水界面明显上升.在此基础上,数值模拟气藏衰竭开采表明:水溶气溶解度越大气水界面上升越快,气井见水越早.预测期10 a中,考虑水溶气时,X-1区要早800 d见水,平面上推进快800 m,纵向上推进快7.3 m;X-2要早300 d见水,平面上推进快近500 m,纵向上推进快7.0 m.Abstract: Yinggehai basin X area belongs to high-temperature and high-pressure gas reservoir, so that the content of dissolved gas in water is very large. However, the changing characteristics of gas-water interface and water invasion regularity is unknown because of the releasing of dissolved gas in water. In this paper, the variation of dissolved gas in water of different formations in X was tested through PVT facilities using natural gas and formation water. The sand packed model with visualization was designed to investigate the influence of water-soluble gas on gas-water interface. Results show that the solubility of water-soluble gas is affected by temperature, pressure, salinity and the components of natural gas, gradually increases with the increase of pressure, decreases with the increase of the temperature at first and then increases and the inflection point temperature is about 80-90℃. The solubility of water-soluble gas is 22.5 m3/m3, and 8.7 m3/m3 for X-1 and X-2 under condition of 145℃, 54 MPa respectively. Sand packed model with visualization experiment shows that the gas-water interface increases obviously in the process of natural depletion because of migration with gas releasing from the water, the pressure decreasing of formation water and capillary force. Numerical simulation of gas reservoir shows that gas-water interface of reservoir with high solubility of water-soluble gas increase faster and the water breakthrough time is earlier than those reservoirs with low solubility of water-soluble gas. During 10 years forecast period, water breakthrough in X-1 is about 800 days earlier, 800 m faster on the plane and 7.3 m faster on the vertical, considering water-soluble gas. And for X-2, those are 300 days, 500 m and 7.0 m respectively.
-
表 1 X区天然气组分
Table 1. Gas composition of X area
区块 组分(%) C1 C2 C3 IC4 NC4 IC5 NC5 C6PLUS CO2 N2 H2 X-1 67.10 0.90 0.30 0.07 0.07 0.03 0.02 0.07 23.64 7.81 X-2 85.05 1.46 0.85 0.26 0.24 0.13 0.07 0.24 3.48 8.21 0.01 表 2 X区地层水分析数据
Table 2. Formation water composition of X area
区块 阳离子(mg/L) 阴离子(mg/L) 总矿化度(mg/L) 水型 K++Na+ Ca2+ Mg2+ Cl- SO42- HCO3- CO32- X-1 5 077 35 8 5 955 125 3 207 未检出 14 406 NaHCO3 X-2 5 652 40 17 6 402 1 300 2 539 未检出 15 950 NaHCO3 表 3 X-1区不同水溶气状态下气井见水时间预测
Table 3. Water breakthrough time prediction for X-1 area
区块 井号 见水时间(d) 累产气(108 m3) Rs=22.5 Rs=0 Rs=22.5 Rs=0 X-1 F1 797 1 598 5.82 6.92 F3 2 794 未见水 7.93 9.34 F4 2 602 未见水 13.27 14.76 F5 3 540 未见水 13.43 14.09 表 4 X-2区不同水溶气状态下气井见水时间预测
Table 4. Water breakthrough time prediction for X-2 area
区块 井号 见水时间(d) 累产气(108 m3) Rs=8.7 Rs=0 Rs=8.7 Rs=0 X-2 A1H 2 340 未见水 26.44 26.88 A4 900 1 384 25.66 25.28 A6 3 340 未见水 48.78 47.08 A8H 960 1 237 23.75 25.22 B1H 720 1 167 21.16 20.54 B6H 1 980 2 786 18.93 19.81 -
Akin, S., Kovscek, A.R., 2002.Heavy-Oil Solution Gas Drive:A Laboratory Study.Journal of Petroleum Science and Engineering, 35(1-2):33-48.doi: 10.1016/s0920-4105(02)00162-6 Cai, J.C., Yu, B.M., 2011.A Discussion of the Effect of Tortuosity on the Capillary Imbibition in Porous Media.Transport in Porous Media, 89(2):251-263.doi: 10.1007/s11242-011-9767-0 Cai, J.C., Yu, B.M., Mei, M.F., et al., 2010.Capillary Rise in a Single Tortuous Capillary.Chinese Physics Letters, 27(5):054701.doi: 10.1088/0256-307x/27/5/054701 Chen, R., Geng, Q.S., Su, X.B., 2006.The Formation and Accumulation of Water Soluble Gas.Journal of Henan Polytechnic University (Natural Science), 25(3):205-208 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGXB200603008.htm Collins, A., 1987.Properties of Produced Waters.Society of Petroleum Engineers, Richardson. http://www.onepetro.org/book/peh/spe-1987-24-peh Dai, J.X., 1997.Some Characteristics of Gas Pools (Fields) in China.Petroleum Exploration and Development, 24(2):6-9, 65 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK199702025.htm Dai, J.X., Song, Y., Zhang, H.F., 1996.The Main Control Factor for the Formation of China's Large and Medium Gas Fields.Science in China (Seires D), 26(6):481-487 (in Chinese). Fan, H.C., Huang, Z.L., Yuan, J., et al., 2011.Solubility Experiment of Methane-Rich Gas and Features of Segregation and Accumulation.Journal of Jilin University (Earth Science Edition), 41(4):1033-1039 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ201104012.htm Fu, G., Zhang, Y.F., Chen, Z.M., 2000.Effective Amount of Gas Released from Water and Its Significance.Acta Sedimentologica Sinica, 18(1):157-161 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200001025.htm Fu, X.T., Wang, Z.P., Lu, S.F., 1996.The Dissolve Mechanism and the Solubility Equations of Gas in Water.Science in China (Seires B), 26(2):124-130 (in Chinese). Gao, J., Zheng, D.Q., Guo, T.M., 1996.Determination and Calculation of Solubilities of CH4 in Aqueous NaHCO3 Solution at High Temperatures and High Pressures.Journal of Chemical Engineering of Chinese Universities, 10(4):345-350 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXHX604.001.htm Gao, Y.Q., 2008.The Study of Physicochemical Mechanism of Nature Gas Dissolution and Exsolution in Xujiahe Formation in West Sichuan Depression (Dissertation).Chengdu University of Technology, Chengdu (in Chinese with English abstract). George, D.S., Hayat, O., Kovscek, A.R., 2005.A Microvisual Study of Solution-Gas-Drive Mechanisms in Viscous Oils.Journal of Petroleum Science and Engineering, 46(1-2):101-119.doi: 10.1016/j.petrol.2004.08.003 Guo, P., Ou, Z.P., 2013.Material Balance Equation of a Condensate Gas Reservoir Considering Water Soluble Gas.Natural Gas Industry, 33(1):70-74 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRQG201301017.htm Hao, S.S., Zhang, Z.Y., 1993.The Characteristic of the Solubility of Natural Gasin Formation Waters and It's Geological Significance.Acta Petrolei Sinica, 14(2):12-22 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB199302001.htm Huang, Y.T., Yao, G.Q., Zhou, F.D., 2016.Provenance Analysis and Petroleum Geological Significance of Shallow-Marine Gravity Flow Sandstone for Huangliu Formation of Dongfang Area in Yinggehai Basin, the South China Sea.Earth Science, 41(9):1526-1538 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201609008.htm Lu, C.M., Yuan, H.Y., Dong, A.Z., 2009.The Field Application of Water-Soluble Gas Lifting Technology in Sanhu Area.Natural Gas Industry, 29(7):92-94 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-trqg200907035.htm Ma, J., Huang, Z.L., Li, X.S., et al., 2015.Cause Analysis of Natural Gas with High Water Saturation and Low Gas Saturation in High-Temperature and High-Pressure Zone of DF Area in Yinggehai Basin.Journal of China University of Petroleum (Edition of Natural Science), 39(5):43-49 (in Chinese with English abstract). Shen, X.Y., 2014.Research on the Effects of Water-Dissolved Gas to Development Index of L Gas Reservoir (Dissertation).Southwest Petroleum University, Chengdu (in Chinese with English abstract). Shen, X.Y., Guo, P., 2014.Experimental Research on Effects of Water-Soluble Gas to Gas Field.Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 16(2):95-97 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CQSG201402026.htm Sheng, R.Y., 2004.Influences of Water-Dissolved Gas on Production Performance of Water-Driven Gas Reservoirs.Marine Geology Letters, 20(1):25-29 (in Chinese with English abstract). Song, Y., Dai, J.X., Li, X.Q., et al., 1998.Main Characteristics of Geochemistry and Geology in China's Medium-Large Gas Fields.Acta Petrolei Sinica, 19(1):1-5 (in Chinese with English abstract). http://www.syxb-cps.com.cn/EN/Y1998/V19/I1/1 Sultanov, R.G., Skripka, V.G., Namiot, A.Y., 1972.Solubility of Methane in Water at High Temperatures and Pressures.American Association of Petroleum Geologists Bulletin, 17(6):6-7. Wang, X.W., Liu, J.M., 1994.Analysing and Predicting the Resources of Water-Soluble Gas in China.Natural Gas Industry, 14(4):18-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG404.005.htm Wesoski, H.B., 1975.Natural Gas Geology.Translated by Dai, J.X., Wu, S.H..Geology Press, Beijing (in Chinese). Wu, K.L., Li., X.F., Lu, W., et al., 2014.Application and Derivation of Material Balance Equation for Abnormally Pressured Gas Condensate Reservoirs with Gas Recharge Capacity and Water Influx.Earth Science, 39(2):210-220 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201402009.htm Wu, X.C., Pang, X.Q., Yu, X.H., et al., 2003.Discussion on Main Control Factors and Evaluation Methods in the Concentration of Water Soluble Gas.Natural Gas Geoscience, 14(5):416-421 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX200305018.htm Xiao, Q.H., 2015.The Reservoir Evaluation and Porous Flow Mechanism for Typical Tight Oilfields (Dissertation).University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract). Xie, Y.H., Huang, B.J., 2014.Characteristics and Accumulation Mechanisms of the Dongfang 13-1 High Temperature and Overpressured Gas Field in the Yinggehai Basin, the South China Sea.Science in China (Series D), 44(8):1731-1739 (in Chinese). doi: 10.1007/s11430-014-4934-0 Zhang, X.B., Xu, Y.C., Liu, W.H., et al., 2002.A Discussion of Formation Mechanism and Its Significance of Characteristics of Chemical Composition and Isotope of Water-Dissolved Gas in Turpan-Hami Basin.Acta Sedimentologica Sinica, 20(4):705-709 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200204027.htm Zhou, W., Chen, W.L., Deng, F.C., et al., 2011.Distribution, Status and Problems of World Water-Soluble Gas Resources.Journal of Mineralogy and Petrology, 31(2):73-78 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS201102011.htm 陈润, 耿庆生, 苏现波, 2006.水溶气的形成与聚集.河南理工大学学报(自然科学版), 25(3): 205-208. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXB200603008.htm 戴金星, 1997.中国气藏(田)的若干特征.石油勘探与开发, 24(2): 6-9, 65. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK199702001.htm 戴金星, 宋岩, 张厚福, 1996.中国大中型气田形成的主要控制因素.中国科学(D辑), 26(6): 481-487. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199606000.htm 范泓澈, 黄志龙, 袁剑, 等, 2011.富甲烷天然气溶解实验及水溶气析离成藏特征.吉林大学学报(地球科学版), 41(4): 1033-1039. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201104012.htm 付广, 张云峰, 陈章明, 2000.有效水溶释放气量及其研究意义.沉积学报, 18(1): 157-161. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200001025.htm 付晓泰, 王振平, 卢双舫, 1996.气体在水中的溶解机理及溶解度方程.中国科学(B辑), 26(2): 124-130. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199602004.htm 高军, 郑大庆, 郭天民, 1996.高温高压下甲烷在碳酸氢钠溶液中溶解度测定及模型计算.高校化学工程学报, 10(4): 345-350. http://www.cnki.com.cn/Article/CJFDTOTAL-GXHX604.001.htm 高雅琴, 2008. 川西坳陷须家河组天然气溶解、脱气物理化学机理研究(硕士学位论文). 成都: 成都理工大学. http://cdmd.cnki.com.cn/Article/CDMD-10616-2008085935.htm 郭平, 欧志鹏, 2013.考虑水溶气的凝析气藏物质平衡方程.天然气工业, 33(1): 70-74. doi: 10.3787/j.issn.1000-0976.2013.01.011 郝石生, 张振英, 1993.天然气在地层水中的溶解度变化特征及地质意义.石油学报, 14(2): 12-22. doi: 10.7623/syxb199302002 黄银涛, 姚光庆, 周锋德, 2016.莺歌海盆地黄流组浅海重力流砂体物源分析及油气地质意义.地球科学, 41(9): 1526-1538. http://www.earth-science.net/WebPage/Article.aspx?id=3358 路春明, 袁海燕, 董爱中, 2009.三湖地区水溶气举升工艺的现场应用.天然气工业, 29(7): 92-94. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200907035.htm 马剑, 黄志龙, 李绪深, 等, 2015.莺歌海盆地DF区高温高压带高含水及低含气饱和度天然气藏成因分析.中国石油大学学报(自然科学版), 39(5): 43-49. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201505006.htm 沈羞月, 2014. 水溶气对L气藏开发指标影响的研究(硕士学位论文). 成都: 西南石油大学. http://cdmd.cnki.com.cn/Article/CDMD-10615-1014415619.htm 沈羞月, 郭平, 2014.水溶气影响气田开采的实验研究.重庆科技学院学报(自然科学版), 16(2): 95-97. http://www.cnki.com.cn/Article/CJFDTOTAL-CQSG201402026.htm 生如岩, 2004.水溶解气对水驱气藏开采动态的影响.海洋地质动态, 20(1): 25-29. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDT200401005.htm 宋岩, 戴金星, 李先奇, 等, 1998.中国大中型气田主要地球化学和地质特征.石油学报, 19(1): 1-5. doi: 10.7623/syxb199801001 王雪吾, 刘济民, 1994.我国水溶性天然气资源分析与预测.天然气工业, 14(4): 18-21. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG404.005.htm Wesoski, H. B. , 1975. 天然气地质学. 见: 戴金星, 吴少华, 译. 北京: 地质出版社. 吴克柳, 李相方, 卢巍, 等, 2014.具有补给气的异常高压有水凝析气藏物质平衡方程建立及应用.地球科学, 39(2): 210-220. http://www.earth-science.net/WebPage/Article.aspx?id=2820 武晓春, 庞雄奇, 于兴河, 等, 2003.水溶气资源富集的主控因素及其评价方法探讨.天然气地球科学, 14(5): 416-421. doi: 10.11764/j.issn.1672-1926.2003.05.416 肖前华, 2015. 典型致密油区储层评价及渗流机理研究(博士学位论文). 北京: 中国科学院大学. http://cdmd.cnki.com.cn/Article/CDMD-80027-1015646134.htm 谢玉洪, 黄保家, 2014.南海莺歌海盆地东方13-1高温高压气田特征与成藏机理.中国科学(D辑), 44(8): 1731-1739. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201408013.htm 张晓宝, 徐永昌, 刘文汇, 等, 2002.吐哈盆地水溶气组分与同位素特征形成机理及意义探讨.沉积学报, 20(4): 705-709. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200204027.htm 周文, 陈文玲, 邓虎成, 等, 2011.世界水溶气资源分布、现状及问题.矿物岩石, 31(2): 73-78. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201102011.htm