• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    广西东平富Ga含锰岩系碳、氧同位素特征及意义

    李启来 伊海生 夏国清 季长军 金峰

    李启来, 伊海生, 夏国清, 季长军, 金峰, 2017. 广西东平富Ga含锰岩系碳、氧同位素特征及意义. 地球科学, 42(9): 1508-1518. doi: 10.3799/dqkx.2017.530
    引用本文: 李启来, 伊海生, 夏国清, 季长军, 金峰, 2017. 广西东平富Ga含锰岩系碳、氧同位素特征及意义. 地球科学, 42(9): 1508-1518. doi: 10.3799/dqkx.2017.530
    Li Qilai, Yi Haisheng, Xia Guoqing, Ji Changjun, Jin Feng, 2017. Characteristics and Implication of Carbon and Oxygen Isotopes in Ga-Rich Manganese-Bearing Rock Series in Dongping, Guangxi. Earth Science, 42(9): 1508-1518. doi: 10.3799/dqkx.2017.530
    Citation: Li Qilai, Yi Haisheng, Xia Guoqing, Ji Changjun, Jin Feng, 2017. Characteristics and Implication of Carbon and Oxygen Isotopes in Ga-Rich Manganese-Bearing Rock Series in Dongping, Guangxi. Earth Science, 42(9): 1508-1518. doi: 10.3799/dqkx.2017.530

    广西东平富Ga含锰岩系碳、氧同位素特征及意义

    doi: 10.3799/dqkx.2017.530
    基金项目: 

    国家科技支撑计划专题项目 2011BAB04B10-2

    详细信息
      作者简介:

      李启来(1989-), 男, 博士研究生, 主要从事沉积地球化学研究

      通讯作者:

      伊海生, E-mail:yhs@cdut.edu.cn

    • 中图分类号: P618.74

    Characteristics and Implication of Carbon and Oxygen Isotopes in Ga-Rich Manganese-Bearing Rock Series in Dongping, Guangxi

    • 摘要: 在广西东平碳酸锰矿含锰岩系中发现Ga含量高异常,Ga含量为5.16×10-6~82.80×10-6,平均含量为33.76×10-6,达到了Ga矿资源工业品位标准要求,但目前还未见有产Ga锰矿床的报道.为了提升对此富Ga现象的认识,对其进行了碳、氧同位素特征研究.结果显示:矿石和围岩δ13CPDB值分别为-6.40‰~-2.20‰、-8.90‰~0.90‰,δ18OPDB值分别为-9.00‰~-7.90‰、-9.90‰~-3.90‰.研究表明:(1)有机质参与了碳酸锰矿形成;(2)含锰岩系为热水沉积成因,Ga来源与海底热液活动密切有关;(3)海底热液活动一方面为形成锰碳酸盐直接或间接提供了大量有机质,另一方面为形成富Ga含锰岩系带来了大量Ga,被锰的氧化物或氢氧化物、海洋生物(多为热液微生物)所吸附、富集,经复杂的成岩、成矿作用而最终赋存于含锰岩系之中形成富Ga含锰岩系.

       

    • 图  1  东平锰矿区地质简图

      茹廷锵(1992)

      Fig.  1.  Geological sketch of Dongping manganese orefield

      图  2  东平锰矿区综合地层柱状图

      刘腾飞(1996)

      Fig.  2.  Comprehensive stratigraphic column of Manganese-bearing rock assemblages in Dongping area

      图  3  东平富Ga含锰岩系沉积结构和构造

      a.纹层状构造;b.条带状构造;c.斑状结构;d.角砾状构造

      Fig.  3.  Textures and sedimentary structures of Dongping Ga-rich manganese-bearing rock series

      图  4  根据分馏方程计算的不同矿物(方解石(a);菱锰矿(b))温度和流体氧同位素关系

      Fig.  4.  Plots of equilibrium relationship between temperature and δ18OPDB mineral (calcite (a); rhodochrosite (b)) for various δ18OSMOW fluid from fractionation equation

      图  5  东平富Ga含锰岩系Z与δ13CPDB(a)、δ18OPDB(b)的相关关系

      Fig.  5.  Plots of relationship between Z values and δ13CPDB (a) or δ18OPDB (b) for Dongping Ga-rich manganese-bearing rock series

      图  6  东平富Ga含锰岩系围岩(a)和矿石(b)δ18OPDB与δ13CPDB相关关系

      Fig.  6.  Plots of relationship between δ13C PDB and δ18O PDB for host rocks (a) or ores (b) of Dongping Ga-rich manganese-bearing rock series

      表  1  东平富Ga含锰岩系碳、氧同位素组成及古温度和Z

      Table  1.   δ13CPDB, δ18OPDB, Z values and paleotemperatures of Dongping Ga-rich manganese-bearing rock series

      序号 样品编号 采样深度(m) 岩石类型 δ13CPDB (‰) δ18OPDB (‰) t1 (℃) t2 (℃) t3 (℃) Z
      1 TK-14 地表 硅质泥灰岩 0.90 -3.90 35.90 33.53 35.50 127.20
      2 7213-H05 138 硅质泥灰岩 -2.20 -9.60 66.74 70.58 68.16 118.01
      3 7213-H07 177 碳酸锰矿 -6.40 -8.20 59.16 60.68 59.54 110.11
      4 7213-H08 184 硅质泥灰岩 -2.90 -9.60 66.74 70.58 68.16 116.58
      5 7213-H10 190 硅质泥灰岩 -2.90 -9.30 65.11 68.41 66.28 116.73
      6 7213-H11 192 碳酸锰矿 -3.50 -90 63.49 66.27 64.42 115.65
      7 7213-H12 196 硅质泥灰岩 -2.70 -9.90 68.36 72.78 70.06 116.84
      8 7601-H07 151 硅质泥灰岩 -2.40 -9.30 65.11 68.41 66.28 117.75
      9 7601-H08 154 碳酸锰矿 -3.50 -8.90 62.95 65.56 63.80 115.70
      10 7601-H11 159 碳酸锰矿 -4.80 -8.70 61.87 64.15 62.58 113.14
      11 7601-H16 251 碳酸锰矿 -4.10 -8.40 60.24 62.06 60.75 114.72
      12 7601-H18 260 碳酸锰矿 -3.50 -8.90 62.95 65.56 63.80 115.70
      13 7601-H20 267 碳酸锰矿 -3.50 -8.60 61.33 63.45 61.96 115.85
      14 7601-H22 280 硅质泥灰岩 -2.60 -9.60 66.74 70.58 68.16 117.19
      15 1102-H10 128 碳酸锰矿 -2.20 -8.80 62.41 64.85 63.19 118.41
      16 1102-H12 131 碳酸锰矿 -2.40 -7.90 57.54 58.63 57.74 118.45
      17 KC-1 地表 碳酸锰矿 -5.40 -8.50 60.79 62.75 61.36 112.01
      18 KC-2 碳酸锰矿 -5.50 -8.60 61.33 63.45 61.96 111.75
      下载: 导出CSV
    • [1] An, C.B., Feng, Z.D., Barton, L., 2006.Dry or Humid? Mid-Holocene Humidity Changes in Arid and Semi-Arid China. Quaternary Science Reviews, 25(3-4):351-361.doi: 10.1016/j.quascirev.2005.03.013
      [2] Anikeeva, L.I., Kazakova, V.E., Gavrilenko, G.M., 2008.Ferromanganese Crust Formations of the West Pacific Transition Zone. Vestnik KRAUNTs.Nauki o Zemle, 11(1):10-31(in Russian with English abstract). doi: 10.1134/S0001437012010031
      [3] Baturin, G.N., Dobretsova, I.G., Dubinchuk, V.T., 2014.Hydrothermal Manganese Mineralization in the Peterbourgskoye Ore Field (North Atlantic). Oceanology, 54(2):222-230.doi: 10.1134/s0001437014020027
      [4] Baturin, G.N., Dubinchuk, V.T., Rashidov, V.A., 2011.Distribution of Microelements in Ferromanganese Crusts of the Sea of Okhotsk. Doklady Earth Sciences, 440(1):1291-1297.doi: 10.1134/s1028334x11090121
      [5] Baturin, G.N., Dubinchuk, V.T., Rashidov, V.A., 2012.Ferromanganese Crusts from the Sea of Okhotsk. Oceanology, 52(1):88-100.doi: 10.1134/s0001437012010031
      [6] Baturin, G.N., Dubinchuk, V.T., Savels'ev, D.P., et al., 2010.Ferromanganese Crusts on the Bottom of the Bering Sea. Doklady Earth Sciences, 435(1):1478-1482.doi: 10.1134/s1028334x10110152
      [7] Benézéth, P., Diakonov, I.I., Pokrovski, G.S., et al., 1997.Gallium Speciation in Aqueous Solution.Experimental Study and Modelling:Part 2.Solubility of α-GaOOH in Acidic Solutions from 150 to 250℃ and Hydrolysis Constants of Gallium (Ⅲ) to 300℃. Geochimica et Cosmochimica Acta, 61(7):1345-1357.doi: 10.1016/s0016-7037(97)00012-4
      [8] Boni, M., Parente, G., Bechstädt, T., et al., 2000.Hydrothermal Dolomites in SW Sardinia (Italy):Evidence for a Widespread Late-Variscan Fluid Flow Event. Sedimentary Geology, 131(3-4):181-200.doi: 10.1016/s0037-0738(99)00131-1
      [9] Chen, J., Wang, H.N., 2004.Geochemistry.Science Press, Beijing(in Chinese).
      [10] Coleman, M., Fleet, A., Donson, P., 1982.Preliminary Studies of Manganese-Rich Carbonate Nodules from Leg 68, Site 503, Eastern Equatorial Pacific. Initial Reports of the Deep Sea Drilling Project, 68:481-489.doi: 10.2973/dsdp.proc.68.123.1982
      [11] Colwell, R.R., 1997.Microbial Diversity:The Importance of Exploration and Conservation. Journal of Industrial Microbiology and Biotechnology, 18(5):302-307.doi: 10.1038/sj.jim.2900390
      [12] Dai, S.F., Ren, D.Y., Chou, C.L., et al., 2012.Geochemistry of Trace Elements in Chinese Coals:A Review of Abundances, Genetic Types, Impacts on Human Health, and Industrial Utilization. International Journal of Coal Geology, 94:3-21.doi: 10.1016/j.coal.2011.02.003
      [13] Derry, L.A., 2010.On the Significance of δ13C Correlations in Ancient Sediments. Earth and Planetary Science Letters, 296(3-4):497-501.doi: 10.1016/j.epsl.2010.05.035
      [14] Díaz-del-Río, V., Somoza, L., Martínez-Frias, J., et al., 2003.Vast Fields of Hydrocarbon-Derived Carbonate Chimneys Related to the Accretionary Wedge/Olistostrome of the Gulf of Cádiz. Marine Geology, 195(1-4):177-200.doi: 10.1016/s0025-3227(02)00687-4
      [15] Dubinin, A.V., Uspenskaya, T.Y., 2006.Geochemistry and Specific Features of Manganese Ore Formation in Sediments of Oceanic Bioproductive Zones. Lithology and Mineral Resources, 41(1):1-14.doi: 10.1134/s0024490206010019
      [16] Dubinin, A.V., Uspenskaya, T.Y., Gavrilenko, G.M., et al., 2008.Geochemistry and Genesis of Fe-Mn Mineralization in Island Arcs in the West Pacific Ocean. Geochemistry International, 46(12):1206-1227.doi: 10.1134/s0016702908120021
      [17] Fio, K., Sremac, J., Vlahovi, I., et al., 2013.Permian Deposits and the Permian-Triassic Boundary in Croatia:Palaeoclimatic Implications Based on Palaeontological and Geochemical Data. Geological Society, London, Special Publications, 376(1):539-548.doi: 10.1144/sp376.8
      [18] Gao, J.B., Yang, R.D., Tao, P., et al., 2013.Geochemical Characteristics and Genesis of Large Devonian Barite Deposits in Zhenning County, Guizhou Province. Geoscience, 27(1):46-55 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201301005.htm
      [19] Ghosh, P., Adkins, J., Affek, H., et al., 2006.13C-18O Bonds in Carbonate Minerals:A New Kind of Paleothermometer. Geochimica et Cosmochimica Acta, 70(6):1439-1456.doi: 10.1016/j.gca.2005.11.014
      [20] Glasby, G.P., Stüben, D., Jeschke, G., et al., 1997.A Model for the Formation of Hydrothermal Manganese Crusts from the Pitcairn Island Hotspot. Geochimica et Cosmochimica Acta, 61(21):4583-4597.doi: 10.1016/s0016-7037(97)00262-7
      [21] Han, X.T., Bao, Z.Y., Xie, S.Y., 2016.Origin and Geochemical Characteristics of Dolomites in the Middle Permian Formation, SW Sichuan Basin, China. Earth Science, 41(1):167-176(in Chinese with English abstract). doi: 10.1007/s12182-014-0317-6
      [22] He, Z.W., Yang, R.D., Gao, J.B., et al., 2013.Geological and Geochemical Characteristics of Manganese-Bearing Rock Series of Yangjiawan Manganese Deposit, Songtao County, Guizhou Province. Geoscience, 27(3):593-602 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201303010.htm
      [23] Hudson, J.D., 1977.Stable Isotopes and Limestone Lithoification. Journal of the Geological Society, 133(6):637-660.doi: 10.1144/gsjgs.133.6.0637
      [24] Iizasa, K., Fiske, R.S., Ishizuka, O., et al., 1999.A Kuroko-Type Polymetallic Sulfide Deposit in a Submarine Silicic Caldera. Science, 283(5404):975-977.doi: 10.1126/science.283.5404.975
      [25] Jia, Y.Y., Xing, X.J., Sun, G.Q., et al., 2015.The Paleogene-Neogene Paleoclimate Evolution in Western Sector of Northern Margin of Qaidam Basin. Earth Science, 40(12):1955-1967(in Chinese with English abstract).
      [26] Kazachenko, V.T., Miroshnichenko, N.V., Perevoznikova, E.V., et al., 2006.Gallium, Gold, and Platinum Group Metals in Manganese Rocks of Southern Sikhote Alin. Doklady Earth Sciences, 407(2):429-433.doi: 10.1134/s1028334x06030184
      [27] Keith, M.L., Weber, J.N., 1964.Carbon and Oxygen Isotopic Composition of Selected Limestones and Fossils. Geochimica et Cosmochimica Acta, 28(10-11):1787-1816.doi: 10.1016/0016-7037(64)90022-5
      [28] Koschinsky, A., Hein, J.R., 2003.Uptake of Elements from Seawater by Ferromanganese Crusts:Solid-Phase Associations and Seawater Speciation. Marine Geology, 198(3-4):331-351.doi: 10.1016/s0025-3227(03)00122-1
      [29] Kuleshov, V.N., 2011.Manganese Deposits:Communication 1.Genetic Models of Manganese Ore Formation. Lithology and Mineral Resources, 46(5):473-493.doi: 10.1134/s0024490211050038
      [30] Kuleshov, V.N., Brusnitsyn, A.I., 2005.Isotopic Composition (δ13C, δ18O) and the Origin of Carbonates from Manganese Deposits of the Southern Urals. Lithology and Mineral Resources, 40(4):364-375.doi: 10.1007/s10987-005-0034-8
      [31] Li, D., Ling, H.F., Jiang, S.Y., et al., 2009.New Carbon Isotope Stratigraphy of the Ediacaran-Cambrian Boundary Interval from SW China:Implications for Global Correlation. Geological Magazine, 146(4):465.doi: 10.1017/s0016756809006268
      [32] Li, S.F., Wang, Z.H., Li, L.T., et al., 2009.Analysis of Metallogenic Mechanism of High-Grade Manganese Ore in Southwest Guangxi. Resources Environment & Engineering, 23(4):363-370(in Chinese with English abstract).
      [33] Li, X.Z., Liu, W.G., Xu, L.M., 2012.Carbon Isotopes in Surface-Sediment Carbonates of Modern Lake Qinghai (Qinghai-Tibet Plateau):Implications for Lake Evolution in Arid Areas. Chemical Geology, 300-301:88-96.doi: 10.1016/j.chemgeo.2012.01.010
      [34] Liu, T.F., 1996.Study on Geological Feature and Metallogenic Conditions of Dongping Supergene Enriched Mn Ore Deposit. Contributions to Geology and Mineral Resources Research, 11(4):42-55 (in Chinese with English abstract).
      [35] Liu, Y.J., Cao, L.M., Li, Z.L., et al., 1984.Element Geochemistry.Science Press, Beijing (in Chinese).
      [36] Liu, Z.C., Zhang, Y.G., Chen, D., et al., 2013.Geochemical Characteristics and Geological Significance of "Bainitangceng" Siliceous Rocks in Zunyi Manganese Ore Fields, Guizhou Province, China. Acta Mineralogica Sinica, 33(4):665-670(in Chinese with English abstract). http://www.irgrid.ac.cn/handle/1471x/873157?mode=full&submit_simple=Show+full+item+record
      [37] Loyd, S.J., Corsetti, F.A., Eagle, R.A., et al., 2015.Evolution of Neoproterozoic Wonoka-Shuram Anomaly-Aged Carbonates:Evidence from Clumped Isotope Paleothermometry. Precambrian Research, 264:179-191.doi: 10.1016/j.precamres.2015.04.010
      [38] Macouin, M., Ader, M., Moreau, M.G., et al., 2012.Deciphering the Impact of Diagenesis Overprint on Negative δ13C Excursions Using Rock Magnetism:Case Study of Ediacaran Carbonates, Yangjiaping Section, South China. Earth and Planetary Science Letters, 351-352:281-294.doi: 10.1016/j.epsl.2012.06.057
      [39] Metz, S., Trefry, J.H., 2000.Chemical and Mineralogical Influences on Concentrations of Trace Metals in Hydrothermal Fluids. Geochimica et Cosmochimica Acta, 64(13):2267-2279.doi: 10.1016/s0016-7037(00)00354-9
      [40] Mikhailik, P.E., Derkachev, A.N., Chudaev, O.V., et al., 2009.Fe-Mn Crusts from Underwater Rises of the Kashevarov Trough (Sea of Okhotsk). Russian Journal of Pacific Geology, 3(1):28-39.doi: 10.1134/s1819714009010047
      [41] Mikhailik, P.E., Khanchuk, A.I., 2011.Ferromanganese Crusts from Submarine Volcanoes of Backarc Basins as a New Genetic Type of Gallium Deposits. Doklady Earth Sciences, 439(2):1060-1062.doi: 10.1134/s1028334x11080058
      [42] Mikhailik, P.E., Mikhailik, E.V., Blokhin, M.G., et al., 2015.Sources of Gallium in Ferromanganese Crusts from the Sea of Japan. Russian Geology and Geophysics, 56(8):1148-1153.doi: 10.1016/j.rgg.2015.07.005
      [43] Mishra, P., Mvohapatra, B.K., Singh, P.P., 2006.Mode of Occurrence and Characteristics of Mn-Ore Bodies in Iron Ore Group of Rocks, North Orissa, India and Its Significance in Resource Evaluation. Resource Geology, 56(1):55-64.doi: 10.1111/j.1751-3928.2006.tb00268.x
      [44] Moskalyk, R.R., 2003.Gallium:The Backbone of the Electronics Industry. Minerals Engineering, 16(10):921-929.doi: 10.1016/j.mineng.2003.08.003
      [45] Noguchi, T., Oomori, T., Tanahara, A., et al., 2007.Chemical Composition of Hydrothermal Ores from Mid-Okinawa Trough and Suiyo Seamount Determined by Neutron Activation Analysis. Geochemical Journal, 41(2):141-148.doi: 10.2343/geochemj.41.141
      [46] Okita, P.M., Maynard, J.B., Spiker, E.C., et al., 1988.Isotopic Evidence for Organic Matter Oxidation by Manganese Reduction in the Formation of Stratiform Manganese Carbonate Ore. Geochimica et Cosmochimica Acta, 52(11):2679-2685.doi: 10.1016/0016-7037(88)90036-1
      [47] Okita, P.M., Shanks, W.C., 1992.Origin of Stratiform Sediment-Hosted Manganese Carbonate Ore Deposits:Examples from Molango, Mexico, and Taojiang, China. Chemical Geology, 99(1-3):139-163.doi: 10.1016/0009-2541(92)90036-5
      [48] O'Neil, J.R., Epstein, S., 1966.Oxygen Isotope Fractionation in the System Dolomite-Calcite-Carbon Dioxide. Science, 152(3719):198-201.doi: 10.1126/science.152.3719.198
      [49] Papp, D.C., Cociuba, I., Lazǎr, D.F., 2013.Carbon and Oxygen-Isotope Stratigraphy of the Early Cretaceous Carbonate Platform of Pǎdurea Craiului (Apuseni Mountains, Romania):A Chemostratigraphic Correlation and Paleoenvironmental Tool. Applied Geochemistry, 32:3-16.doi: 10.1016/j.apgeochem.2012.09.005
      [50] Ru, T.Q., Wei, L.D., Shu, G., 1992.Geological Characteristics of Manganese Ores in Guangxi.Geological Publishing House, Nanjing (in Chinese).
      [51] Saelen, G., Doyle, P., Talbot, M.R., 1996.Stable-Isotope Analyses of Belemnite Rostra from the Whitby Mudstone Fm., England:Surface Water Conditions during Deposition of a Marine Black Shale. Palaios, 11(2):97.doi: 10.2307/3515065
      [52] Shackleton, N.J., Kennett, J.P., 1975.Paleotemperature History of the Cenozoic and the Initiation of Antarctic Glaciation:Oxygen and Carbon Isotope Analyses in DSDP Sites 277, 279 and 281. Initial Reports of the Deep Sea Drilling Project, 29:743-755.doi: 10.2973/dsdp.proc.29.117.1975
      [53] Shao, J.N., Tao, W.P., 2010.Mineral Resources Industry Handbook.Geological Publishing House, Beijing (in Chinese).
      [54] Sugisaki, R., Sugitani, K., Adachi, M., 1991.Manganese Carbonate Bands as an Indicator of Hemipelagic Sedimentary Environments. The Journal of Geology, 99(1):23-40.doi: 10.1086/629471
      [55] Sverdrup, H.U., Ragnarsdóttir, K.V., 2014.Section 2.Classification of Natural Resources. Geochemical Perspectives, 3(2):172-192. http://perspectives.geoscienceworld.org/content/3/2/172
      [56] Telford, M., 2001.Gallium Shortage Easing. Ⅲ-Vs Review, 14(4):54-58.doi: 10.1016/s0961-1290(01)80184-8
      [57] Wang, H.W., Wen, X.P., Chang, H.L., et al., 2013.Characteristics of Carbon and Oxygen Isotope in Heqing Manganese Deposit, Yunnan, China. Geoscience, 27(3):612-620(in Chinese with English abstract).
      [58] Wefer, G., Berger, W.H., 1991.Isotope Paleontology:Growth and Composition of Extant Calcareous Species. Marine Geology, 100(1-4):207-248.doi: 10.1016/0025-3227(91)90234-u
      [59] Yang, K.H., Yu, X.G., Chu, F.Y., et al., 2016.Environmental Changes in Methane Seeps Recorded by Carbon and Oxygen Isotopes in the Northern South China Sea. Earth Science, 41(7):1206-1215(in Chinese with English abstract).
      [60] Yang, R.D., Cheng, M.L., Wei, H.R., 2009.Geochemical Characteristics and Origin of a Manganese Deposit in the Middle Permian Maokou Formation in Shuicheng, Guizhou, China. Geotectonica et Metallogenia, 33(4):613-619(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200904017.htm
      [61] Yang, R.D., Gao, J.B., Cheng, M.L., et al., 2010.Sedimentary Geochemistry of Manganese Deposit of the Neoproterozoic Datangpo Formation in Guizhou Province, China. Acta Geologica Sinica, 84(12):1781-1790(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201012007.htm
      [62] Yang, X.F., Liu, C., Chen, X., 2013.Discussion on Ore Characteristics and Ore-Forming Mechanism of Baishixi Manganese Deposit, Guizhou. Geotechnical Engineering World, 4(1):52-55(in Chinese with English abstract).
      [63] Yang, Y., Gao, F.H., Pu, X.G., et al., 2013.Changes to Depositional Palaeoenvironments within the Qikou Depression (Bohaiwan Basin, China):Carbon and Oxygen Isotopes in Lacustrine Carbonates of the Palaeogene Shahejie Formation. International Geology Review, 55(15):1909-1921.doi: 10.1080/00206814.2013.805926
      [64] Yi, F., Yi, H.S., 2017.Geochemical Characteristics of the Beisi Formation Manganese-Bearing Rocks of the Lower Triassic Series in the Tiandeng Area, Southwest Guangxi and Their Implications. Geochimica, 46(1):46-65(in Chinese with English abstract).
      [65] Yi, H.S., Chen, Z.Y., Ji, C.J., et al., 2014.New Evidence for Deep Burial Origin of Sucrosic Dolomites from Middle Jurassic Buqu Formation in Southern Qiangtang Basin. Acta Petrologica Sinica, 30(3):737-746 (in Chinese with English abstract).
      [66] Yin, Q., 2015.Research on Depositional Feature and Mineralization Mechanism of Manganese Deposit of the Lower Triassic in Southwestern Guangxi Area (Dissertation).Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      [67] Zeng, Z.G., 2011.Seafloor Hydrothermal Geology.Science Press, Beijing (in Chinese).
      [68] Zhang, C., 2013.Sedimentation Feature of Manganese-Bearing Rock Series from the Upper Devonian, Southwest of Guangxi, China (Dissertation).Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      [69] Zhang, Z.W., Ding, H.S., Zhang, Y.J., 2016.Carbon and Oxygen Stable Isotope Features of the Lower Ordovician Gucheng Region of Tarim Basin. Marine Geology & Quaternary Geology, 36(2):59-64 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200001011.htm
      [70] Zheng, Y.F., 1999.Oxygen Isotope Fractionation in Carbonate and Sulfate Minerals. Geochemical Journal, 33(2):109-126.doi: 10.2343/geochemj.33.109
      [71] Zhu, S.Q., 1997.Geochemical Characteristics of Rare Earth Elements in Dongping Manganese Deposit, Guangxi. South China Metallurgical Geology, 2:27-30 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201205008.htm
      [72] Zhu, S.Q., 2001.Phodochrosite of Hemioxidative Zone in Dongping Manganese Ore. Geology and Prospecting, 37(2):58-61(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200102016.htm
      [73] Zuo, J.X., Tong, J.N., Qiu, H.O., et al., 2006.Carbon Isotope Composition of the Lower Triassic Marine Carbonates, Lower Yangtze Region, South China. Science China Earth Science, 49(3):225-241.doi: 10.1007/s11430-006-0225-8
      [74] 陈骏, 王鹤年, 2004.地球化学.北京:科学出版社.
      [75] 高军波, 杨瑞东, 陶平, 等, 2013.贵州镇宁泥盆系大型重晶石矿床地球化学特征及其成因研究.现代地质, 27(1):46-55. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201301005.htm
      [76] 韩晓涛, 鲍征宇, 谢淑云, 2016.四川盆地西南中二叠统白云岩的地球化学特征及其成因.地球科学, 41(1):167-176. http://www.earth-science.net/WebPage/Article.aspx?id=3229
      [77] 何志威, 杨瑞东, 高军波, 等, 2013.贵州省松桃杨家湾锰矿含锰岩系地质地球化学特征.现代地质, 27(3):593-602. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201303010.htm
      [78] 贾艳艳, 邢学军, 孙国强, 等, 2015.柴北缘西段古-新近纪古气候演化.地球科学, 40(12):1955-1967. http://www.earth-science.net/WebPage/Article.aspx?id=3202
      [79] 李升福, 王泽华, 李朗田, 等, 2009.桂西南优质锰矿成矿机理分析.资源环境与工程, 23(4):363-370. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK200904001.htm
      [80] 刘腾飞, 1996.广西东平表生富集型锰矿床地质特征及成矿条件初步研究.地质找矿论丛, 11(4):42-55. http://www.cnki.com.cn/Article/CJFDTOTAL-DZZK604.004.htm
      [81] 刘英俊, 1984.元素地球化学.北京:科学出版社.
      [82] 刘志臣, 张远国, 陈登, 等, 2013.贵州遵义锰矿区"白泥塘层"硅质岩地球化学特征及其地质意义.矿物学报, 33(4):665-670. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201304036.htm
      [83] 茹廷锵, 1992.广西锰矿地质.南京:地质出版社.
      [84] 邵厥年, 陶维屏, 2010.矿产资源工业要求手册.北京:地质出版社.
      [85] 王宏伟, 温兴平, 常海亮, 等, 2013.云南鹤庆锰矿碳氧同位素特征分析.现代地质, 27(3):612-620. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201303012.htm
      [86] 杨克红, 于晓果, 初凤友, 等, 2016.南海北部甲烷渗漏系统环境变化的碳、氧同位素记录.地球科学, 41(7):1206-1215. http://www.earth-science.net/WebPage/Article.aspx?id=3329
      [87] 杨瑞东, 程玛莉, 魏怀瑞, 2009.贵州水城二叠系茅口组含锰岩系地质地球化学特征与锰矿成因分析.大地构造与成矿学, 33(4):613-619. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200904017.htm
      [88] 杨瑞东, 高军波, 程玛莉, 等, 2010.贵州从江高增新元古代大塘坡组锰矿沉积地球化学特征.地质学报, 84(12):1781-1790. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201012007.htm
      [89] 杨晓飞, 刘畅, 陈旭, 2013.贵州白石溪锰矿矿石特征及成矿机制探讨.矿产勘查, 4(1):52-55. http://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201301011.htm
      [90] 伊帆, 伊海生, 2017.桂西南地区下三叠统北泗组含锰岩系地球化学特征及意义.地球化学, 46(1):46-65. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201701005.htm
      [91] 伊海生, 陈志勇, 季长军, 等, 2014.羌塘盆地南部地区布曲组砂糖状白云岩埋藏成因的新证据.岩石学报, 30(3):737-746. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201403013.htm
      [92] 尹青, 2015. 桂西南地区下三叠统锰矿沉积特征与成因机理研究(博士学位论文). 成都: 成都理工大学. http://cdmd.cnki.com.cn/Article/CDMD-10616-1015312805.htm
      [93] 曾志刚, 2011.海底热液地质学.北京:科学出版社.
      [94] 张超, 2013. 桂西南地区上泥盆统含锰岩系沉积特征研究(硕士学位论文). 成都: 成都理工大学. http://cdmd.cnki.com.cn/Article/CDMD-10616-1013288862.htm
      [95] 张振伟, 丁寒生, 张亚金, 2016.塔里木盆地古城地区下奥陶统碳酸盐岩碳氧同位素特征.海洋地质与第四纪地质, 36(2):59-64. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-SYXH201504001073.htm
      [96] 祝寿泉, 1997.广西东平锰矿稀土元素地球化学特征.中南冶金地质, (2):27-30. http://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201610130.htm
      [97] 祝寿泉, 2001.广西东平锰矿半氧化带中的菱锰矿.地质与勘探, 37(2):58-61. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200102016.htm
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  4013
    • HTML全文浏览量:  1800
    • PDF下载量:  18
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-11-27
    • 刊出日期:  2017-09-15

    目录

      /

      返回文章
      返回