• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    页岩气藏体积压裂有效改造体积计算方法

    苏玉亮 盛广龙 王文东 贾建鹏 吴春新

    苏玉亮, 盛广龙, 王文东, 贾建鹏, 吴春新, 2017. 页岩气藏体积压裂有效改造体积计算方法. 地球科学, 42(8): 1314-1323. doi: 10.3799/dqkx.2017.532
    引用本文: 苏玉亮, 盛广龙, 王文东, 贾建鹏, 吴春新, 2017. 页岩气藏体积压裂有效改造体积计算方法. 地球科学, 42(8): 1314-1323. doi: 10.3799/dqkx.2017.532
    Su Yuliang, Sheng Guanglong, Wang Wendong, Jia Jianpeng, Wu Chunxin, 2017. A New Approach to Calculate Effective Stimulated Reservoir Volume in Shale Gas Reservoir. Earth Science, 42(8): 1314-1323. doi: 10.3799/dqkx.2017.532
    Citation: Su Yuliang, Sheng Guanglong, Wang Wendong, Jia Jianpeng, Wu Chunxin, 2017. A New Approach to Calculate Effective Stimulated Reservoir Volume in Shale Gas Reservoir. Earth Science, 42(8): 1314-1323. doi: 10.3799/dqkx.2017.532

    页岩气藏体积压裂有效改造体积计算方法

    doi: 10.3799/dqkx.2017.532
    基金项目: 

    国家科技重大专项 2017ZX05049-006

    国家自然科学基金项目 51674279

    中央高校基本科研业务费专项资金项目 17CX06010

    中国石油大学研究生创新工程资助项目 YCXJ2016016

    中国博士后科学基金资助项目 2016M602227

    详细信息
      作者简介:

      苏玉亮(1970-), 男, 教授, 主要从事低渗透油藏渗流理论与开采技术、非常规油气渗流与开发等方面的研究

      通讯作者:

      王文东

    • 中图分类号: P641.2

    A New Approach to Calculate Effective Stimulated Reservoir Volume in Shale Gas Reservoir

    • 摘要: 页岩气藏矿场压裂实践表明,储层有效改造体积(effective stimulated reservoir volume,简称ESRV)是影响页岩气藏体积压裂水平井生产效果的关键因素,ESRV的准确计算对页岩气藏压裂方案评价与体积压裂水平井产量预测具有重要作用.基于页岩储层改造体积(stimulated reservoir volume,简称SRV)多尺度介质气体运移机制,建立了SRV区域正交离散裂缝耦合双重介质基质团块来表征单元体渗流模型(representation elementary volume,简称REV),并结合北美页岩储层实例研究了次生裂缝间距、宽度等缝网参数对页岩气藏气体运移规律的影响.在此基础上根据SRV区域次生裂缝分布特征,采用分形质量维数定量表征裂缝间距分布规律,结合页岩气藏次生裂缝间距对基质团块内流体动用程度的影响规律,得到了页岩气藏体积压裂ESRV计算方法.结果表明SRV区域次生裂缝间距对基质团块内吸附及自由气影响较大,次生裂缝间距小于0.20 m时可以实现SRV区域基质团块内流体向各方向裂缝的"最短距离"渗流.选取北美典型页岩储层生产井体积压裂数据进行ESRV计算,页岩气藏目标井ESRV占体积压裂SRV的37.78%.因此ESRV受改造区域次裂缝分布规律及SRV有效裂缝间距界限的影响,是储层固有性质及人工压裂因素综合作用的结果.

       

    • 图  1  页岩储层SRV区域表征单元体渗流模型

      图d据Javadpour(2009)

      Fig.  1.  Representative elementary volume flow model of SRV region in shale reservoirs

      图  2  不同裂缝间距下吸附气及总气体产出比例曲线

      Fig.  2.  Production curves of absorbed gas and total gas with different fracture spaces

      图  3  裂缝宽度对SRV有效裂缝间距界限影响

      Fig.  3.  Effect of fracture width on effective fracture space of SRV

      图  4  地层压力对SRV有效裂缝间距界限影响

      Fig.  4.  Effect of reservoir pressure on effective fracture space of SRV

      图  5  压力梯度对SRV有效裂缝间距界限影响

      Fig.  5.  Effect of pressure gradient on effective fracture space of SRV

      图  6  体积压裂SRV次生裂缝分布

      a.三维图;b.俯视图

      Fig.  6.  Secondary fracture distribution of SRV

      图  7  体积压裂SRV区域次生裂缝间距分布规律

      Fig.  7.  Secondary fracture space distribution in SRV region

      表  1  Barnett页岩气藏储层参数

      Table  1.   Reservoir parameters of Barnett shale gas reservoir

      参数 数值
      次生裂缝宽度(m) 0.001
      气体压缩系数(MPa-1) 0.05
      干酪根孔径(nm) 50
      无机基岩孔隙度 0.1
      REV水平方向裂缝条数 5
      REV垂直方向裂缝条数 5
      气体粘度(mPa·s) 0.018 4
      气体摩尔质量(kg·mol-1) 0.016
      储层温度(K) 338
      单位岩心体积中干酪根固体体积 0.5
      无机基岩孔隙迂曲度 5
      干酪根表面朗格缪尔最大吸附浓度(m3·kg-1) 3.1×10-3
      REV入口压力(MPa) 15
      REV压力梯度(MPa·m-1) 0.05
      干酪根孔隙度 0.2
      无机基岩孔径(nm) 100
      次生裂缝孔隙度 0.02
      次生裂缝间距(m) 0.05
      干酪根表面扩散系数(10-4 m2·s-1) 5
      朗格缪尔压力(MPa) 13.78
      干酪根固体形状因子(m-2) 0.5
      角动量调节系数 0.8
      干酪根孔隙迂曲度 5
      REV初始压力(MPa) 50
      下载: 导出CSV
    • Akkutlu, I.Y., Fathi, E., 2012.Multiscale Gas Transport in Shales with Local Kerogen Heterogeneities.SPE Journal, 17(4):1002-1011.doi: 10.2118/146422-PA
      Anderson, D.M., Nobakht, M., Moghadam, S., et al., 2010.Analysis of Production Data from Fractured Shale Gas Wells.SPE Unconventional Gas Conference, Pittsburgh.doi:10.2118/131787-MS
      Bustin, A., Bustin, R.M., Cui, X.J., 2008.Importance of Fabric on the Production of Gas Shales.SPE Unconventional Reservoirs Conference, Keystone.doi:10.2118/114167-MS
      Cai, J.C., Yu, B.M., 2010.Prediction of Maximum Pore Size of Porous Media Based on Fractal Geometry.Fractals, 18(4):417-423.doi: 10.1142/S0218348X10005123
      Cai, J.C., Yu, B.M., 2011.A Discussion of the Effect of Tortuosity on the Capillary Imbibition in Porous Media.Transport in Porous Media, 89(2):251-263.doi: 10.1007/s11242-011-9767-0
      Chen, X.M., Li, J.Z., Zheng, M., et al., 2012.Kerogen Solution Theory and Its Exploratory Application in Shale Gas Assessment.Natural Gas Geoscience, 23(1):14-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201201003.htm
      Civan, F., 2010.Effective Correlation of Apparent Gas Permeability in Tight Porous Media.Transport in Porous Media, 82(2):375-384.doi: 10.1007/s11242-009-9432-z
      Cui, M.Y., Liu, Y.Z., Xiu, N.L., et al., 2014.Analysis of Factors Affecting the Formation of Effective Stimulated Reservoir Volume (ESRV).Oil Drilling & Production Technology, 36(2):82-87 (in Chinese with English abstract).
      Denney, D., 2005.Optimizing Horizontal Completions in the Barnett Shale with Microseismic Fracture Mapping.Journal of Petroleum Technology, 57(3):41-43.doi: 10.2118/0305-0041-JPT
      Du, B.J., Cheng, L.S., Cao, R.Y., et al., 2014.Development Effective of the Volumetric Fracturing Horizontal Well in Tight Oil Reservoir.Petroleum Geology & Oilfield Development in Daqing, 33(1):96-101 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQSK201401018.htm
      Duan, Y.G., Cao, Y.K., Yang, X.Y., et al., 2015.Simulation of Gas Flow in Nano-Scale Pores of Gas Deposits.Journal of Southwest Petroleum University (Science & Technology Edition), 37(3):63-68 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xnsy201503009&dbname=CJFD&dbcode=CJFQ
      Duan, Y.Y., Wang, X., Wang, Y.H., et al., 2015.Numerical Simulation of Stimulation Effect by Volume Transformation of Tight Sandstone Gas Reservoir.Unconventional Oil & Gas, 2(2):48-51 (in Chinese with English abstract).
      Fan, D., 2015.A Hybrid Transient Flow Model for Performance Evaluation of Shale Gas Reservoirs (Dissertation).Texas Tech University, Lubbock, 26-29.
      Fan, D., Ettehadtavakkol, A., 2017.Semi-Analytical Modeling of Shale Gas Flow through Fractal Induced Fracture Networks with Microseismic Data.Fuel, 193:444-459.doi: 10.1016/j.fuel.2016.12.059
      Fan, J.M., Yang, Z.Q., Li, W.B., et al., 2015.Assessment of Fracturing Treatment of Horizontal Wells Using SRV Technique for Chang-7 Tight Oil Reservoir in Ordos Basin.Journal of China University of Petroleum (Edition of Natural Science), 39(4):103-110 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX201504014.htm
      Guo, T.K., Zhang, S.C., Qu, Z.Q., et al., 2014.Experimental Study of Hydraulic Fracturing for Shale by Stimulated Reservoir Volume.Fuel, 128(14):373-380.doi: 10.1016/j.fuel.2014.03.029
      Islam, A., Patzek, T., 2014.Slip in Natural Gas Flow through Nanoporous Shale Reservoirs.Journal of Unconventional Oil and Gas Resources, 7:49-54.doi: 10.1016/j.juogr.2014.05.001
      Javadpour, F., 2009.Nanopores and Apparent Permeability of Gas Flow in Mudrocks (Shales and Siltstone).Journal of Canadian Petroleum Technology, 48(8):16-21.doi: 10.2118/09-08-16-DA
      Javadpour, F., Fisher, D., Unsworth, M., 2007.Nanoscale Gas Flow in Shale Gas Sediments.Journal of Canadian Petroleum Technology, 46(10):55-61.doi: 10.2118/07-10-06
      Kang, S.M., Fathi, E., Ambrose, R.J., et al., 2011.Carbon Dioxide Storage Capacity of Organic-Rich Shales.SPE Journal, 16(4):842-855.doi: 10.2118/134583-PA
      Kang, Y.S., Deng, Z., Wang, H.Y., et al., 2016.Fluid-Solid Coupling Physical Experiments and Their Implications for Fracturing Stimulations of Shale Gas Reservoirs.Earth Science, 41(8):1376-1383 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201608009.htm
      King, G.E., 2010.Thirty Years of Gas Shale Fracturing:What Have We Learned?Journal of Petroleum Technology, 62(11):88-90.doi: 10.2118/1110-0088-JPT
      Korvin, G., 1992.Fractal Models in the Earth Sciences.Elsevier Science Ltd., New York. http://ci.nii.ac.jp/ncid/BA18805842
      Liu, X.X., Wu, J.F., Liu, Y.C., et al., 2013.Application of Volume Stimulation Fracturing in Shale Gas Reservoir.Natural Gas Exploration and Development, 36(4):64-70 (in Chinese with English abstract).
      Maxwell, S.C., Urbancic, T.I., Steinsberger, N., et al., 2002.Microseismic Imaging of Hydraulic Fracture Complexity in the Barnett Shale.SPE Annual Technical Conference and Exhibition, San Antonio.doi:10.2118/77440-MS
      Mayerhofer, M.J., Lolon, E., Warpinski, N.R., et al., 2010.What is Stimulated Reservoir Volume?SPE Production & Operations, 25(1):89-98.doi: 10.2118/119890-PA
      Meyer, B.R., Bazan, L.W., 2011.A Discrete Fracture Network Model for Hydraulically Induced Fractures-Theory, Parametric and Case Studies.SPE Hydraulic Fracturing Technology Conference, San Antonio.doi:10.2118/140514-MS
      Miao, T.J., Yang, S.S., Long, Z.C., 2015.Fractal Analysis of Permeability of Dual-Porosity Media Embedded with Random Fractures.International Journal of Heat and Mass Transfer, 88:814-821.doi: 10.1016/j.ijheatmasstransfer.2015.05.004
      Olson, J.E., 2008.Multi-Fracture Propagation Modeling:Applications to Hydraulic Fracturing in Shales and Tight Gas Sands.The 42nd US Rock Mechanics Symposium (USRMS), San Francisco.doi:10.2118/ARMA-08-327
      Olson, J.E., Taleghani, A.D., 2009.Modeling Simultaneous Growth of Multiple Hydraulic Fractures and Their Interaction with Natural Fractures.SPE Hydraulic Fracturing Technology Conference, San Antonio.doi:10.2118/119739-MS
      Ren, L., Su, Y.L., Zhan, S.Y., et al., 2016.Modeling and Simulation of Complex Fracture Network Propagation with SRV Fracturing in Unconventional Shale Reservoirs.Journal of Natural Gas Science & Engineering, 28:132-141.doi: 10.1016/j.jngse.2015.11.042
      Shabro, V., Torres-Verdin, C., Javadpour, F., 2011.Numerical Simulation of Shale-Gas Production:From Pore-Scale Modeling of Slip-Flow, Knudsen Diffusion, and Langmuir Desorption to Reservoir Modeling of Compressible Fluid.North American Unconventional Gas Conference and Exhibition, Woodlands.doi:10.2118/144355-MS
      Sheng, G.L., Su, Y.L., Wang, W.D., et al., 2015.A Multiple Porosity Media Model for Multi-Fractured Horizontal Wells in Shale Gas Reservoirs.Journal of Natural Gas Science and Engineering, 27:1562-1573.doi: 10.1016/j.jngse.2015.10.026
      Stalgorova, E., Mattar, L., 2012.Practical Analytical Model to Simulate Production of Horizontal Wells with Branch Fractures.SPE Canadian Unconventional Resources Conference, Alberta.doi:10.2118/162515-MS
      Su, Y.L., Wang, W.D., Sheng, G.L., 2014.Compound Flow Model of Volume Fractured Horizontal Well.Acta Petrolei Sinica, 35(3):504-510 (in Chinese with English abstract). http://www.syxb-cps.com.cn/EN/abstract/abstract4587.shtml
      Swami, V., Settari, A.T., Javadpour, F., 2013.A Numerical Model for Multi-Mechanism Flow in Shale Gas Reservoirs with Application to Laboratory Scale Testing.EAGE Annual Conference & Exhibition Incorporating SPE Europec, London.doi:10.2118/164840-MS
      Wang, W.D., Shahvali, M., Su, Y.L., 2015.A Semi-Analytical Fractal Model for Production from Tight Oil Reservoirs with Hydraulically Fractured Horizontal Wells.Fuel, 158:612-618.doi: 10.1016/j.fuel.2015.06.008
      Wang, W.D., Su, Y.L., Mu, L.J., et al., 2013.Influencing Factors of Stimulated Reservoir Volume of Vertical Wells in Tight Oil Reservoirs.Journal of China University of Petroleum (Edition of Natural Science), 37(3):93-97 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX201303019.htm
      Weng, X.W., 2015.Modeling of Complex Hydraulic Fractures in Naturally Fractured Formation.Journal of Unconventional Oil and Gas Resources, 9:114-135.doi: 10.1016/j.juogr.2014.07.001
      Weng, X.W., Kresse, O., Cohen, C.E., et al., 2011.Modeling of Hydraulic-Fracture-Network Propagation in a Naturally Fractured Formation.SPE Production & Operations, 26(4):368-380.doi: 10.2118/140253-PA
      Wu, Q., Xu, Y., Wang, X.Q., et al., 2012.Volume Fracturing Technology of Unconventional Reservoirs:Connotation, Optimization Design and Implementation.Petroleum Exploration and Development, 39(3):352-358 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380412600548
      Wu, S.T., Zou, C.N., Zhu, R.K., et al., 2015.Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin.Earth Science, 40(11):1810-1823 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201511004.htm
      Xu, P., Li, C.H., Qiu, S.X., et al., 2016.A Fractal Network Model for Fractured Porous Media.Fractals, 24(2):1650018.doi: 10.1142/S0218348X16500183
      Xu, P., Yu, B.M., Qiu, S.X., et al., 2008.An Analysis of the Radial Flow in the Heterogeneous Porous Media Based on Fractal and Constructal Tree Networks.Physica A Statistical Mechanics & Its Applications, 387(26):6471-6483.doi: 10.1016/j.physa.2008.08.021
      Xu, W., Calvez, J.H.L., Thiercelin, M.J., 2009.Characterization of Hydraulically-Induced Fracture Network Using Treatment and Microseismic Data in a Tight-Gas Sand Formation:A Geomechanical Approach.SPE Tight Gas Completions Conference, San Antonio.doi:10.2118/125237-MS
      Xu, W.Y., Thiercelin, M.J., Ganguly, U., et al., 2010.Wiremesh:A Novel Shale Fracturing Simulator.International Oil and Gas Conference and Exhibition, Beijing.doi:10.2118/132218-MS
      Yan, B., Wang, Y., Killough, J.E., 2016.Beyond Dual-Porosity Modeling for the Simulation of Complex Flow Mechanisms in Shale Reservoirs.Computational Geosciences, 20(1):69-91.doi: 10.1007/s10596-015-9548-x
      Yang, F., Ning, Z.F., Liu, H.Q., 2014.Fractal Characteristics of Shales from a Shale Gas Reservoir in the Sichuan Basin, China.Fuel, 115(1):378-384.doi: 10.1016/j.fuel.2013.07.040
      Yuan, B., Su, Y.L., Moghanloo, R.G., et al., 2015.A New Analytical Multi-Linear Solution for Gas Flow toward Fractured Horizontal Wells with Different Fracture Intensity.Journal of Natural Gas Science and Engineering, 23:227-238.doi: 10.1016/j.jngse.2015.01.045
      Yuan, B., Wood, D.A., 2015.Production Analysis and Performance Forecasting for Natural Gas Reservoirs:Theory and Practice (2011-2015).Journal of Natural Gas Science and Engineering, 26:1433-1438.doi: 10.1016/j.jngse.2015.08.024
      Zhou, Z.W., Su, Y.L., Wang, W.D., et al., 2016.Integration of Microseismic and Well Production Data for Fracture Network Calibration with an L-System and Rate Transient Analysis.Journal of Unconventional Oil and Gas Resources, 15:113-121.doi: 10.1016/j.juogr.2016.07.001
      陈晓明, 李建忠, 郑民, 等, 2012.干酪根溶解理论及其在页岩气评价中的应用探索.天然气地球科学, 23(1): 14-18. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201201003.htm
      崔明月, 刘玉章, 修乃领, 等, 2014.形成复杂缝网体积(ESRV)的影响因素分析.石油钻采工艺, 36(2): 82-87. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201402026.htm
      杜保健, 程林松, 曹仁义, 等, 2014.致密油藏体积压裂水平井开发效果.大庆石油地质与开发, 33(1): 96-101. http://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201401018.htm
      段永刚, 曹廷宽, 杨小莹, 等, 2015.页岩储层纳米孔隙流动模拟研究.西南石油大学学报(自然科学版), 37(3): 63-68. doi: 10.11885/j.issn.1674-5086.2015.03.16.03
      段瑶瑶, 王欣, 王永辉, 等, 2015.致密砂岩气藏体积改造增产效果数值模拟.非常规油气, 2(2): 48-51. http://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201502011.htm
      樊建明, 杨子清, 李卫兵, 等, 2015.鄂尔多斯盆地长7致密油水平井体积压裂开发效果评价及认识.中国石油大学学报(自然科学版), 39(4): 103-110. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201504014.htm
      康永尚, 邓泽, 王红岩, 等, 2016.流-固耦合物理模拟实验及其对页岩压裂改造的启示.地球科学, 41(8): 1376-1383. http://earth-science.net/WebPage/Article.aspx?id=3344
      刘晓旭, 吴建发, 刘义成, 等, 2013.页岩气"体积压裂"技术与应用.天然气勘探与开发, 36(4):64-70. http://www.cnki.com.cn/Article/CJFDTOTAL-TRJJ201302033.htm
      苏玉亮, 王文东, 盛广龙, 2014.体积压裂水平井复合流动模型.石油学报, 35(3): 504-510. doi: 10.7623/syxb201403012
      王文东, 苏玉亮, 慕立俊, 等, 2013.致密油藏直井体积压裂储层改造体积的影响因素.中国石油大学学报(自然科学版), 37(3): 93-97. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201303019.htm
      吴奇, 胥云, 王晓泉, 等, 2012.非常规油气藏体积改造技术——内涵、优化设计与实现.石油勘探与开发, 39(3): 352-358. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201203013.htm
      吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 40(11): 1810-1823. http://earth-science.net/WebPage/Article.aspx?id=3188
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  6570
    • HTML全文浏览量:  4190
    • PDF下载量:  89
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-02-21
    • 刊出日期:  2017-08-15

    目录

      /

      返回文章
      返回