Fe Isotopic Composition Heterogeneity of Seawater Profiles and Its Influence Factors
-
摘要: 全球海水剖面Fe同位素组成存在显著不均一性.对大西洋洋中脊、大西洋近海岸带、东太平洋和西太平洋弧后扩张中心多个站位的海水剖面溶解Fe浓度和Fe同位素组成进行了综合分析,得出以下主要认识:(1)不同区域的海水剖面溶解Fe浓度和Fe同位素组成呈现不同的变化特征,海水Fe同位素的变化趋势与海水溶解氧浓度变化一致,而与海水溶解Fe浓度呈镜像变化关系;(2)不同深度的海水溶解Fe浓度和Fe同位素组成特征的主要控制因素不同.表层海水受到大气降尘、生物作用影响呈现富重Fe同位素特征,受河流的影响Fe同位素组成偏轻;深层海水主要受到深海沉积和海底热液活动的影响,其中沉积物中的非还原溶解Fe导致海水富集重Fe同位素,而受洋中脊热液流体影响的深部海水显著富集轻Fe同位素;(3)将目前已知海底热液溶解Fe通量最小值(0.5 Gmol/a)作为全球大洋的热液溶解Fe通量,利用不同来源的溶解Fe同位素与其通量间的关系估算海底热液对海洋的Fe循环的贡献为~5.5%.由于海底热液流体的Fe通量可能远大于0.5 Gmol/a,因此,海底热液活动对海洋溶解Fe的贡献可能远超过前人的估算结果(6.0%).Abstract: The isotopic compositions of Fe in the seawater profiles are remarkably heterogeneous. Dissolved Fe concentrations and Fe isotopic compositions in the seawater from the mid-ocean ridge and coastal zone of the Atlantic Ocean, the East Pacific and the West Pacific back-arc spreading centers were analyzed. In this paper, the dissolved Fe concentrations and Fe isotopic compositions in the seawater from surface layer, middle layer and deep sea are investigated, and the controlling factors on the ocean Fe cycle and the contribution of seafloor hydrothermal activity to seawater Fe isotopic composition are unveiled. Primary conclusions are as follows:(1) both the dissolved Fe concentrations and Fe isotopic compositions in the seawater profiles vary from region to region. The Fe isotopic compositions keep in line with dissolved oxygen concentration, but exhibit mirror image relationship with dissolved Fe concentrations; (2) the main controlling factors of dissolved Fe concentrations and Fe isotopic compositions in different seawater depths are different. Surface water is influenced by atmospheric dust and biological effects, which leads to heavier Fe isotopic composition, but it tends to become lighter when affected by the river. The deep-sea water is mainly influenced by sediment and seafloor hydrothermal activity. The non-reducing dissolved Fe from the sediment leads to heavier Fe isotopic composition, while mid-ocean-ridge hydrothermal fluid contributes to lighter Fe isotopic composition; (3) the estimated global hydrothermal fluid contribution to seawater Fe budget reaches to about 5.5% based on the relationship between dissolved Fe isotope and its flux, when put the minimum value of hydrothermal dissolved Fe (0.5 Gmol/a) as mid-ocean-ridge hydrothermal inputs to the global ocean. Owing to the fact that the dissolved Fe isotope flux from hydrothermal fluid is more than 0.5 Gmol/a, the contribution of the dissolved Fe to seawater may greatly exceed the previous estimation (6.0%).
-
Key words:
- dissolved Fe /
- Fe isotope /
- Fe flux /
- heterogeneity /
- hydrothermal fluid /
- marine geology
-
图 2 太平洋和大西洋不同站位海水剖面溶解Fe、溶解氧浓度和Fe同位素组成变化
a.东太平洋SAFe站位引自(Conway and John, 2015);b.赤道太平洋14、28站位数据来自(Radic et al., 2011);c, d.北大西洋USGT站位数据来自(Resing et al., 2015);e.南大西洋5、7、9站位数据来自(Saito et al., 2013)
Fig. 2. Dissolved Fe, dissolved oxygen concentration and Fe isotope profiles from the Atlantic and Pacific oceans
图 3 大西洋和太平洋表层海水溶解Fe浓度和Fe同位素组成
a.北大西洋USGT-10航次站位;b.北大西洋USGT-11航次站位;c.东太平洋SAFe站位;溶解Fe浓度和Fe同位素数据来自(Conway and John, 2015; Resing et al., 2015),营养盐数据来自(Conway and John, 2015)
Fig. 3. Dissolved Fe concentrations and Fe isotopic compositions of surface waters from the Atlantic and Pacific oceans
图 4 南大西洋、南太平洋和东南太平洋热液溶解Fe与3He的浓度关系
南大西洋溶解Fe、3He浓度数据来自(Saito et al., 2013),南太平洋溶解Fe、3He浓度数据来自(Fitzsimmons et al., 2014),东南太平洋溶解Fe、3He浓度数据来自(Resing et al., 2015)
Fig. 4. Relationship between dissolved Fe and 3He of South Atlantic, South Pacific and southeast Pacific oceans
图 5 大西洋、东太平洋热液流体对海水溶解Fe浓度、Fe同位素的响的水深剖面
a.北大西洋USGT-11航次站位;b.南大西洋CoFeMUG航次站位;c.东太平洋SAFe站位;引自数据见图 2
Fig. 5. The influence of hydrothermal fluid of the Atlantic and eastern Pacific oceans on dissolved Fe concentration and Fe isotope
-
Archer, D.E., Johnson, K., 2000.A Model of the Iron Cycle in the Ocean. Global Biogeochemical Cycles, 14(1):269-279.doi: 10.1029/1999gb900053 Balci, N., Bullen, T.D., Witte-Lien, K., et al., 2006.Iron Isotope Fractionation during Microbially Stimulated Fe(Ⅱ) Oxidation and Fe(Ⅲ) Precipitation. Geochimica et Cosmochimica Acta, 70(3):622-639.doi: 10.1016/j.gca.2005.09.025 Beard, B.L., Johnson, C.M., 2004.Fe Isotope Variations in the Modern and Ancient Earth and other Planetary Bodies. Reviews in Mineralogy and Geochemistry, 55(1):319-357.doi: 10.2138/gsrmg.55.1.319 Beard, B.L., Johnson, C.M., von Damm, K.L.V., et al., 2003.Iron Isotope Constraints on Fe Cycling and Mass Balance in Oxygenated Earth Oceans. Geology, 31(7):629.doi:10.1130/0091-7613(2003)031<0629:iicofc>2.0.co; 2 Bennett, S.A., Achterberg, E.P., Connelly, D.P., et al., 2008.The Distribution and Stabilisation of Dissolved Fe in Deep-Sea Hydrothermal Plumes. Earth and Planetary Science Letters, 270(3-4):157-167.doi: 10.1016/j.epsl.2008.01.048 Bergquist, B.A., Boyle, E.A., 2006.Iron Isotopes in the Amazon River System:Weathering and Transport Signatures. Earth and Planetary Science Letters, 248(1-2):54-68.doi: 10.1016/j.epsl.2006.05.004 Boyd, P.W., Ellwood, M.J., 2010.The Biogeochemical Cycle of Iron in the Ocean. Nature Geoscience, 3(10):675-682.doi: 10.1038/ngeo964 Boyd, P.W., Jickells, T., Law, C.S., et al., 2007.Mesoscale Iron Enrichment Experiments 1993-2005:Synthesis and Future Directions. Science, 315(5812):612-617.doi: 10.1126/science.1131669 Bruland, K.W., Lohan, M.C., 2003.Controls of Trace Metals in Seawater. Treatiseon Geochemistry, 23-47.doi: 10.1016/b0-08-043751-6/06105-3 Chen, J.B., Busigny, V., Gaillardet, J., et al., 2014.Iron Isotopes in the Seine River (France):Natural Versus Anthropogenic Sources. Geochimica et Cosmochimica Acta, 128:128-143.doi: 10.1016/j.gca.2013.12.017 Conway, T.M., John, S.G., 2014.Quantification of Dissolved Iron Sources to the North Atlantic Ocean. Nature, 511(7508):212-215.doi: 10.1038/nature13482 Conway, T.M., John, S.G., 2015.The Cycling of Iron, Zinc and Cadmium in the North East Pacific Ocean-Insights from Stable Isotopes. Geochimica et Cosmochimica Acta, 164:262-283.doi: 10.1016/j.gca.2015.05.023 Conway, T.M., Rosenberg, A.D., Adkins, J.F., et al., 2013.A New Method for Precise Determination of Iron, Zinc and Cadmium Stable Isotope Ratios in Seawater by Double-Spike MassSpectrometry. Analytica Chimica Acta, 793:44-52.doi: 10.1016/j.aca.2013.07.025 Douville, E., Charlou, J.L., Oelkers, E.H., et al., 2002.The Rainbow Vent Fluids (36°14'N, MAR):The Influence of Ultramafic Rocks and Phase Separation on Trace Metal Content in Mid-Atlantic Ridge Hydrothermal Fluids. Chemical Geology, 184(1-2):37-48.doi: 10.1016/s0009-2541(01)00351-5 Elderfield, H., Schultz, A., 1996.Mid-Ocean Ridge Hydrothermal Fluxes and the Chemical Composition of the Ocean. Annual Review of Earth and Planetary Sciences, 24(1):191-224.doi: 10.1146/annurev.earth.24.1.191 Elrod, V.A., Berelson, W.M., Coale, K.H., et al., 2004.The Flux of Iron from Continental Shelf Sediments:A Missing Source for Global Budgets. Geophysical Research Letters, 31(12):L12307.doi: 10.1029/2004gl020216 Fantle, M.S., DePaolo, D.J., 2004.Iron Isotopic Fractionation during Continental Weathering. Earth and Planetary Science Letters, 228(3-4):547-562.doi: 10.1016/j.epsl.2004.10.013 Farley, K.A., Maier-Reimer, E., Schlosser, P., et al., 1995.Constraints on Mantle 3He Fluxes and Deep-Sea Circulation from an Oceanic General Circulation Model. Journal of Geophysical Research:Solid Earth, 100(B3):3829-3839.doi: 10.1029/94jb02913 Feely, R.A., Baker, E.T., Marumo, K., et al., 1996.Hydrothermal Plume Particles and Dissolved Phosphate over the Superfast-Spreading Southern East Pacific Rise. Geochimica et Cosmochimica Acta, 60(13):2297-2323.doi: 10.1016/0016-7037(96)00099-3 Feng, Y.Y., Liu, D.Y., Zhang, M.P., et al., 2004.A Summary of Determination Methods of Ironin Sea Water. Marine Sciences, 28(1):71-75(in Chinese with English abstract). https://www.researchgate.net/publication/271328297_A_summary_of_determination_methods_of_iron_in_sea_water_In_Chinese_with_English_abstract Fitzsimmons, J.N., Boyle, E.A., Jenkins, W.J., 2014.Distal Transport of Dissolved Hydrothermal Iron in the Deep South Pacific Ocean. Proceedings of the National Academy of Sciences, 111(47):16654-16661.doi: 10.1073/pnas.1418778111 Fitzsimmons, J.N., Carrasco, G.G., Wu, J.F., et al., 2015.Partitioning of Dissolved Iron and Iron Isotopes into Soluble and Colloidal Phases along the GA03 GEOTRACES North Atlantic Transect. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 116:130-151.doi: 10.1016/j.dsr2.2014.11.014 Frants, M., Holzer, M., DeVries, T., et al., 2016.Constraints on the Global MarineIron Cycle from a Simple Inverse Model. Journal of Geophysical Research:Biogeosciences, 121(1):28-51.doi: 10.1002/2015jg003111 Haase, K.M., Koschinsky, A., Petersen, S., et al., 2009.Diking, Young Volcanism and Diffuse Hydrothermal Activity on the Southern Mid-Atlantic Ridge:The Lilliput Field at 9°33'S. Marine Geology, 266(1-4):52-64.doi: 10.1016/j.margeo.2009.07.012 Hannington, M., 2012.Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Economic Geology, 107(2):381-382.doi: 10.2113/econgeo.107.2.381 Hautala, S.L., Riser, S.C., 1993.A Nonconservative β-Spiral Determination of the Deep Circulation in the Eastern South Pacific. Journal of Physical Oceanography, 23(9):1975-2000.doi:10.1175/1520-0485(1993)023<1975:ANSDOT>2.0.CO; 2 Homoky, W.B., Severmann, S., Mills, R.A., et al., 2009.Pore-Fluid Fe Isotopes Reflect the Extent of Benthic Fe Redox Recycling:Evidence from Continental Shelf and Deep-Sea Sediments. Geology, 37(8):751-754.doi: 10.1130/g25731a.1 Jiang, J.S., Zheng, Y.Y., Gao, S.B., et al., 2015.Genesis of Chazangcuo Cu-Pb-Zn Deposit, Tibet:Constraints from C-H-O-S-Pb Isotope Geochemistry. Earth Science, 40(6):1006-1016(in Chinese with English abstract). Jickells, T.D., Spokes, L.J., 2001.Atmospheric Iron Inputs to The Oceans. IUPAC Series on Analytical and Physical Chemistry of Environmental Systems, 7:85-122. https://ueaeprints.uea.ac.uk/32319/ John, S.G., Adkins, J.F., 2010.Analysis of Dissolved Iron Isotopes in Seawater. Marine Chemistry, 119(1-4):65-76.doi: 10.1016/j.marchem.2010.01.001 John, S.G., Adkins, J., 2012.The Vertical Distribution of Iron Stable Isotopes in the North Atlantic near Bermuda. Global Biogeochemical Cycles, 26(2):GB2034.doi: 10.1029/2011gb004043 John, S.G., Mendez, J., Moffett, J., et al., 2012.The Flux of Iron and Iron Isotopes from San Pedro Basin Sediments. Geochimica et Cosmochimica Acta, 93:14-29.doi: 10.1016/j.gca.2012.06.003 Johnson, C.M., Beard, B.L., Roden, E.E., 2008.The Iron Isotope Fingerprints of Redox and Biogeochemical Cycling in Modern and Ancient Earth. Annual Reviewof Earth and Planetary Sciences, 36(1):457-493.doi: 10.1146/annurev.earth.36.031207.124139 Johnson, C.M., Skulan, J.L., Beard, B.L., et al., 2002.Isotopic Fractionation between Fe(Ⅲ) and Fe(Ⅱ) in Aqueous Solutions. Earth and Planetary Science Letters, 195(1-2):141-153.doi: 10.1016/s0012-821x(01)00581-7 Johnson, K.S., Needoba, J.A., Riser, S.C., et al., 2007.Chemical Sensor Networks for the Aquatic Environment. Chemical Reviews, 107(2):623-640.doi: 10.1021/cr050354e Kineke, G.C., Woolfe, K.J., Kuehl, S.A., et al., 2000.Sediment Export from the Sepik River, Papua New Guinea:Evidence for a Divergent Sediment Plume. Continental Shelf Research, 20(16):2239-2266.doi: 10.1016/s0278-4343(00)00069-8 Körtzinger, A., Schimanski, J., Send, U., et al., 2004.The Ocean Takes a Deep Breath. Science, 306(5700):1337-1337.doi: 10.1126/science.1102557 Lacan, F., Radic, A., Jeandel, C., et al., 2008.Measurement of the Isotopic Composition of DissolvedIron in the Open Ocean. Geophysical Research Letters, 35(24):L24610.doi: 10.1029/2008gl035841 Lefèvre, N., Watson, A.J., 1999.Modeling the Geochemical Cycle of Iron in the Oceans and Its Impact on Atmospheric CO2 Concentrations. Global Biogeochemical Cycles, 13(3):727-736.doi: 10.1029/1999gb900034 Lisitsyn, A.P., Crook, K.A.W., Bogdanov, Y.A., et al., 1993.A Hydrothermal Field in the Rift Zone of the Manus Basin, Bismarck Sea. International Geology Review, 35(2):105-126.doi: 10.1080/00206819309465517 Lupton, J.E., Craig, H., 1981.A Major Helium-3 Source at 15 S on the East Pacific Rise. Science, 214(4516):13-18.doi: 10.1126/science.214.4516.13 Lupton, J., 1998.Hydrothermal Helium Plumes in the Pacific Ocean. Journal of Geophysical Research:Oceans, 103(C8):15853-15868.doi: 10.1029/98jc00146 Mahowald, N.M., Muhs, D.R., Levis, S., et al., 2006.Change in Atmospheric Mineral Aerosols in Response to Climate:Last Glacial Period, Preindustrial, Modern, and Doubled Carbon Dioxide Climates. Journal of Geophysical Research:Atmospheres, 111(D10):D10202.doi: 10.1029/2005jd006653 Martin, J.H., 1990.Glacial-Interglacial CO2 Change:The Iron Hypothesis. Paleoceanography, 5(1):1-13.doi: 10.1029/pa005i001p00001 Melchert, B., Devey, C.W., German, C.R., et al., 2008.First Evidence for High-Temperature Off-Axis Venting of Deep Crustal/Mantle Heat:The Nibelungen Hydrothermal Field, Southern Mid-Atlantic Ridge. Earth and Planetary Science Letters, 275(1-2):61-69.doi: 10.1016/j.epsl.2008.08.010 Moore, J.K., Doney, S.C., Glover, D.M., et al., 2001.Iron Cycling and Nutrient-Limitation Patterns in Surface Waters of the World Ocean. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 49(1-3):463-507.doi: 10.1016/s0967-0645(01)00109-6 Parekh, P., Follows, M.J., Boyle, E.A., 2005.Decoupling of Iron and Phosphate in the Global Ocean. Global Biogeochemical Cycles, 19(2):GB2020.doi: 10.1029/2004gb002280 Poitrasson, F., Vieira, L.C., Seyler, P., et al., 2014.Iron Isotope Composition of the Bulk Waters and Sediments from the Amazon River Basin. Chemical Geology, 377:1-11.doi: 10.1016/j.chemgeo.2014.03.019 Poulton, S.W., Raiswell, R., 2002.The Low-Temperature Geochemical Cycle of Iron:From Continental Fluxes to Marine Sediment Deposition. American Journal of Science, 302(9):774-805.doi: 10.2475/ajs.302.9.774 Radic, A., Lacan, F., Murray, J.W., 2011.Iron Isotopes in the Seawater of the Equatorial Pacific Ocean:New Constraints for the Oceanic Iron Cycle. Earth and Planetary Science Letters, 306(1-2):1-10.doi: 10.1016/j.epsl.2011.03.015 Resing, J.A., Sedwick, P.N., German, C.R., et al., 2015.Basin-Scale Transport of Hydrothermal Dissolved Metals Across the South Pacific Ocean. Nature, 523(7559):200-203.doi: 10.1038/nature14577 Rouxel, O., Shanks Ⅲ, W.C., Bach, W., et al., 2008.Integrated Fe-And S-Isotope Study of Seafloor Hydrothermal Vents at East Pacific Rise 9-10°N. Chemical Geology, 252(3-4):214-227.doi: 10.1016/j.chemgeo.2008.03.009 Rüth, C., Well, R., Roether, W., 2000.Primordial 3He in South Atlantic Deep Waters from Sources on the Mid-Atlantic Ridge. Deep Sea Research Part I:Oceanographic Research Papers, 47(6):1059-1075.doi: 10.1016/s0967-0637(99)00077-1 Saito, M.A., Noble, A.E., Tagliabue, A., et al., 2013.Slow-Spreading Submarine Ridges in the South Atlantic as a Significant Oceanic Iron Source. Nature Geoscience, 6(9):775-779.doi: 10.1038/ngeo1893 Sander, S.G., Koschinsky, A., 2011.Metal Flux from Hydrothermal Vents Increased by Organic Complexation. Nature Geoscience, 4(3):145-150.doi: 10.1038/ngeo1088 Sands, C.M., Connelly, D.P., Statham, P.J., et al., 2012.Size Fractionation of Trace Metals in the Edmond Hydrothermal Plume, Central Indian Ocean. Earth and Planetary Science Letters, 319-320:15-22.doi: 10.1016/j.epsl.2011.12.031 Severmann, S., Johnson, C.M., Beard, B.L., et al., 2006.The Effect of Early Diagenesis on the Fe Isotope Compositions of Porewaters and Authigenic Minerals in Continental Margin Sediments. Geochimica et Cosmochimica Acta, 70(8):2006-2022.doi: 10.1016/j.gca.2006.01.007 Staubwasser, M., Schoenberg, R., von Blanckenburg, F., et al., 2013.Isotope Fractionation between Dissolved and Suspended Particulate Fe in the Oxic and Anoxic Water Column of the Baltic Sea. Biogeosciences, 10(1):233-245.doi: 10.5194/bg-10-233-2013 Tagliabue, A., Bopp, L., Dutay, J.C., et al., 2010.Hydrothermal Contribution to the Oceanic Dissolved Iron Inventory. Nature Geoscience, 3(4):252-256.doi: 10.1038/ngeo818 Talley, L.D., Johnson, G.C., 1994.Deep, Zonal Subequatorial Currents. Science, 263(5150):1125-1128.doi: 10.1126/science.263.5150.1125 Von Damm, K., 1990.Seafloor Hydrothermal Activity:Black Smoker Chemistry and Chimneys. Annual Review of Earth and Planetary Sciences, 18(1):173-204.doi: 10.1146/annurev.earth.18.1.173 Waeles, M., Baker, A.R., Jickells, T., et al., 2007.Global Dust Teleconnections:Aerosol Iron Solubility and Stable Isotope Composition. Environmental Chemistry, 4(4):233-237.doi: 10.1071/en07013 Wu, J.F., Wells, M.L., Rember, R., 2011.Dissolved Iron Anomaly in the Deep Tropical-Subtropical Pacific:Evidence for Long-Range Transport of Hydrothermal Iron. Geochimica et Cosmochimica Acta, 75(2):460-468.doi: 10.1016/j.gca.2010.10.024 Yan, B., Zhu, X.K., Tang, S.H., etal., 2010.Fe Isotopic Characteristics of the Neoproterozoic BIF in Guangxi Province and Its Implications. Acta Geologica Sinica, 84(7):1080-1086(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201007012.htm Yu, W.C., Du, Y.S., Zhou, Q., et al., 2016.Provenance of Nanhuan Datangpo Formation Manganese Mn Deposit in Songtao Area, East Guizhou Province:Evidence from Sr Isotope. Earth Science, 41(7):1110-1120 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_dqkx201607003 Yücel, M., Gartman, A., Chan, C.S., et al., 2011.Hydrothermal Vents as a Kinetically Stable Source of Iron-Sulphide-Bearing Nanoparticles to the Ocean. Nature Geoscience, 4(6):367-371.doi: 10.1038/ngeo1148 Zhu, X.K., Guo, Y., Williams, R.J.P., et al., 2002.Mass Fractionation Processes of Transition Metal Isotopes. Earth and Planetary Science Letters, 200(1-2):47-62.doi: 10.1016/s0012-821x(02)00615-5 Zhu, X.K., O'Nions, R.K., Guo, Y., et al., 2000.Secular Variation of Iron Isotopes in North Atlantic Deep Water. Science, 287(5460).doi: 10.1126/science.287.5460.2000 冯媛媛, 刘东艳, 张曼平, 等, 2004.海水中铁的测定方法.海洋科学, 28(1):71-75. http://www.cnki.com.cn/Article/CJFDTOTAL-HYKX200401016.htm 姜军胜, 郑有业, 高顺宝, 等, 2015.西藏查藏错铜铅锌矿床成因:C-H-O-S-Pb同位素制约.地球科学, 40(6):1006-1016. http://www.earth-science.net/WebPage/Article.aspx?id=3098 闫斌, 朱祥坤, 唐索寒, 等, 2010.广西新元古代BIF的铁同位素特征及其地质意义.地质学报, 84(7):1080-1086. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201007012.htm 余文超, 杜远生, 周琦, 等, 2016.黔东松桃南华系大塘坡组锰矿层物源:来自Sr同位素的证据.地球科学, 41(7):1110-1120. http://www.earth-science.net/WebPage/Article.aspx?id=3322