• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    全球海水剖面Fe同位素组成的不均一性及其影响因素

    王建强 李小虎 毕冬伟 伍锡昌 初凤友

    王建强, 李小虎, 毕冬伟, 伍锡昌, 初凤友, 2017. 全球海水剖面Fe同位素组成的不均一性及其影响因素. 地球科学, 42(9): 1519-1530. doi: 10.3799/dqkx.2017.533
    引用本文: 王建强, 李小虎, 毕冬伟, 伍锡昌, 初凤友, 2017. 全球海水剖面Fe同位素组成的不均一性及其影响因素. 地球科学, 42(9): 1519-1530. doi: 10.3799/dqkx.2017.533
    Wang Jianqiang, Li Xiaohu, Bi Dongwei, Wu Xichang, Chu Fengyou, 2017. Fe Isotopic Composition Heterogeneity of Seawater Profiles and Its Influence Factors. Earth Science, 42(9): 1519-1530. doi: 10.3799/dqkx.2017.533
    Citation: Wang Jianqiang, Li Xiaohu, Bi Dongwei, Wu Xichang, Chu Fengyou, 2017. Fe Isotopic Composition Heterogeneity of Seawater Profiles and Its Influence Factors. Earth Science, 42(9): 1519-1530. doi: 10.3799/dqkx.2017.533

    全球海水剖面Fe同位素组成的不均一性及其影响因素

    doi: 10.3799/dqkx.2017.533
    基金项目: 

    国家自然科学基金项目 41406066

    国家重点基础研究发展计划项目 2013CB429705

    浙江省自然科学基金项目 LY14D060005

    国家自然科学基金项目 41276055

    详细信息
      作者简介:

      王建强(1989-), 男, 硕士研究生, 主要从事海底热液硫化物成矿研究

      通讯作者:

      李小虎, E-mail:xhli@sio.org.cn

    • 中图分类号: P736.4

    Fe Isotopic Composition Heterogeneity of Seawater Profiles and Its Influence Factors

    • 摘要: 全球海水剖面Fe同位素组成存在显著不均一性.对大西洋洋中脊、大西洋近海岸带、东太平洋和西太平洋弧后扩张中心多个站位的海水剖面溶解Fe浓度和Fe同位素组成进行了综合分析,得出以下主要认识:(1)不同区域的海水剖面溶解Fe浓度和Fe同位素组成呈现不同的变化特征,海水Fe同位素的变化趋势与海水溶解氧浓度变化一致,而与海水溶解Fe浓度呈镜像变化关系;(2)不同深度的海水溶解Fe浓度和Fe同位素组成特征的主要控制因素不同.表层海水受到大气降尘、生物作用影响呈现富重Fe同位素特征,受河流的影响Fe同位素组成偏轻;深层海水主要受到深海沉积和海底热液活动的影响,其中沉积物中的非还原溶解Fe导致海水富集重Fe同位素,而受洋中脊热液流体影响的深部海水显著富集轻Fe同位素;(3)将目前已知海底热液溶解Fe通量最小值(0.5 Gmol/a)作为全球大洋的热液溶解Fe通量,利用不同来源的溶解Fe同位素与其通量间的关系估算海底热液对海洋的Fe循环的贡献为~5.5%.由于海底热液流体的Fe通量可能远大于0.5 Gmol/a,因此,海底热液活动对海洋溶解Fe的贡献可能远超过前人的估算结果(6.0%).

       

    • 图  1  海水剖面站位分布示意

      红色实心圆为海水剖面站位;橙色实心三角形为热液活动区

      Fig.  1.  Location of sea profile stations

      图  2  太平洋和大西洋不同站位海水剖面溶解Fe、溶解氧浓度和Fe同位素组成变化

      a.东太平洋SAFe站位引自(Conway and John, 2015);b.赤道太平洋14、28站位数据来自(Radic et al., 2011);c, d.北大西洋USGT站位数据来自(Resing et al., 2015);e.南大西洋5、7、9站位数据来自(Saito et al., 2013)

      Fig.  2.  Dissolved Fe, dissolved oxygen concentration and Fe isotope profiles from the Atlantic and Pacific oceans

      图  3  大西洋和太平洋表层海水溶解Fe浓度和Fe同位素组成

      a.北大西洋USGT-10航次站位;b.北大西洋USGT-11航次站位;c.东太平洋SAFe站位;溶解Fe浓度和Fe同位素数据来自(Conway and John, 2015; Resing et al., 2015),营养盐数据来自(Conway and John, 2015)

      Fig.  3.  Dissolved Fe concentrations and Fe isotopic compositions of surface waters from the Atlantic and Pacific oceans

      图  4  南大西洋、南太平洋和东南太平洋热液溶解Fe与3He的浓度关系

      南大西洋溶解Fe、3He浓度数据来自(Saito et al., 2013),南太平洋溶解Fe、3He浓度数据来自(Fitzsimmons et al., 2014),东南太平洋溶解Fe、3He浓度数据来自(Resing et al., 2015)

      Fig.  4.  Relationship between dissolved Fe and 3He of South Atlantic, South Pacific and southeast Pacific oceans

      图  5  大西洋、东太平洋热液流体对海水溶解Fe浓度、Fe同位素的响的水深剖面

      a.北大西洋USGT-11航次站位;b.南大西洋CoFeMUG航次站位;c.东太平洋SAFe站位;引自数据见图 2

      Fig.  5.  The influence of hydrothermal fluid of the Atlantic and eastern Pacific oceans on dissolved Fe concentration and Fe isotope

    • [1] Archer, D.E., Johnson, K., 2000.A Model of the Iron Cycle in the Ocean. Global Biogeochemical Cycles, 14(1):269-279.doi: 10.1029/1999gb900053
      [2] Balci, N., Bullen, T.D., Witte-Lien, K., et al., 2006.Iron Isotope Fractionation during Microbially Stimulated Fe(Ⅱ) Oxidation and Fe(Ⅲ) Precipitation. Geochimica et Cosmochimica Acta, 70(3):622-639.doi: 10.1016/j.gca.2005.09.025
      [3] Beard, B.L., Johnson, C.M., 2004.Fe Isotope Variations in the Modern and Ancient Earth and other Planetary Bodies. Reviews in Mineralogy and Geochemistry, 55(1):319-357.doi: 10.2138/gsrmg.55.1.319
      [4] Beard, B.L., Johnson, C.M., von Damm, K.L.V., et al., 2003.Iron Isotope Constraints on Fe Cycling and Mass Balance in Oxygenated Earth Oceans. Geology, 31(7):629.doi:10.1130/0091-7613(2003)031<0629:iicofc>2.0.co; 2
      [5] Bennett, S.A., Achterberg, E.P., Connelly, D.P., et al., 2008.The Distribution and Stabilisation of Dissolved Fe in Deep-Sea Hydrothermal Plumes. Earth and Planetary Science Letters, 270(3-4):157-167.doi: 10.1016/j.epsl.2008.01.048
      [6] Bergquist, B.A., Boyle, E.A., 2006.Iron Isotopes in the Amazon River System:Weathering and Transport Signatures. Earth and Planetary Science Letters, 248(1-2):54-68.doi: 10.1016/j.epsl.2006.05.004
      [7] Boyd, P.W., Ellwood, M.J., 2010.The Biogeochemical Cycle of Iron in the Ocean. Nature Geoscience, 3(10):675-682.doi: 10.1038/ngeo964
      [8] Boyd, P.W., Jickells, T., Law, C.S., et al., 2007.Mesoscale Iron Enrichment Experiments 1993-2005:Synthesis and Future Directions. Science, 315(5812):612-617.doi: 10.1126/science.1131669
      [9] Bruland, K.W., Lohan, M.C., 2003.Controls of Trace Metals in Seawater. Treatiseon Geochemistry, 23-47.doi: 10.1016/b0-08-043751-6/06105-3
      [10] Chen, J.B., Busigny, V., Gaillardet, J., et al., 2014.Iron Isotopes in the Seine River (France):Natural Versus Anthropogenic Sources. Geochimica et Cosmochimica Acta, 128:128-143.doi: 10.1016/j.gca.2013.12.017
      [11] Conway, T.M., John, S.G., 2014.Quantification of Dissolved Iron Sources to the North Atlantic Ocean. Nature, 511(7508):212-215.doi: 10.1038/nature13482
      [12] Conway, T.M., John, S.G., 2015.The Cycling of Iron, Zinc and Cadmium in the North East Pacific Ocean-Insights from Stable Isotopes. Geochimica et Cosmochimica Acta, 164:262-283.doi: 10.1016/j.gca.2015.05.023
      [13] Conway, T.M., Rosenberg, A.D., Adkins, J.F., et al., 2013.A New Method for Precise Determination of Iron, Zinc and Cadmium Stable Isotope Ratios in Seawater by Double-Spike MassSpectrometry. Analytica Chimica Acta, 793:44-52.doi: 10.1016/j.aca.2013.07.025
      [14] Douville, E., Charlou, J.L., Oelkers, E.H., et al., 2002.The Rainbow Vent Fluids (36°14'N, MAR):The Influence of Ultramafic Rocks and Phase Separation on Trace Metal Content in Mid-Atlantic Ridge Hydrothermal Fluids. Chemical Geology, 184(1-2):37-48.doi: 10.1016/s0009-2541(01)00351-5
      [15] Elderfield, H., Schultz, A., 1996.Mid-Ocean Ridge Hydrothermal Fluxes and the Chemical Composition of the Ocean. Annual Review of Earth and Planetary Sciences, 24(1):191-224.doi: 10.1146/annurev.earth.24.1.191
      [16] Elrod, V.A., Berelson, W.M., Coale, K.H., et al., 2004.The Flux of Iron from Continental Shelf Sediments:A Missing Source for Global Budgets. Geophysical Research Letters, 31(12):L12307.doi: 10.1029/2004gl020216
      [17] Fantle, M.S., DePaolo, D.J., 2004.Iron Isotopic Fractionation during Continental Weathering. Earth and Planetary Science Letters, 228(3-4):547-562.doi: 10.1016/j.epsl.2004.10.013
      [18] Farley, K.A., Maier-Reimer, E., Schlosser, P., et al., 1995.Constraints on Mantle 3He Fluxes and Deep-Sea Circulation from an Oceanic General Circulation Model. Journal of Geophysical Research:Solid Earth, 100(B3):3829-3839.doi: 10.1029/94jb02913
      [19] Feely, R.A., Baker, E.T., Marumo, K., et al., 1996.Hydrothermal Plume Particles and Dissolved Phosphate over the Superfast-Spreading Southern East Pacific Rise. Geochimica et Cosmochimica Acta, 60(13):2297-2323.doi: 10.1016/0016-7037(96)00099-3
      [20] Feng, Y.Y., Liu, D.Y., Zhang, M.P., et al., 2004.A Summary of Determination Methods of Ironin Sea Water. Marine Sciences, 28(1):71-75(in Chinese with English abstract). https://www.researchgate.net/publication/271328297_A_summary_of_determination_methods_of_iron_in_sea_water_In_Chinese_with_English_abstract
      [21] Fitzsimmons, J.N., Boyle, E.A., Jenkins, W.J., 2014.Distal Transport of Dissolved Hydrothermal Iron in the Deep South Pacific Ocean. Proceedings of the National Academy of Sciences, 111(47):16654-16661.doi: 10.1073/pnas.1418778111
      [22] Fitzsimmons, J.N., Carrasco, G.G., Wu, J.F., et al., 2015.Partitioning of Dissolved Iron and Iron Isotopes into Soluble and Colloidal Phases along the GA03 GEOTRACES North Atlantic Transect. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 116:130-151.doi: 10.1016/j.dsr2.2014.11.014
      [23] Frants, M., Holzer, M., DeVries, T., et al., 2016.Constraints on the Global MarineIron Cycle from a Simple Inverse Model. Journal of Geophysical Research:Biogeosciences, 121(1):28-51.doi: 10.1002/2015jg003111
      [24] Haase, K.M., Koschinsky, A., Petersen, S., et al., 2009.Diking, Young Volcanism and Diffuse Hydrothermal Activity on the Southern Mid-Atlantic Ridge:The Lilliput Field at 9°33'S. Marine Geology, 266(1-4):52-64.doi: 10.1016/j.margeo.2009.07.012
      [25] Hannington, M., 2012.Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Economic Geology, 107(2):381-382.doi: 10.2113/econgeo.107.2.381
      [26] Hautala, S.L., Riser, S.C., 1993.A Nonconservative β-Spiral Determination of the Deep Circulation in the Eastern South Pacific. Journal of Physical Oceanography, 23(9):1975-2000.doi:10.1175/1520-0485(1993)023<1975:ANSDOT>2.0.CO; 2
      [27] Homoky, W.B., Severmann, S., Mills, R.A., et al., 2009.Pore-Fluid Fe Isotopes Reflect the Extent of Benthic Fe Redox Recycling:Evidence from Continental Shelf and Deep-Sea Sediments. Geology, 37(8):751-754.doi: 10.1130/g25731a.1
      [28] Jiang, J.S., Zheng, Y.Y., Gao, S.B., et al., 2015.Genesis of Chazangcuo Cu-Pb-Zn Deposit, Tibet:Constraints from C-H-O-S-Pb Isotope Geochemistry. Earth Science, 40(6):1006-1016(in Chinese with English abstract).
      [29] Jickells, T.D., Spokes, L.J., 2001.Atmospheric Iron Inputs to The Oceans. IUPAC Series on Analytical and Physical Chemistry of Environmental Systems, 7:85-122. https://ueaeprints.uea.ac.uk/32319/
      [30] John, S.G., Adkins, J.F., 2010.Analysis of Dissolved Iron Isotopes in Seawater. Marine Chemistry, 119(1-4):65-76.doi: 10.1016/j.marchem.2010.01.001
      [31] John, S.G., Adkins, J., 2012.The Vertical Distribution of Iron Stable Isotopes in the North Atlantic near Bermuda. Global Biogeochemical Cycles, 26(2):GB2034.doi: 10.1029/2011gb004043
      [32] John, S.G., Mendez, J., Moffett, J., et al., 2012.The Flux of Iron and Iron Isotopes from San Pedro Basin Sediments. Geochimica et Cosmochimica Acta, 93:14-29.doi: 10.1016/j.gca.2012.06.003
      [33] Johnson, C.M., Beard, B.L., Roden, E.E., 2008.The Iron Isotope Fingerprints of Redox and Biogeochemical Cycling in Modern and Ancient Earth. Annual Reviewof Earth and Planetary Sciences, 36(1):457-493.doi: 10.1146/annurev.earth.36.031207.124139
      [34] Johnson, C.M., Skulan, J.L., Beard, B.L., et al., 2002.Isotopic Fractionation between Fe(Ⅲ) and Fe(Ⅱ) in Aqueous Solutions. Earth and Planetary Science Letters, 195(1-2):141-153.doi: 10.1016/s0012-821x(01)00581-7
      [35] Johnson, K.S., Needoba, J.A., Riser, S.C., et al., 2007.Chemical Sensor Networks for the Aquatic Environment. Chemical Reviews, 107(2):623-640.doi: 10.1021/cr050354e
      [36] Kineke, G.C., Woolfe, K.J., Kuehl, S.A., et al., 2000.Sediment Export from the Sepik River, Papua New Guinea:Evidence for a Divergent Sediment Plume. Continental Shelf Research, 20(16):2239-2266.doi: 10.1016/s0278-4343(00)00069-8
      [37] Körtzinger, A., Schimanski, J., Send, U., et al., 2004.The Ocean Takes a Deep Breath. Science, 306(5700):1337-1337.doi: 10.1126/science.1102557
      [38] Lacan, F., Radic, A., Jeandel, C., et al., 2008.Measurement of the Isotopic Composition of DissolvedIron in the Open Ocean. Geophysical Research Letters, 35(24):L24610.doi: 10.1029/2008gl035841
      [39] Lefèvre, N., Watson, A.J., 1999.Modeling the Geochemical Cycle of Iron in the Oceans and Its Impact on Atmospheric CO2 Concentrations. Global Biogeochemical Cycles, 13(3):727-736.doi: 10.1029/1999gb900034
      [40] Lisitsyn, A.P., Crook, K.A.W., Bogdanov, Y.A., et al., 1993.A Hydrothermal Field in the Rift Zone of the Manus Basin, Bismarck Sea. International Geology Review, 35(2):105-126.doi: 10.1080/00206819309465517
      [41] Lupton, J.E., Craig, H., 1981.A Major Helium-3 Source at 15 S on the East Pacific Rise. Science, 214(4516):13-18.doi: 10.1126/science.214.4516.13
      [42] Lupton, J., 1998.Hydrothermal Helium Plumes in the Pacific Ocean. Journal of Geophysical Research:Oceans, 103(C8):15853-15868.doi: 10.1029/98jc00146
      [43] Mahowald, N.M., Muhs, D.R., Levis, S., et al., 2006.Change in Atmospheric Mineral Aerosols in Response to Climate:Last Glacial Period, Preindustrial, Modern, and Doubled Carbon Dioxide Climates. Journal of Geophysical Research:Atmospheres, 111(D10):D10202.doi: 10.1029/2005jd006653
      [44] Martin, J.H., 1990.Glacial-Interglacial CO2 Change:The Iron Hypothesis. Paleoceanography, 5(1):1-13.doi: 10.1029/pa005i001p00001
      [45] Melchert, B., Devey, C.W., German, C.R., et al., 2008.First Evidence for High-Temperature Off-Axis Venting of Deep Crustal/Mantle Heat:The Nibelungen Hydrothermal Field, Southern Mid-Atlantic Ridge. Earth and Planetary Science Letters, 275(1-2):61-69.doi: 10.1016/j.epsl.2008.08.010
      [46] Moore, J.K., Doney, S.C., Glover, D.M., et al., 2001.Iron Cycling and Nutrient-Limitation Patterns in Surface Waters of the World Ocean. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 49(1-3):463-507.doi: 10.1016/s0967-0645(01)00109-6
      [47] Parekh, P., Follows, M.J., Boyle, E.A., 2005.Decoupling of Iron and Phosphate in the Global Ocean. Global Biogeochemical Cycles, 19(2):GB2020.doi: 10.1029/2004gb002280
      [48] Poitrasson, F., Vieira, L.C., Seyler, P., et al., 2014.Iron Isotope Composition of the Bulk Waters and Sediments from the Amazon River Basin. Chemical Geology, 377:1-11.doi: 10.1016/j.chemgeo.2014.03.019
      [49] Poulton, S.W., Raiswell, R., 2002.The Low-Temperature Geochemical Cycle of Iron:From Continental Fluxes to Marine Sediment Deposition. American Journal of Science, 302(9):774-805.doi: 10.2475/ajs.302.9.774
      [50] Radic, A., Lacan, F., Murray, J.W., 2011.Iron Isotopes in the Seawater of the Equatorial Pacific Ocean:New Constraints for the Oceanic Iron Cycle. Earth and Planetary Science Letters, 306(1-2):1-10.doi: 10.1016/j.epsl.2011.03.015
      [51] Resing, J.A., Sedwick, P.N., German, C.R., et al., 2015.Basin-Scale Transport of Hydrothermal Dissolved Metals Across the South Pacific Ocean. Nature, 523(7559):200-203.doi: 10.1038/nature14577
      [52] Rouxel, O., Shanks Ⅲ, W.C., Bach, W., et al., 2008.Integrated Fe-And S-Isotope Study of Seafloor Hydrothermal Vents at East Pacific Rise 9-10°N. Chemical Geology, 252(3-4):214-227.doi: 10.1016/j.chemgeo.2008.03.009
      [53] Rüth, C., Well, R., Roether, W., 2000.Primordial 3He in South Atlantic Deep Waters from Sources on the Mid-Atlantic Ridge. Deep Sea Research Part I:Oceanographic Research Papers, 47(6):1059-1075.doi: 10.1016/s0967-0637(99)00077-1
      [54] Saito, M.A., Noble, A.E., Tagliabue, A., et al., 2013.Slow-Spreading Submarine Ridges in the South Atlantic as a Significant Oceanic Iron Source. Nature Geoscience, 6(9):775-779.doi: 10.1038/ngeo1893
      [55] Sander, S.G., Koschinsky, A., 2011.Metal Flux from Hydrothermal Vents Increased by Organic Complexation. Nature Geoscience, 4(3):145-150.doi: 10.1038/ngeo1088
      [56] Sands, C.M., Connelly, D.P., Statham, P.J., et al., 2012.Size Fractionation of Trace Metals in the Edmond Hydrothermal Plume, Central Indian Ocean. Earth and Planetary Science Letters, 319-320:15-22.doi: 10.1016/j.epsl.2011.12.031
      [57] Severmann, S., Johnson, C.M., Beard, B.L., et al., 2006.The Effect of Early Diagenesis on the Fe Isotope Compositions of Porewaters and Authigenic Minerals in Continental Margin Sediments. Geochimica et Cosmochimica Acta, 70(8):2006-2022.doi: 10.1016/j.gca.2006.01.007
      [58] Staubwasser, M., Schoenberg, R., von Blanckenburg, F., et al., 2013.Isotope Fractionation between Dissolved and Suspended Particulate Fe in the Oxic and Anoxic Water Column of the Baltic Sea. Biogeosciences, 10(1):233-245.doi: 10.5194/bg-10-233-2013
      [59] Tagliabue, A., Bopp, L., Dutay, J.C., et al., 2010.Hydrothermal Contribution to the Oceanic Dissolved Iron Inventory. Nature Geoscience, 3(4):252-256.doi: 10.1038/ngeo818
      [60] Talley, L.D., Johnson, G.C., 1994.Deep, Zonal Subequatorial Currents. Science, 263(5150):1125-1128.doi: 10.1126/science.263.5150.1125
      [61] Von Damm, K., 1990.Seafloor Hydrothermal Activity:Black Smoker Chemistry and Chimneys. Annual Review of Earth and Planetary Sciences, 18(1):173-204.doi: 10.1146/annurev.earth.18.1.173
      [62] Waeles, M., Baker, A.R., Jickells, T., et al., 2007.Global Dust Teleconnections:Aerosol Iron Solubility and Stable Isotope Composition. Environmental Chemistry, 4(4):233-237.doi: 10.1071/en07013
      [63] Wu, J.F., Wells, M.L., Rember, R., 2011.Dissolved Iron Anomaly in the Deep Tropical-Subtropical Pacific:Evidence for Long-Range Transport of Hydrothermal Iron. Geochimica et Cosmochimica Acta, 75(2):460-468.doi: 10.1016/j.gca.2010.10.024
      [64] Yan, B., Zhu, X.K., Tang, S.H., etal., 2010.Fe Isotopic Characteristics of the Neoproterozoic BIF in Guangxi Province and Its Implications. Acta Geologica Sinica, 84(7):1080-1086(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201007012.htm
      [65] Yu, W.C., Du, Y.S., Zhou, Q., et al., 2016.Provenance of Nanhuan Datangpo Formation Manganese Mn Deposit in Songtao Area, East Guizhou Province:Evidence from Sr Isotope. Earth Science, 41(7):1110-1120 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_dqkx201607003
      [66] Yücel, M., Gartman, A., Chan, C.S., et al., 2011.Hydrothermal Vents as a Kinetically Stable Source of Iron-Sulphide-Bearing Nanoparticles to the Ocean. Nature Geoscience, 4(6):367-371.doi: 10.1038/ngeo1148
      [67] Zhu, X.K., Guo, Y., Williams, R.J.P., et al., 2002.Mass Fractionation Processes of Transition Metal Isotopes. Earth and Planetary Science Letters, 200(1-2):47-62.doi: 10.1016/s0012-821x(02)00615-5
      [68] Zhu, X.K., O'Nions, R.K., Guo, Y., et al., 2000.Secular Variation of Iron Isotopes in North Atlantic Deep Water. Science, 287(5460).doi: 10.1126/science.287.5460.2000
      [69] 冯媛媛, 刘东艳, 张曼平, 等, 2004.海水中铁的测定方法.海洋科学, 28(1):71-75. http://www.cnki.com.cn/Article/CJFDTOTAL-HYKX200401016.htm
      [70] 姜军胜, 郑有业, 高顺宝, 等, 2015.西藏查藏错铜铅锌矿床成因:C-H-O-S-Pb同位素制约.地球科学, 40(6):1006-1016. http://www.earth-science.net/WebPage/Article.aspx?id=3098
      [71] 闫斌, 朱祥坤, 唐索寒, 等, 2010.广西新元古代BIF的铁同位素特征及其地质意义.地质学报, 84(7):1080-1086. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201007012.htm
      [72] 余文超, 杜远生, 周琦, 等, 2016.黔东松桃南华系大塘坡组锰矿层物源:来自Sr同位素的证据.地球科学, 41(7):1110-1120. http://www.earth-science.net/WebPage/Article.aspx?id=3322
    • 加载中
    图(5)
    计量
    • 文章访问数:  5175
    • HTML全文浏览量:  1748
    • PDF下载量:  25
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-12-26
    • 刊出日期:  2017-09-15

    目录

      /

      返回文章
      返回