• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    粘弹性聚合物驱普通稠油微观渗流数学模型

    钟会影 张伟东 刘义坤 尹洪军

    钟会影, 张伟东, 刘义坤, 尹洪军, 2017. 粘弹性聚合物驱普通稠油微观渗流数学模型. 地球科学, 42(8): 1364-1372. doi: 10.3799/dqkx.2017.542
    引用本文: 钟会影, 张伟东, 刘义坤, 尹洪军, 2017. 粘弹性聚合物驱普通稠油微观渗流数学模型. 地球科学, 42(8): 1364-1372. doi: 10.3799/dqkx.2017.542
    Zhong Huiying, Zhang Weidong, Liu Yikun, Yin Hongjun, 2017. The Micro-Flow Mathematical Model Study on Viscoelastic Polymer Displacement Viscous Oil. Earth Science, 42(8): 1364-1372. doi: 10.3799/dqkx.2017.542
    Citation: Zhong Huiying, Zhang Weidong, Liu Yikun, Yin Hongjun, 2017. The Micro-Flow Mathematical Model Study on Viscoelastic Polymer Displacement Viscous Oil. Earth Science, 42(8): 1364-1372. doi: 10.3799/dqkx.2017.542

    粘弹性聚合物驱普通稠油微观渗流数学模型

    doi: 10.3799/dqkx.2017.542
    基金项目: 

    黑龙江省普通本科高等学校青年创新人才培养计划 UNPYSCT-2016126

    国家自然科学基金青年基金项目 51604079

    详细信息
      作者简介:

      钟会影(1981-), 女, 副教授, 主要从事油气渗流理论与应用研究

      通讯作者:

      尹洪军

    • 中图分类号: P313.5

    The Micro-Flow Mathematical Model Study on Viscoelastic Polymer Displacement Viscous Oil

    • 摘要: 我国海上稠油资源比较丰富,但由于受到海上条件等因素限制,聚合物驱成为提高海上稠油采收率的主要方法.因此深化聚合物溶液驱稠油微观渗流机理对于进一步提高采收率具有十分重要的意义.目前关于粘弹性聚合物渗流机理的理论研究主要局限于弹性聚合物溶液的单相流体在微观孔道内流动特征研究,而针对粘弹性聚合物、油两相流体渗流机理的研究甚少,特别是针对稠油聚合物驱的相关研究未见报道.为此,借助于计算方法较为成熟的OpenFOAM开源平台开展了聚合物驱稠油两相流体渗流机理的研究;以收缩孔道为微观物理模型,建立了粘弹性聚合物溶液、普通稠油两相渗流连续性方程、运动方程及本构方程,并采用VOF(volume of fluid)界面追踪方法建立两相界面相方程;以OpenFOAM开源平台为基础,开发了粘弹性流体、幂律流体两相流体求解器;绘制了不同弹性聚合物溶液在微观孔道内驱油的饱和度分布、速度分布及应力分布特征.结果表明,相对于水驱,纯粘性聚合物溶液前缘突破时间慢,波及面积大,驱油效率高.相比于同等粘度的纯粘性聚合物溶液,粘弹性聚合物的弹性有助于挖潜凸角内的残余油,聚合物溶液的弹性越大,稠油驱油效率越高.随着聚合物溶液弹性的增强,第一法向应力增大,当聚合物溶液进入到孔道突变处时,其弹性发挥的作用最大,法向应力的值最大.研究结果可为矿场实施聚合物驱设计、筛选聚合物溶液提供重要的理论支持.

       

    • 图  1  收缩孔道物理模型

      a.模型几何尺寸;b.网格模型

      Fig.  1.  Contraction model and grid partition

      图  2  求解器求解流程

      Fig.  2.  Flow chart of the solver

      图  3  收缩孔道水驱油不同时刻的饱和度变化

      Fig.  3.  Saturation distribution of water flooding at different time in contraction model

      图  4  收缩孔道纯粘性聚合物驱稠油不同时刻的饱和度变化

      Fig.  4.  Saturation distribution of pure viscous polymer flooding at different time in contraction model

      图  5  收缩孔道粘弹性聚合物(λ=0.09 s)驱稠油不同时刻的饱和度变化

      Fig.  5.  Saturation distribution of viscoelastic polymer (λ=0.09 s) flooding at different time in contraction model

      图  6  收缩孔道纯粘性聚合物驱稠油不同时刻的x方向速度(Ux)变化

      Fig.  6.  Velocity (Ux) distribution of pure viscous polymer flooding in x-direction at different time in contraction model

      图  7  收缩孔道粘弹性聚合物(λ=0.09 s)驱稠油不同时刻的x方向速度(Ux)变化

      Fig.  7.  Velocity (Ux) distribution of viscoelastic polymer (λ=0.09 s) flooding in x-direction at different time in contraction model

      表  1  收缩孔道两相渗流模拟参数

      Table  1.   Simulation parameters of two-phase seepage flow for contraction model

      模拟方案 油相 驱替相 界面张力(mN/m) 入口速度(10-4 m/s)
      密度(kg/m3) 粘度(mPa·s) 密度(kg/m3) 粘度(mPa·s) 松弛时间(s)
      水驱普通稠油 860 70 1 000 1 - 4.8 1.16
      纯粘性聚合物驱普通稠油 962 70 900 40 0.00 4.8 1.16
      粘弹性聚合物驱普通稠油 962 70 900 40 0.09 4.8 1.16
      下载: 导出CSV

      表  2  收缩孔道不同驱替方式的驱替效率

      Table  2.   Displacement efficiency of different flooding patterns in contraction model

      水驱 纯粘性聚合物驱 粘弹性聚合物驱(λ=0.09s)
      驱替时刻(s) 驱替效率(%) 驱替时刻(s) 驱替效率(%) 驱替时刻(s) 驱替效率(%)
      161.7 40.20 216.2 52.74 216.2 52.89
      189.2 47.56 293.1 73.54 293.1 73.60
      207.2 52.82 303.8 75.55 303.8 76.18
      258.1 64.39 336.3 82.38 336.3 82.81
      266.4 66.44 382.0 88.61 382.0 89.76
      277.6 68.26 402.4 91.09 402.4 92.09
      下载: 导出CSV

      表  3  第一法向应力(τxx)变化对比

      Table  3.   Comparison of first normal-stress (τxx)

      驱替时刻(s) 216.2 293.1 303.8 336.3 382 402.4
      最大第一法向应力
      Maxtauxx(Pa)
      纯粘性聚合物驱 0.060 4 0.381 5 1.152 3 0.295 4 1.182 6 0.035 4
      粘弹性聚合物驱 0.061 3 1.472 2 4.560 1 5.001 2 1.485 3 0.058 1
      最大第一法向应力差(Pa) 0.000 9 1.090 7 3.407 8 4.705 8 0.302 7 0.022 7
      下载: 导出CSV
    • [1] Alkafeef, S.F., Zaid, A.M., 2007.Review of and Outlook for Enhanced Oil Recovery Techniques in Kuwait Oil Reservoirs.International Petroleum Technology Conference, Dubai.doi:10.2523/11234-ms
      [2] Beliveau, D., 2009.Waterflooding Viscous Oil Reservoirs.SPE Reservoir Evaluation & Engineering, 12(5):689-701.doi: 10.2118/113132-pa
      [3] Cai, J.C., Yu, B.M., 2012.Advances in Studies of Spontaneous Imbibition in Porous Media.Advances in Mechanics, 42(6):735-754 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXJZ201206006.htm
      [4] Doorwar, S., Mohanty, K.K., 2011.Viscous Fingering during Non-Thermal Heavy Oil Recovery.SPE Annual Technical Conference and Exhibition, Denver.doi:10.2118/146841-ms
      [5] Favero, J.L., Secchi, A.R., Cardozo, N.S.M., et al., 2010.Viscoelastic Flow Analysis Using the Software OpenFOAM and Differential Constitutive Equations.Journal of Non-Newtonian Fluid Mechanics, 165(23-24):1625-1636.doi: 10.1016/j.jnnfm.2010.08.010
      [6] Gao, P.Q., Towler, B., 2011.Investigation of Polymer and Surfactant-Polymer Injections in South Slattery Minnelusa Reservoir, Wyoming.Journal of Petroleum Exploration and Production Technology, 1(1):23-31.doi: 10.1007/s13202-010-0002-2
      [7] Jones, W.M., 1980.Polymer Additives in Reservoir Flooding for Oil Recovery:Shear Thinning or Shear Thickening?Journal of Physics D:Applied Physics, 13(5):L87-L88.doi: 10.1088/0022-3727/13/5/004
      [8] Lake, L., Schmidt, R., Venuto, P., 1992.A Niche for Enhanced Oil Recovery in the 1900s.Oilfield Review, 4(1):55-61.
      [9] Liu, X.L., Duan, M.L., Gao, P., et al., 2015.Development of Numerical Wave Flumes Based on OpenFOAM.Journal of Fudan University (Natural Science), 54(3):373-378 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-FDXB201503016.htm
      [10] Maerker, J.M., 1975.Shear Degradation of Partially Hydrolyzed Polyacrylamide Solutions.SPE Journal, 15(4):311-322.doi: 10.2118/5101-pa
      [11] Maerker, J.M., Sinton, S.W., 1986.Rheology Resulting from Shear-Induced Structure in Associating Polymer Solutions.Journal of Rheology, 30(1):77-99.doi: 10.1122/1.549898
      [12] Meyer, R.F., Attanasi, E.D., 2003.Heavy Oil and Natural Bitumen-Strategic Petroleum Resources.Proceedings of the National Academy of Sciences of the United States of America, 94(23):12331-6. https://pubs.er.usgs.gov/publication/fs07003
      [13] Schroeder, C.M., Babcock, H.P., Shaqfeh, E.S., et al., 2003.Observation of Polymer Conformation Hysteresis in Extensional Flow.Science, 301(5639):1515-1519.doi: 10.1126/science.1086070
      [14] Seright, R.S., Fan, T.G., Wavrik, K.E., et al., 2011.New Insights into Polymer Rheology in Porous Media.SPE Journal, 16(1):35-42.doi: 10.2118/129200-pa
      [15] Sheng, J.J., Leonhardt, B., Azri, N., 2015.Status of Polymer-Flooding Technology.Journal of Canadian Petroleum Technology, 54(2):116-126.doi: 10.2118/174541-pa
      [16] Su, Y.H., 2009.Study on Economic and Technical Limits of Heavy Oil Steam Huff and Puff in Shengli Oilfield (Dissertation).China University of Petroleum, Dongying (in Chinese with English abstract).
      [17] Wang, D.M., Cheng, J.C., Xia, H.F., et al., 2002.Improvement of Displacement Efficiency of Cores by Driving Forces Parallel to the Oil-Water Interface of Viscous-Elastic Fluid.Acta Petrolei Sinica, 23(5):47-52 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200205010.htm
      [18] Wang, D.M., Cheng, J.C., Yang, Q.Y., 2000.Viscous-Elastic Polymer Can Increase Micro-Scale Displacement Efficiency in Cores.Acta Petrolei Sinica, 21(5):45-51 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200005013.htm
      [19] Xia, H.F., Wang, D.M., Liu, Z.C., et al., 2001.Study on the Mechanism of Polymer Solution with Visco-Elastic Behavior Increasing Microscopic Oil Displacement Efficiency.Acta Petrolei Sinica, 22(4):60-65 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200104016.htm
      [20] Xie, Y., 2014.The Microcosmic Mechanism of Viscoelastic Polymer Flooding Heavy Oil (Dissertation).Northeastern Petroleum University, Daqing (in Chinese with English abstract).
      [21] Xu, Q.Q., 2013.Research on Adaptable from Flooding and Profile Control in Bohai SZ36-1 (Dissertation).China University of Petroleum, Dongying (in Chinese with English abstract).
      [22] Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract). http://linkinghub.elsevier.com/retrieve/pii/S0016236116303118
      [23] Yin, H.J., Jiang, H.M., Su, Y.C., et al., 2009.Flow Behavior of Viscoelastic Polymer Solution in the Expansion Channel.Acta Polymerica Sinica, 1(6):520-524 (in Chinese with English abstract). http://www.oalib.com/paper/1580937
      [24] Yin, H.J., Wang, D.M., Zhong, H.Y., et al., 2012.Flow Characteristics of Viscoelastic Polymer Solution in Micro-Pores.SPE EOR Conference at Oil and Gas West Asia, Muscat.doi:10.2118/154640-ms
      [25] Yue, X.A., Zhang, L.J., Liu, Z.C., et al., 2002.Viscoelastic Flow and Microscopic Displacement Mechanism of Polymer Solution in Reservoir Pores.Oil & Gas Recovery Technology, 9(3):4-6 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YQCS200203001.htm
      [26] Zheng, Y.F., Chen, R.X., Xu, Z., et al., 2016.The Transport of Water in Subduction Zones.Science China:Earth Sciences, 59(4):651-681.doi: 10.1007/s11430-015-5258-4
      [27] Zhong, H.Y., Tian, Z., Yin, H.J., 2012.Flow of Viscoelastic Polymer Solutions through a Planar Contraction with a Boundary Layer Effect.Chemistry and Technology of Fuels and Oils, 48(5):393-402.doi: 10.1007/s10553-012-0386-4
      [28] Zhou, S.W., 2009.Exploration and Practice of Offshore Oilfield Effective Development Technology.Engineering Science, 11(10):55-60 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCKX200910009.htm
      [29] Zhou, W., Zhang, J., Feng, G.Z., et al., 2008.Key Technologies of Polymer Flooding in Offshore Oilfield of Bohai Bay.SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth.doi:10.2118/115240-ms
      [30] 蔡建超, 郁伯铭, 2012.多孔介质自发渗吸研究进展.力学进展, 42(6): 735-754. doi: 10.6052/1000-0992-11-096
      [31] 刘秀丽, 段梦兰, 高攀, 等, 2015.基于OpenFOAM的数值波浪水槽研究.复旦学报(自然科学版), 54(3): 373-378. http://cdmd.cnki.com.cn/Article/CDMD-10536-1013300484.htm
      [32] 苏映宏, 2009. 胜利油田稠油蒸汽吞吐开发经济技术界限研究(硕士学位论文). 东营: 中国石油大学. http://d.wanfangdata.com.cn/Thesis/Y1542804
      [33] 王德民, 程杰成, 夏惠芬, 等, 2002.粘弹性流体平行于界面的力可以提高驱油效率.石油学报, 23(5): 47-52. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200205010.htm
      [34] 王德民, 程杰成, 杨清彦, 2000.粘弹性聚合物溶液能够提高岩心的微观驱油效率.石油学报, 21(5): 45-51. doi: 10.7623/syxb200005010
      [35] 夏惠芬, 王德民, 刘中春, 等, 2001.粘弹性聚合物溶液提高微观驱油效率的机理研究.石油学报, 22(4): 60-65. doi: 10.7623/syxb200104012
      [36] 谢毅, 2014. 黏弹性聚合物驱稠油微观机理研究(硕士学位论文). 大庆: 东北石油大学. http://cdmd.cnki.com.cn/Article/CDMD-10220-1014384351.htm
      [37] 许青青, 2013. 渤海SZ36-1油田泡沫调驱适应性研究(硕士学位论文). 东营: 中国石油大学. http://cdmd.cnki.com.cn/Article/CDMD-10425-1015025749.htm
      [38] 杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6): 1067-1073. doi: 10.11764/j.issn.1672-1926.2016.06.1067
      [39] 尹洪军, 姜海梅, 苏宇驰, 等, 2009.黏弹性聚合物溶液在突扩孔道内的流动特性.高分子学报, 1(6): 520-524. http://www.cnki.com.cn/Article/CJFDTOTAL-GFXB200906005.htm
      [40] 岳湘安, 张立娟, 刘中春, 等, 2002.聚合物溶液在油藏孔隙中的流动及微观驱油机理.油气地质与采收率, 9(3): 4-6. http://cdmd.cnki.com.cn/Article/CDMD-10220-2004050654.htm
      [41] 周守为, 2009.海上油田高效开发技术探索与实践.中国工程科学, 11(10): 55-60. doi: 10.3969/j.issn.1009-1742.2009.10.008
    • 加载中
    图(7) / 表(3)
    计量
    • 文章访问数:  4095
    • HTML全文浏览量:  1796
    • PDF下载量:  10
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-01-12
    • 刊出日期:  2017-08-15

    目录

      /

      返回文章
      返回