Energy Transfer Mechanism during Movement and Accumulation of Rockslide Avalanche
-
摘要: 高速远程滑坡往往引发灾难性事故,开展运动堆积过程定量研究,对于探究滑坡发生机理及预测致灾范围具有重要意义.基于室内物理模型试验,通过PIV技术分析高速摄像机在试验过程中拍摄的照片,获取了运动过程中滑体颗粒的水平速度、竖直速度与位移等运动参数.从滑体颗粒群和不同位置处单体颗粒角度,分析高速远程滑坡的运动演化规律.结果显示:(1)滑体颗粒前端出现高速区,该高速区随着滑坡停止具有一定的保持性.颗粒间存在明显的碰撞现象;(2)从不同位置单体颗粒来看,前部颗粒位移量最大,速度波动频繁,碰撞频次最高,能量多次补充;中部颗粒位移量其次,速度有波动过程,但不及前部频繁;后部颗粒位移量最小,速度基本呈递降趋势,能量逐渐减小.结合重庆鸡尾山滑坡以及Black Rapids Glacier滑坡实例分析,揭示了高速远程滑坡运动堆积过程中滑体颗粒间存在碰撞及能量传递现象,从而进一步探究高速远程滑坡形成机制,在监测预防、灾害治理等方面具有现实指导意义.Abstract: Rockslide avalanches usually cause catastrophic accidents. Quantitative study on the movement process of rockslide avalanches is of great significance to the study on the mechanism of landslide occurrence and the prediction of disaster scope. Based on the indoor physical model test, the PIV technique was used to analyze the photographs taken by the high-speed camera during the experiment, and the motion parameters such as the horizontal velocity, vertical velocity and displacement of the sliding particles were obtained. The evolution of rockslide avalanche motion was analyzed from angles of the whole landslide and single particles. The results show follows:(1) the front position of landslide shows high speed spot. The spot keeps high speed though the landslide is ending. (2) From the view of single particles, the front particle is the largest one in displacement and most frequent in velocity fluctuation. The front particles own high collision frequency and their energy gains multiple supplements. The displacement of the middle particles ranks the second place. The velocity of middle particles is fluctuating, but less frequent than those of front. The displacement of the rear particles is the smallest. The velocity and energy generally decrease constantly. It is concluded that there are collision and energy transmission between the sliding particles in the process of rockslide avalanches, combined with the facts found in Jiweishan and Black Rapids Glacier rockslide avalanches. The formation mechanism of rockslide avalanche is also discussed in depth, which is of practical significance to the disaster monitoring, prevention, and control.
-
图 3 滑坡模型实验示意
Fig. 3. The diagrammatic sketch of physical model experiment of rock avalanche
图 15 Black Rapids Glacier滑坡中的陡坎现象
Fig. 15. The scarps in the Black Rapids Glacier avalanche
表 1 前部1号颗粒运动参数
Table 1. The movement parameters of the first particle in the front position
u(m/s) v(m/s) x(m) y(m) Ek(J) 0.231 0.146 0.084 0.128 0.037 0.144 -0.022 0.119 0.133 0.011 -0.387 -0.010 0.154 0.126 0.075 -0.008 0.484 0.189 0.119 0.117 -0.377 0.070 0.217 0.112 0.074 -2.026 0.797 0.252 0.112 2.370 3.243 -0.313 0.280 0.119 5.306 1.074 0.129 0.314 0.128 0.585 2.144 1.295 0.314 0.119 3.136 0.039 0.077 0.349 0.133 0.004 0.505 1.706 0.370 0.133 1.582 2.903 -2.358 0.398 0.133 6.995 -0.568 -0.089 0.426 0.126 0.165 -0.077 0.153 0.440 0.119 0.014 1.180 -0.184 0.468 0.133 0.713 -0.502 -0.074 0.496 0.147 0.129 -1.705 -0.023 0.517 0.133 1.454 0.057 -0.037 0.545 0.133 0.002 表 2 不同位置颗粒运动特征
Table 2. The motion characteristics of particles at different positions
颗粒位置 滑行距离(m) 最大动能(J) 最小动能(J) 平均动能(J) 碰撞频次 前部 0.515 6.007 0.002 1.127 6 中部 0.175 4.899 0.001 1.227 3 后部 0.056 4.662 0.0003 1.785 1 -
Booth-Gauthier, E. A., Alcoser, T. A., Yang, G., et al., 2012. Force-Induced Changes in Subnuclear Movement and Rheology. Biophysical Journal, 103(12): 2423-2431. https://doi.org/10.1016/j.bpj.2012.10.039 Chen, Z.G., Ge, Y.F., 2016. Forecast Analysis of Movement Distances of High-Speed and Long-Distance Landsides Based on Statistical Methods. Yangtze River, 47(12): 42-47 (in Chinese with English abstract). Dong, Z.B., Yan, D.P., Zhang, Z.L., et al., 2014. Research on Methods of Sandbox Modeling and Case Study Based on Particle Image Velocimetry (PIV). Geoscience, 28(2): 321-330 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201402010 Dufresne, A., 2009. Influence of Runout Path Material on Rock and Debris Avalanche Mobility: Field Evidence and Analogue Modelling (Dissertation). University of Canterbury, Christchurch. Eisbacher, G. H., 1979. Cliff Collapse and Rock Avalanches (Sturzstroms) in the Mackenzie Mountains, Northwestern Canada. Canadian Geotechnical Journal, 16(2): 309-334. doi: 10.1139/t79-032 Ge, Y.F., Tang, H.M., Li, W., et al., 2016. Evaluation for Deposit Areas of Rock Avalanche Based on Features of Rock Mass Sructure. Earth Science, 41(9):1583-1592 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.117 doi: 10.3799/dqkx.2016.117 Ge, Y.F., Tang, H.M., Xiong, C.R., et al., 2014.Effect of Sliding Plane Mechanical Parameters on Landslide Stability—A Case Study of Jiweishan Rockslide in Wulong, Chongqing. Chinese Journal of Rock Mechanics and Engineering, 33(Suppl.2):3873-3884 (in Chinese with English abstract). Hao, M.H., Xu, Q., Yang, L., 2014. Physical Modeling and Movement Mechanism of Landslide-Debris Avalanches. Rock and Soil Mechanics, 35(Suppl.1):128-132 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx2014z1018 Hewitt, K., Clague, J.J., Orwin, J.F., 2008. Legacies of Catastrophic Rock Slope Failures in Mountain Landscapes. Earth-Science Reviews, 87(1-2):1-38. doi: 10.1016/j.earscirev.2007.10.002 Hsü, K. J., 1975. Catastrophic Debris Streams (Sturzstroms) Generated by Rockfalls. Geological Society of America Bulletin, 86(1): 129. https://doi.org/10.1130/0016-7606(1975)86 < 129:cdssgb > 2.0.co; 2 doi: 10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2 Huang, H., Dabiri, D., Gharib, M., 1997. On Errors of Digital Particle Image Velocimetry. Measurement Science and Technology, 8(12): 1427-1440. doi: 10.1088/0957-0233/8/12/007 Huang, R.Q., 2007. Large-Scale Landslide and Their Sliding Mechanisms in China since the 20th Century. Journal of Rock Mechanics and Engineering, 26(3):433-454 (in Chinese with English abstract). Kent, P. E., 1966. The Transport Mechanism in Catastrophic Rock Falls. The Journal of Geology, 74(1): 79-83. https://doi.org/10.1086/627142 doi: 10.1086/627142 Luo, W.Q., Li, F.A., Liu, X. S., et al., 2016. Evolution Stage Division of Landslide Based on Analysis of Multivariate Time Series. Earth Science, 41(4): 711-717 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201604017 Manzella, I., Labiouse, V., 2007. Qualitative Analysis of Rock Avalanches Propagation by Means of Physical Modelling of Non-Constrained Gravel Flows. Rock Mechanics and Rock Engineering, 41(1): 133-151. https://doi.org/10.1007/s00603-007-0134-y doi: 10.1007/s00603-007-0134-y Okura, Y., Kitahara, H., Sammori, T., 2000a. Fluidization in Dry Landslides. Engineering Geology, 56(3/4): 347-360. https://doi.org/10.1016/s0013-7952(99)00118-0 doi: 10.1016/s0013-7952(99)00118-0 Okura, Y., Kitahara, H., Sammori, T., et al., 2000b. The Effects of Rockfall Volume on Runout Distance. Engineering Geology, 58(2): 109-124. https://doi.org/10.1016/s0013-7952(00)00049-1 doi: 10.1016/S0013-7952(00)00049-1 Panciroli, R., Porfiri, M., 2013. Evaluation of the Pressure Field on a Rigid Body Entering a Quiescent Fluid through Particle Image Velocimetry. Experiments in Fluids, 54(12): 1630. https://doi.org/10.1007/s00348-013-1630-3 Piro, V., Piro, N., Piro, O., 2012. Characterization of Intraventricular Blood Flow Using a Microbubble-Contrast Tracking Echo-PIV Technique. Journal of the American College of Cardiology, 59(13): E1139. https://doi.org/10.1016/s0735-1097(12)61140-1 doi: 10.1016/S0735-1097(12)61140-1 Ryerson, W. G., Schwenk, K., 2011. A Simple, Inexpensive System for Digital Particle Image Velocimetry (DPIV) in Biomechanics. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 317(2): 127-140. https://doi.org/10.1002/jez.725 doi: 10.1002/jez.725 Sassa, K., 1989. Special Lecture: Geotechnical Model for the Motion of Landslides. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 26(2): 88. https://doi.org/10.1016/0148-9062(89)90311-2 doi: 10.1016/0148-9062(89)90311-2 Shi, Q., Ghosh, R. P., Engelke, H., et al., 2013. Rapid Disorganization of Mechanically Interacting Systems of Mammary Acini. Proceedings of the National Academy of Sciences, 111(2): 658-663. https://doi.org/10.1073/pnas.1311312110 doi: 10.1073/pnas.1311312110 Sosio, R., Crosta, G. B., Hungr, O., 2008. Complete Dynamic Modeling Calibration for the Thurwieser Rock Avalanche (Italian Central Alps). Engineering Geology, 100(1/2): 11-26. https://doi.org/10.1016/j.enggeo.2008.02.012 doi: 10.1016/j.enggeo.2008.02.012 Thielicke, W., Stamhuis, E. J., 2014. Pivlab-towards User-Friendly, Affordable and Accurate Digital Particle Image Velocimetry in Matlab. Journal of Open Research Software, 2(1):1-10. https://doi.org/10.5334/jors.bl Xu, L.F., Chen, G., Li, J.Z., et al., 2003. Research Progress on Particle Image Velocimetry. Advances in Mechanics, 33(4): 533-540 (in Chinese with English abstract). Yu, M.L., Mei, H.B., Li, J.H., et al., 2016. Landslide Displacement Predction Based on Varying Coefficient Regression Model in Three Gorges Reservior Area. Earth Science, 41(9): 1593-1602 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.118 doi: 10.3799/dqkx.2016.118 Zhang, M., Yin, Y.P., Wu, S.R., et al., 2010. Development Status and Prospects of Studies on Kinematics of Long Runout Rock Avalanches. Journal of Engineering Geology, 18(6):806-817 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201006001 Zou, Z.X., 2014. Research on the Evolution Dynamics of the Consequent Bedding Rockslides (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). 陈卓根, 葛云峰, 2016.基于统计方法的高速远程滑坡距离预测分析.人民长江, 47(12): 42-47. http://d.old.wanfangdata.com.cn/Periodical/rmcj201612010 董周宾, 颜丹平, 张自力, 等, 2004.基于粒子图像测速系统(PIV)的砂箱模拟实验方法研究与实例分析.现代地质, 28(2): 321-330. http://d.old.wanfangdata.com.cn/Periodical/xddz201402010 葛云峰, 唐辉明, 李伟, 等, 2016.基于岩体结构特征的高速远程滑坡致灾范围评价.地球科学, 41(9):1583-1592. doi: 10.3799/dqkx.2016.117 葛云峰, 唐辉明, 熊承仁, 等, 2014.滑动面力学参数对滑坡稳定性影响研究——以重庆武隆鸡尾山滑坡为例.岩石力学与工程学报, 32(增刊2):3874-3875. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2014z2061 郝明辉, 许强, 杨磊, 等, 2014.滑坡-碎屑流物理模型试验及运动机制探讨.岩土力学, 35(增刊1):127-132. http://d.old.wanfangdata.com.cn/Periodical/ytlx2014z1018 黄润秋, 2007. 20世纪以来中国的大型滑坡及其发生机制.岩石力学与工程学报, 26(3):433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001 罗文强, 李飞翱, 刘小珊, 等, 2016.多元时间序列分析的滑坡演化阶段划分.地球科学, 41(4): 711-717. doi: 10.1799/dqkx.2016.060 许联锋, 陈刚, 李建中, 等, 2003.粒子图像测速技术研究进展.力学进展, 33(4):533-540. doi: 10.3321/j.issn:1000-0992.2003.04.010 喻孟良, 梅红波, 李冀骅, 等, 2016.基于变系数回归模型的三峡库区滑坡位移预测.地球科学, 41(9): 1593-1602. doi: 10.3799/dqkx.2016.118 张明, 殷跃平, 吴树仁, 等, 2010.高速远程滑坡-碎屑流运动机理研究发展现状与展望.工程地质学报, 18(6):805-817. doi: 10.3969/j.issn.1004-9665.2010.06.001 邹宗兴, 2014.顺层岩质滑坡演化动力学研究(博士学位论文).武汉: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-1014340826.htm