Geochemical Characteristics, Zircon U-Pb Age and Hf Isotope and Geological Significance of Granitoid in Beishan Orogenic Belt
-
摘要: 砾石滩地区位于内蒙古额济纳旗西部,晚古生代花岗岩出露广泛,是研究北山造山带晚古生代地质演化的关键地区.锆石LA-MC-ICP-MS U-Pb测年结果显示,该地区的花岗岩形成于晚石炭世,其中英云闪长岩年龄为310.8±1.4 Ma,花岗闪长岩年龄为310.3±1.4 Ma和306.0±1.2 Ma,二长花岗岩年龄为308.7±1.4 Ma.岩石学及化学成分显示其为准铝质-弱过铝质、中钾钙碱性系列岩石;稀土配分曲线呈现轻稀土元素相对富集的右倾分布特征,弱负铕异常(δEu为0.7~0.9);岩石富集大离子亲石元素Rb、K等,具有负的Nb、Ta和Ti异常;英云闪长岩、花岗闪长岩具有不均一的εHf(t)值(3.8~14.8)、(7.3~14.0),二阶段Hf同位素模式年龄tDMC分别为378~1 083 Ma、433~868 Ma.北山造山带北部晚石炭世英云闪长岩、花岗闪长岩、二长花岗岩的形成与壳幔混合有关,产生于大洋岩石圈俯冲过程中,形成于陆缘弧环境,该过程诱发了地幔对流,因而产生了幔源岩浆底侵,并将元古宙基底岩石熔融,壳幔混合之后形成晚石炭世大规模花岗岩类.Abstract: Lishitan area is located in west of Ejin County of Inner Mongolia, where Late Paleozoic granitoid is exposed in a wide range. And it's a key area to the geology evolution research of Beishan orogenic belt in Late Paleozoic. The zircon LA-MC-ICP-MS U-Pb dating results show that the granitoid in this area was formed in the Late Carboniferous, the tonalite was formed at 310.8±1.4 Ma, the granodiorite was formed at 310.3±1.4 Ma, 306.0±1.2 Ma respectively, and the monzonitic granite was formed at 308.7±1.4 Ma. The petrology and lithochemistry demonstrate that the tonalite, granodiorite and monzonitic granite belong to quasi-aluminous to weakly peraluminous rocks and middle-K calc-alcaline series. The tonalite, granodiorite and monzonitic granite are enriched in LREE and part of large iron lithophile elements, including Rb, K et al., relatively depleted in HREE, Nb, Ta and Ti with weakly negative europium anomaly (δEu is 0.7-0.9).The εHf(t) values of tonalite and granodiorite are variable, ranging from 3.8 to 14.8 and 7.3 to 14.0 respectively. And the two stage Hf isotope model ages (tDMC) range from 378 to 1 083 Ma and from 433 to 868 Ma respectively. The formation of tonalite, granodiorite and monzonitic granite is related with crust-mantle mixing, which were formed in the active epicontinental arc environment in the process of the ocean lithosphere subduction in Northern Beishan orogenic belt in Late Carboniferous. Mantle convection was caused by the process, thus led to mantle-derived magma invasion, which melted the Proterozoic basement rocks, and massive granitoids formed after crust-mantle mixing in Late Carboniferous.
-
图 6 砾石滩地区花岗岩类K2O-SiO2图解(a)和A/CNK-A/NK图解(b)
b.据Peccerillo and Taylor(1976)
Fig. 6. Diagrams of K2O versus SiO2 (a) and A/CNK-A/NK (b) of granitoids in Lishitan area
图 7 砾石滩地区花岗岩类稀土元素球粒陨石标准化配分模式图(a)和原始地幔标准化微量元素蛛网图(b)
球粒陨石标准化值、原始地幔标准化值据Sun and McDonough(1989)
Fig. 7. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element patterns (b) of granitoids in Lishitan area
图 8 砾石滩地区花岗岩类构造判别图解
a.(Y+Nb)-Rb判别图, 据Pearce et al.(1984);ORG.大洋脊花岗岩;WPG.板内花岗岩;VAG.火山弧花岗岩;syn-COLG.同碰撞花岗岩;b.R1-R2判别图, 据Batchelor and Bowden(1985), R1=4Si-11(Na+K)-2(Fe+Ti),R2=6Ca+2Mg+Al
Fig. 8. Tectonic discrimination diagrams of granitoids in Lishitan area
表 1 砾石滩地区花岗岩LA-MC-ICP-MS U-Pb同位素分析结果
Table 1. Zircon LA-MC-ICP-MS U-Pb dating results of granitoids in Lishitan area
样品号 含量(10-6) 同位素比值 表面年龄(Ma) 02TW1 Pb U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 208Pb/232Th 1σ 232Th/238U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 1 4 76 0.049 6 0.000 6 0.357 3 0.024 9 0.052 2 0.003 7 0.012 8 0.000 3 0.396 0 0.000 9 312 4 310 22 296 161 2 4 77 0.049 3 0.000 7 0.362 5 0.045 7 0.053 3 0.006 8 0.012 2 0.000 5 0.531 5 0.001 1 310 4 314 40 343 287 3 5 98 0.048 8 0.000 6 0.353 1 0.015 9 0.052 5 0.002 4 0.013 0 0.000 3 0.386 1 0.000 5 307 4 307 14 307 103 4 4 86 0.049 7 0.000 5 0.359 4 0.020 1 0.052 4 0.002 9 0.014 1 0.000 3 0.378 8 0.000 6 313 3 312 17 303 126 5 6 117 0.049 8 0.000 5 0.360 3 0.016 2 0.052 5 0.002 3 0.013 3 0.000 2 0.400 5 0.000 3 313 3 312 14 308 101 6 5 108 0.049 5 0.000 5 0.356 3 0.015 6 0.052 2 0.002 3 0.013 8 0.000 2 0.360 8 0.000 6 312 3 309 14 293 99 7 6 114 0.049 6 0.000 5 0.359 8 0.019 9 0.052 6 0.002 9 0.012 3 0.000 2 0.435 7 0.001 3 312 3 312 17 311 125 8 6 127 0.049 3 0.000 5 0.362 1 0.014 9 0.053 3 0.002 1 0.012 4 0.000 2 0.396 4 0.000 8 310 3 314 13 341 90 9 4 77 0.049 4 0.000 6 0.362 8 0.028 7 0.053 3 0.004 3 0.010 7 0.000 4 0.369 4 0.000 6 311 4 314 25 343 181 10 6 127 0.049 5 0.000 5 0.362 2 0.013 8 0.053 1 0.002 0 0.013 8 0.000 2 0.445 4 0.001 5 311 3 314 12 331 86 11 4 92 0.048 0 0.000 6 0.348 3 0.023 3 0.052 6 0.003 5 0.015 3 0.000 4 0.341 2 0.001 3 303 4 303 20 310 154 12 6 121 0.049 2 0.000 5 0.361 3 0.018 0 0.053 3 0.002 6 0.014 7 0.000 4 0.354 3 0.000 9 309 3 313 16 341 109 13 4 82 0.049 2 0.000 6 0.364 1 0.025 0 0.053 7 0.003 9 0.014 1 0.000 3 0.455 5 0.000 7 309 4 315 22 358 163 14 6 115 0.049 6 0.000 6 0.364 3 0.021 9 0.053 3 0.003 4 0.014 3 0.000 2 0.636 3 0.004 2 312 4 315 19 341 145 15 4 84 0.049 9 0.000 6 0.360 3 0.021 6 0.052 3 0.003 2 0.013 9 0.000 3 0.395 1 0.000 6 314 4 312 19 300 139 16 6 117 0.049 4 0.000 5 0.362 5 0.017 8 0.053 2 0.002 7 0.014 6 0.000 2 0.446 1 0.000 9 311 3 314 15 336 114 17 5 101 0.049 8 0.000 5 0.361 4 0.022 9 0.052 6 0.003 3 0.015 7 0.000 3 0.514 7 0.003 0 314 3 313 20 311 144 18 4 71 0.049 0 0.000 6 0.360 2 0.041 3 0.053 3 0.006 4 0.015 5 0.000 7 0.385 8 0.000 8 309 4 312 36 340 270 19 4 73 0.049 2 0.000 6 0.357 8 0.026 6 0.052 7 0.004 5 0.014 9 0.000 4 0.482 5 0.001 2 310 4 311 23 318 194 20 5 97 0.049 4 0.000 5 0.360 5 0.024 3 0.053 0 0.003 6 0.007 3 0.000 4 0.461 0 0.000 4 311 3 313 21 327 153 21 6 115 0.049 6 0.000 5 0.361 0 0.015 4 0.052 8 0.002 3 0.014 3 0.000 2 0.510 3 0.000 4 312 3 313 13 321 100 22 7 132 0.049 6 0.000 6 0.362 7 0.013 3 0.053 0 0.001 9 0.015 3 0.000 2 0.593 8 0.003 2 312 4 314 12 328 83 23 7 132 0.049 6 0.000 6 0.360 2 0.013 2 0.052 7 0.001 9 0.014 6 0.000 2 0.489 7 0.001 9 312 4 312 11 315 81 24 20 372 0.049 6 0.000 6 0.362 1 0.007 0 0.053 0 0.000 9 0.015 3 0.000 1 0.577 6 0.004 0 312 4 314 6 328 39 25 9 167 0.048 9 0.000 5 0.358 0 0.012 7 0.053 1 0.001 9 0.014 8 0.000 2 0.504 6 0.002 2 308 3 311 11 334 79 样品号 含量(10-6) 同位素比值 表面年龄(Ma) 06TW27 Pb U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 208Pb/232Th 1σ 232Th/238U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 1 12 213 0.049 9 0.000 5 0.363 4 0.008 3 0.052 8 0.001 1 0.014 8 0.000 1 0.768 6 0.004 8 314 3 315 7 322 48 2 8 153 0.049 9 0.000 5 0.363 9 0.011 2 0.052 9 0.001 7 0.013 7 0.000 1 0.825 3 0.003 0 314 3 315 10 323 72 3 6 108 0.049 5 0.000 6 0.358 8 0.018 6 0.052 5 0.002 7 0.013 3 0.000 2 1.050 4 0.005 7 312 4 311 16 309 117 4 8 145 0.049 4 0.000 5 0.358 7 0.012 8 0.052 6 0.001 8 0.013 5 0.000 1 0.934 0 0.003 4 311 3 311 11 312 79 5 10 189 0.049 7 0.000 5 0.359 7 0.008 2 0.052 5 0.001 1 0.013 6 0.000 1 0.853 3 0.005 5 312 3 312 7 308 49 6 9 159 0.049 6 0.000 5 0.359 4 0.016 4 0.052 5 0.002 4 0.013 6 0.000 1 0.881 1 0.003 3 312 3 312 14 309 106 7 9 167 0.049 4 0.000 5 0.358 4 0.008 5 0.052 6 0.001 2 0.013 8 0.000 1 0.970 4 0.001 7 311 3 311 7 312 52 8 8 145 0.049 3 0.000 5 0.356 8 0.018 1 0.052 5 0.002 7 0.013 9 0.000 2 1.031 4 0.004 3 310 3 310 16 308 116 9 12 206 0.049 4 0.000 5 0.359 7 0.007 7 0.052 9 0.001 1 0.016 5 0.000 1 0.790 6 0.001 2 311 3 312 7 323 46 10 12 210 0.049 0 0.000 5 0.353 8 0.010 7 0.052 4 0.001 5 0.018 3 0.000 2 0.835 4 0.004 1 308 3 308 9 301 64 11 16 268 0.049 3 0.000 5 0.356 8 0.006 4 0.052 5 0.000 9 0.018 8 0.000 1 0.797 3 0.002 1 310 3 310 6 308 37 12 8 138 0.049 5 0.000 6 0.358 8 0.011 9 0.052 6 0.001 7 0.020 3 0.000 3 0.525 2 0.001 3 311 4 311 10 313 73 13 15 253 0.049 1 0.000 5 0.355 4 0.008 5 0.052 5 0.001 2 0.020 7 0.000 1 0.798 3 0.000 4 309 3 309 7 307 52 14 18 313 0.046 3 0.000 5 0.455 1 0.008 1 0.071 3 0.001 2 0.024 4 0.000 1 0.722 6 0.002 2 292 3 381 7 966 33 15 12 197 0.048 9 0.000 5 0.354 7 0.017 9 0.052 6 0.002 6 0.022 9 0.000 5 0.804 5 0.002 2 308 3 308 16 311 111 16 7 115 0.049 4 0.000 5 0.358 3 0.011 2 0.052 6 0.001 6 0.025 6 0.000 2 0.669 7 0.001 1 311 3 311 10 312 70 17 12 179 0.049 1 0.000 5 0.355 4 0.010 6 0.052 5 0.001 5 0.025 8 0.000 3 0.871 6 0.000 8 309 3 309 9 308 64 18 15 251 0.049 4 0.000 5 0.358 7 0.007 8 0.052 6 0.001 1 0.021 6 0.000 1 0.698 9 0.001 8 311 3 311 7 312 47 19 11 180 0.049 2 0.000 5 0.356 8 0.009 6 0.052 7 0.001 4 0.019 6 0.000 1 0.855 0 0.000 9 309 3 310 8 314 60 20 17 371 0.037 2 0.000 4 0.419 0 0.006 6 0.081 7 0.001 2 0.021 4 0.000 1 0.603 7 0.002 5 235 2 355 6 1239 29 21 9 166 0.049 4 0.000 6 0.360 3 0.013 2 0.052 9 0.001 9 0.019 5 0.000 3 0.716 3 0.008 5 311 4 312 11 326 82 22 12 206 0.048 8 0.000 5 0.352 4 0.006 9 0.052 3 0.001 0 0.017 2 0.000 1 0.842 3 0.001 9 307 3 307 6 299 42 23 8 154 0.039 2 0.000 5 0.629 0 0.016 6 0.116 3 0.002 8 0.023 2 0.000 2 0.714 0 0.001 3 248 3 495 13 1900 44 24 17 310 0.048 7 0.000 5 0.352 9 0.007 3 0.052 5 0.001 0 0.016 2 0.000 1 0.822 3 0.004 4 307 3 307 6 308 45 样品号 含量(10-6) 同位素比值 表面年龄(Ma) 16TW10 Pb U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 208Pb/232Th 1σ 232Th/238U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 1 10 196 0.048 6 0.000 5 0.353 7 0.007 2 0.052 8 0.001 0 0.015 8 0.000 1 0.596 1 0.002 9 306 3 308 6 320 44 2 13 237 0.048 3 0.000 5 0.349 0 0.007 7 0.052 4 0.001 1 0.015 9 0.000 1 0.674 0 0.002 6 304 3 304 7 304 49 3 10 203 0.048 6 0.000 5 0.353 6 0.008 9 0.052 7 0.001 3 0.015 3 0.000 1 0.526 5 0.000 9 306 3 307 8 317 55 4 12 230 0.048 2 0.000 5 0.350 9 0.006 7 0.052 8 0.001 0 0.015 3 0.000 0 0.714 9 0.000 7 304 3 305 6 319 41 5 12 213 0.048 5 0.000 5 0.353 3 0.007 3 0.052 8 0.001 0 0.015 6 0.000 1 0.753 1 0.001 5 305 3 307 6 322 45 6 10 198 0.048 5 0.000 5 0.351 5 0.007 1 0.052 6 0.001 0 0.015 7 0.000 1 0.637 1 0.000 7 305 3 306 6 310 44 7 16 312 0.048 6 0.000 5 0.351 0 0.005 8 0.052 3 0.000 8 0.016 0 0.000 1 0.476 4 0.001 8 306 3 306 5 301 34 8 9 182 0.048 6 0.000 5 0.352 0 0.008 8 0.052 5 0.001 2 0.015 8 0.000 1 0.532 5 0.001 9 306 3 306 8 309 54 9 12 234 0.048 4 0.000 5 0.351 8 0.006 3 0.052 7 0.000 9 0.015 9 0.000 1 0.648 6 0.002 7 305 3 306 6 316 39 10 9 181 0.048 6 0.000 5 0.350 9 0.008 5 0.052 4 0.001 2 0.016 0 0.000 1 0.473 2 0.002 9 306 3 305 7 303 53 11 4 80 0.048 7 0.000 5 0.354 0 0.015 0 0.052 7 0.002 2 0.016 3 0.000 2 0.479 7 0.001 4 307 3 308 13 316 96 12 8 156 0.048 7 0.000 5 0.353 3 0.009 9 0.052 7 0.001 4 0.016 0 0.000 1 0.557 7 0.002 7 306 3 307 9 315 62 13 16 311 0.048 9 0.000 5 0.354 4 0.006 1 0.052 6 0.000 9 0.015 4 0.000 1 0.558 3 0.002 6 308 3 308 5 311 37 14 10 192 0.048 8 0.000 5 0.353 5 0.007 9 0.052 5 0.001 1 0.015 0 0.000 1 0.486 3 0.001 0 307 3 307 7 307 49 15 9 186 0.048 7 0.000 5 0.351 2 0.008 6 0.052 3 0.001 2 0.014 5 0.000 1 0.512 7 0.002 2 306 3 306 7 300 52 16 9 186 0.048 7 0.000 5 0.354 0 0.007 5 0.052 7 0.001 1 0.013 2 0.000 1 0.439 7 0.002 2 307 3 308 6 316 46 17 13 257 0.048 5 0.000 5 0.352 1 0.006 1 0.052 6 0.000 8 0.013 1 0.000 1 0.507 7 0.002 8 306 3 306 5 312 36 18 15 295 0.048 8 0.000 5 0.353 8 0.005 7 0.052 6 0.000 8 0.013 4 0.000 1 0.479 5 0.002 1 307 3 308 5 310 34 19 13 252 0.048 2 0.000 5 0.353 4 0.006 0 0.053 2 0.000 9 0.012 3 0.000 0 0.521 5 0.001 4 304 3 307 5 336 36 20 14 272 0.049 1 0.000 5 0.356 0 0.005 8 0.052 6 0.000 8 0.012 9 0.000 0 0.544 8 0.001 4 309 3 309 5 311 34 21 15 272 0.048 8 0.000 5 0.352 6 0.007 4 0.052 4 0.001 0 0.013 1 0.000 0 0.866 5 0.001 1 307 3 307 6 303 45 22 22 396 0.048 6 0.000 5 0.352 4 0.005 1 0.052 6 0.000 7 0.012 5 0.000 0 0.920 0 0.002 1 306 3 307 4 313 30 23 12 234 0.048 8 0.000 5 0.354 5 0.006 2 0.052 7 0.000 8 0.013 2 0.000 0 0.625 2 0.000 5 307 3 308 5 316 36 24 13 242 0.048 6 0.000 5 0.352 6 0.005 9 0.052 6 0.000 8 0.013 5 0.000 0 0.745 9 0.002 1 306 3 307 5 311 36 样品号 含量(10-6) 同位素比值 表面年龄(Ma) 14TW20 Pb U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 208Pb/232Th 1σ 232Th/238U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 1 4 73 0.049 6 0.000 6 0.360 3 0.021 8 0.052 7 0.003 1 0.015 1 0.000 3 0.742 9 0.004 8 312 4 312 19 317 135 2 14 223 0.054 5 0.000 6 0.402 0 0.010 1 0.053 5 0.001 3 0.015 9 0.000 1 0.930 4 0.005 1 342 4 343 9 349 53 3 9 139 0.055 0 0.000 6 0.405 5 0.012 1 0.053 4 0.001 5 0.016 8 0.000 1 0.792 2 0.002 4 345 3 346 10 347 65 4 6 99 0.049 5 0.000 5 0.358 2 0.018 1 0.052 5 0.002 6 0.014 2 0.000 1 0.988 8 0.003 2 311 3 311 16 307 114 5 12 174 0.054 1 0.000 6 0.398 2 0.010 4 0.053 4 0.001 4 0.016 6 0.000 1 1.378 8 0.012 8 340 4 340 9 344 59 6 8 134 0.049 1 0.000 9 0.357 8 0.014 3 0.052 9 0.002 1 0.014 0 0.000 2 0.924 4 0.005 0 309 6 311 12 323 91 7 29 493 0.049 2 0.000 5 0.358 1 0.005 3 0.052 8 0.000 7 0.013 4 0.000 1 1.114 8 0.001 4 310 3 311 5 319 31 8 10 178 0.048 9 0.000 5 0.357 7 0.010 7 0.053 1 0.001 6 0.012 8 0.000 1 1.043 6 0.004 7 308 3 310 9 331 66 9 9 152 0.049 5 0.000 6 0.359 3 0.017 1 0.052 6 0.002 5 0.014 2 0.000 1 1.030 5 0.001 8 312 4 312 15 311 110 10 10 189 0.048 9 0.000 5 0.354 5 0.008 1 0.052 6 0.001 2 0.013 0 0.000 1 0.895 7 0.004 0 307 3 308 7 313 51 11 15 273 0.048 7 0.000 5 0.352 9 0.007 5 0.052 6 0.001 1 0.013 2 0.000 1 1.059 5 0.002 3 306 3 307 7 312 46 12 13 238 0.048 8 0.000 5 0.357 2 0.007 1 0.053 1 0.001 0 0.014 0 0.000 0 0.924 7 0.001 8 307 3 310 6 333 44 13 12 211 0.049 9 0.000 5 0.358 4 0.007 6 0.052 1 0.001 0 0.014 9 0.000 1 0.880 7 0.003 5 314 3 311 7 291 45 14 15 260 0.049 1 0.000 5 0.358 8 0.006 6 0.053 0 0.000 9 0.014 2 0.000 1 0.925 0 0.005 7 309 3 311 6 331 39 15 6 114 0.049 2 0.000 5 0.358 9 0.016 1 0.052 9 0.002 3 0.015 9 0.000 2 0.633 9 0.003 3 310 3 311 14 324 98 16 16 284 0.048 9 0.000 5 0.356 5 0.006 8 0.052 9 0.001 0 0.014 4 0.000 0 0.823 1 0.001 0 308 3 310 6 323 41 17 10 192 0.048 6 0.000 5 0.354 9 0.008 5 0.053 0 0.001 3 0.015 8 0.000 1 0.696 5 0.001 3 306 3 308 7 328 54 18 20 348 0.049 0 0.000 5 0.355 7 0.005 5 0.052 6 0.000 7 0.014 7 0.000 0 0.929 3 0.000 9 308 3 309 5 313 32 19 16 284 0.048 7 0.000 5 0.351 4 0.006 0 0.052 4 0.000 8 0.014 6 0.000 1 0.958 7 0.006 8 306 3 306 5 301 36 20 16 283 0.048 6 0.000 5 0.351 5 0.006 6 0.052 5 0.000 9 0.014 7 0.000 0 0.900 7 0.003 3 306 3 306 6 308 40 21 16 280 0.048 6 0.000 5 0.386 8 0.013 6 0.057 7 0.002 0 0.013 8 0.000 1 1.110 8 0.007 1 306 3 332 12 519 77 22 11 194 0.049 3 0.000 5 0.357 4 0.006 7 0.052 6 0.000 9 0.015 5 0.000 1 0.852 9 0.009 6 310 3 310 6 311 40 23 11 202 0.049 3 0.000 5 0.357 3 0.015 0 0.052 6 0.002 0 0.016 1 0.000 3 0.682 4 0.010 1 310 3 310 13 312 86 24 14 240 0.049 6 0.000 5 0.358 9 0.006 8 0.052 5 0.000 9 0.015 2 0.000 1 0.983 6 0.009 4 312 3 311 6 307 41 注:测试单位为天津地质矿产研究所实验室. 表 2 砾石滩地区花岗岩类主量元素(%)、微量元素(10-6)分析结果
Table 2. Major (%) and trace element (10-6) compositions of granitoids in Lishitan area
样号 英云闪长岩 花岗闪长岩1 花岗闪长岩2 二长花岗岩 02.1 02.2 02.3 06.1 06.2 16.1 16.2 16.3 16.4 16.5 TW.1 TW.2 SiO2 65.97 65.08 65.40 68.57 67.37 64.04 63.04 61.04 60.14 60.21 73.06 69.83 Al2O3 16.56 17.20 16.56 15.11 15.04 15.39 15.57 16.09 16.33 16.23 13.92 14.27 Fe2O3 1.04 1.02 1.12 2.02 2.57 2.65 3.29 3.28 3.26 2.86 1.85 1.83 FeO 2.00 2.20 2.03 1.40 1.53 2.55 2.46 3.01 3.25 3.48 0.52 1.22 CaO 4.91 4.07 4.92 3.39 3.78 4.28 4.61 5.45 5.66 6.16 1.83 2.84 MgO 2.50 2.85 2.58 1.18 1.43 2.36 2.49 2.93 3.04 2.96 0.51 0.86 K2O 1.27 1.40 1.10 3.35 3.14 2.91 2.50 2.50 2.15 2.58 3.57 2.73 Na2O 4.28 4.62 4.18 3.43 3.39 3.03 3.12 3.07 3.05 3.08 3.51 3.63 TiO2 0.36 0.38 0.40 0.48 0.56 0.56 0.61 0.62 0.70 0.56 0.27 0.41 P2O5 0.098 0.100 0.095 0.120 0.140 0.130 0.140 0.140 0.140 0.140 0.060 0.100 MnO 0.058 0.058 0.054 0.079 0.090 0.100 0.110 0.110 0.120 0.120 0.050 0.080 FeOT 2.94 3.12 3.04 3.22 3.84 4.94 5.42 5.96 6.18 6.05 2.19 2.87 Fe2O3T 3.26 3.47 3.38 3.58 4.27 5.48 6.02 6.63 6.87 6.73 2.43 3.19 Mg# 64.10 65.72 64.04 43.47 43.83 50.07 49.06 50.75 50.76 50.63 32.86 38.61 AR 1.70 1.79 1.65 2.16 2.06 1.87 1.77 1.70 1.62 1.68 2.63 2.18 A/CNK 0.95 1.04 0.97 0.98 0.95 0.97 0.96 0.91 0.93 0.85 1.07 1.01 SI 22.54 23.57 23.43 10.37 11.86 17.48 17.97 19.81 20.61 19.79 5.12 8.37 FL 53.06 59.66 51.76 66.67 63.34 58.12 54.94 50.54 47.88 47.88 79.46 69.13 MF 54.87 53.05 54.97 74.35 74.14 68.78 69.78 68.22 68.17 68.17 82.29 78.01 δ 1.34 1.64 1.24 1.80 1.75 1.68 1.58 1.72 1.58 1.86 1.67 1.51 K2O+Na2O 5.55 6.02 5.28 6.78 6.53 5.94 5.62 5.57 5.20 5.66 7.08 6.36 K2O/Na2O 0.30 0.30 0.26 0.98 0.93 0.96 0.80 0.81 0.70 0.84 1.02 0.75 灼失量 0.72 0.76 1.33 0.71 0.80 1.73 1.80 1.42 1.80 1.22 0.90 2.17 Cr 45.60 50.30 42.70 3.63 3.83 10.10 11.40 15.70 12.00 17.80 2.94 2.54 Ni 45.60 52.50 45.00 2.36 2.58 8.70 9.25 11.30 12.10 12.20 1.59 1.38 Co 11.00 12.40 10.90 5.95 7.09 13.00 14.40 17.40 18.60 17.40 1.87 3.71 Rb 50.00 57.50 43.40 105.00 95.80 78.80 66.10 79.60 62.20 80.70 145.00 92.00 Cs 3.36 3.37 2.66 4.61 4.18 4.02 2.93 4.39 4.15 5.83 1.83 1.74 Sr 296 356 315 215 219 256 276 287 278 357 149 230 Ba 114 127 118 582 519 384 322 328 298 415 589 525 V 52.70 55.10 53.40 62.50 74.90 110.00 123.00 140.00 158.00 144.00 19.30 35.60 Sc 10.20 9.53 9.14 8.54 8.98 15.50 15.40 18.10 18.10 21.20 6.99 7.41 Nb 3.26 2.83 3.21 7.50 8.27 6.62 7.03 5.88 7.33 5.80 7.80 6.83 Ta 0.26 0.26 0.28 0.63 0.68 0.58 0.59 0.65 0.81 0.52 0.77 0.57 Zr 113.0 104.0 109.0 198.0 215.0 132.0 121.0 65.2 99.2 140.0 104.0 154.0 Hf 2.78 2.90 2.98 5.83 6.15 4.31 3.97 2.77 4.00 5.13 3.58 4.59 Ga 15.00 14.70 14.50 16.00 16.20 16.00 16.70 17.10 17.80 17.00 13.20 14.40 U 0.46 0.51 0.47 2.18 2.30 1.63 1.87 2.14 3.23 1.87 1.17 1.78 Th 3.88 3.61 4.23 13.00 11.80 11.50 10.70 12.60 14.30 9.53 11.50 7.49 La 9.75 9.29 8.90 23.40 26.10 21.20 18.90 20.70 16.10 17.80 20.70 19.00 Ce 17.10 17.30 15.40 47.70 51.70 42.30 39.20 41.60 37.90 41.20 37.50 36.30 Pr 2.46 2.42 2.31 5.98 6.37 5.15 4.76 5.32 5.30 5.72 4.22 4.26 Nd 9.73 9.67 8.84 22.60 24.20 19.30 18.30 21.20 21.60 23.40 14.70 15.80 Sm 2.25 2.30 1.90 4.42 4.77 3.66 3.67 4.53 4.74 4.98 2.57 2.97 Eu 0.58 0.59 0.55 1.06 1.08 0.86 0.85 1.08 1.10 1.19 0.58 0.77 Gd 2.30 2.25 2.02 4.01 4.44 3.29 3.30 4.35 4.31 4.69 2.29 2.67 Tb 0.36 0.36 0.31 0.63 0.70 0.52 0.51 0.68 0.72 0.76 0.35 0.44 Dy 1.97 2.08 1.78 3.85 4.24 3.14 3.15 4.06 4.41 4.66 2.01 2.61 Ho 0.38 0.40 0.34 0.82 0.92 0.65 0.65 0.83 0.94 0.98 0.42 0.52 Er 1.08 1.11 0.95 2.36 2.62 1.84 1.86 2.43 2.65 2.81 1.34 1.67 Tm 0.16 0.17 0.15 0.36 0.41 0.28 0.29 0.37 0.41 0.44 0.22 0.27 Yb 1.07 1.11 0.97 2.47 2.76 1.89 1.92 2.47 2.82 2.94 1.70 2.03 Lu 0.16 0.18 0.15 0.40 0.44 0.30 0.30 0.38 0.44 0.46 0.29 0.34 Y 12.20 12.10 10.30 21.80 24.30 16.40 16.50 18.60 21.00 22.60 11.70 15.50 δEu 0.77 0.78 0.85 0.76 0.71 0.74 0.73 0.73 0.73 0.74 0.72 0.82 ΣREE 61.55 61.33 54.87 141.86 155.05 120.78 114.16 128.60 124.44 134.63 100.59 105.15 LREE/HREE 5.60 5.43 5.68 7.06 6.91 7.76 7.15 6.06 5.19 5.32 9.31 7.50 (La/Lu)N 6.53 5.53 6.36 6.27 6.36 7.57 6.75 5.84 3.92 4.15 7.65 5.99 (La/Sm)N 2.80 2.61 3.02 3.42 3.53 3.74 3.32 2.95 2.19 2.31 5.20 4.13 (Gd/Lu)N 1.78 1.55 1.66 1.24 1.25 1.36 1.36 1.41 1.21 1.26 0.98 0.97 注:测试工作由天津地质矿产研究所完成,常量元素采用XRF测试,其中FeO采用氢氟酸、硫酸溶样、重铬酸钾滴定容量法,微量元素采用ICP-MS测试. 表 3 英云闪长岩(02TW1)、花岗闪长岩(7218)锆石Hf同位素数据
Table 3. Zircon Hf isotopic data of the tonalite (02TW1) and granodiorite (7218)
点号 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ 176Hf/177Hfi εHf(0) εHf(t) tDM(Ma) tDMC(Ma) 02TW1.1 312 0.032 3 0.000 7 0.282 866 0.000 028 0.282 862 3.3 10.0 542 685 02TW1.2 307 0.036 8 0.000 8 0.282 964 0.000 033 0.282 960 6.8 13.4 406 466 02TW1.3 313 0.047 8 0.001 0 0.282 804 0.000 034 0.282 798 1.1 7.8 636 831 02TW1.4 313 0.034 2 0.000 8 0.282 893 0.000 028 0.282 888 4.3 11.0 506 624 02TW1.5 310 0.039 0 0.000 9 0.282 803 0.000 031 0.282 797 1.1 7.7 635 833 02TW1.6 311 0.032 6 0.000 8 0.282 691 0.000 030 0.282 687 -2.9 3.8 790 1 083 02TW1.7 311 0.041 0 0.000 9 0.282 732 0.000 035 0.282 726 -1.4 5.2 736 993 02TW1.8 303 0.033 6 0.000 8 0.282 727 0.000 031 0.282 723 -1.6 4.9 740 1007 02TW1.9 309 0.054 9 0.001 4 0.282 950 0.000 034 0.282 942 6.3 12.8 433 506 02TW1.10 314 0.025 4 0.000 7 0.282 776 0.000 032 0.282 772 0.1 6.9 669 888 02TW1.11 312 0.055 3 0.001 7 0.283 100 0.000 028 0.283 091 11.6 18.1 218 163 02TW1.12 309 0.020 1 0.000 5 0.283 121 0.000 033 0.283 119 12.4 19.1 181 101 02TW1.13 311 0.027 4 0.000 9 0.283 211 0.000 036 0.283 206 15.5 22.2 56 -101 02TW1.14 310 0.035 3 0.000 9 0.282 956 0.000 027 0.282 950 6.5 13.1 419 485 02TW1.15 311 0.020 1 0.000 6 0.282 972 0.000 023 0.282 968 7.1 13.8 393 444 02TW1.16 312 0.029 1 0.000 8 0.283 002 0.000 025 0.282 997 8.1 14.8 353 378 7218.1 318 0.035 4 0.001 0 0.282 837 0.000 020 0.282 831 2.3 9.1 589 753 7218.2 316 0.097 8 0.002 4 0.282 986 0.000 032 0.282 972 7.6 14.0 392 433 7218.3 317 0.086 9 0.002 3 0.282 879 0.000 026 0.282 865 3.8 10.3 548 675 7218.4 318 0.051 5 0.001 6 0.282 918 0.000 027 0.282 909 5.2 11.8 481 575 7218.5 318 0.084 9 0.002 6 0.282 824 0.000 025 0.282 808 1.8 8.3 634 803 7218.6 319 0.048 4 0.001 9 0.282 848 0.000 026 0.282 837 2.7 9.3 586 737 7218.7 318 0.064 7 0.002 0 0.282 824 0.000 023 0.282 812 1.8 8.4 623 794 7218.8 319 0.039 4 0.001 2 0.282 841 0.000 022 0.282 834 2.4 9.2 586 745 7218.9 319 0.055 4 0.001 8 0.282 890 0.000 023 0.282 880 4.2 10.8 523 640 7218.10 317 0.055 4 0.001 9 0.282 791 0.000 024 0.282 780 0.7 7.3 669 868 7218.11 318 0.073 6 0.002 1 0.282 830 0.000 025 0.282 818 2.1 8.6 616 782 7218.12 321 0.040 1 0.001 3 0.282 856 0.000 020 0.282 848 3.0 9.8 566 711 7218.13 320 0.045 7 0.001 2 0.282 865 0.000 022 0.282 858 3.3 10.1 552 689 7218.14 318 0.052 5 0.001 6 0.282 840 0.000 020 0.282 831 2.4 9.1 593 753 7218.15 317 0.049 3 0.001 4 0.282 933 0.000 025 0.282 924 5.7 12.4 458 541 7218.16 319 0.062 8 0.001 8 0.282 858 0.000 028 0.282 848 3.1 9.7 569 713 注:测试单位为天津地质矿产研究所实验室 -
Amelin, Y., Lee, D.C., Halliday, A.N., et al., 1999.Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrital Zircons. Nature, 399(6733):252-255. https://doi.org/10.1038/20426 Ao, S.J., Xiao, W.J., Han, C.M., et al., 2010.Geochronology and Geochemistry of Early Permian Mafic-Ultramafic Complexes in the Beishan Area, Xinjiang, NW China:Implications for Late Paleozoic Tectonic Evolution of the Southern Altaids. Gondwana Research, 18(2-3):466-478. https://doi.org/10.1016/j.gr.2010.01.004 Ao, S.J., Xiao, W.J., Han, C.M., et al., 2011.Cambrian to Early Silurian Ophiolite and Accretionary Processes in the Beishan Collage, NW China:Implications for the Architecture of the Southern Altaids. Geological Magazine, 149(4):606-625. https://doi.org/10.1017/S0016756811000884 Atherton, M.P., Petford, N., 1993.Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416):144-146. https://doi.org/10.1038/362144a0 Barbarin, B., 1999.A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3):605-626. https://doi.org/10.1016/s0024-4937(98)00085-1 Batchelor, R.A., Bowden, P., 1985.Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4):43-55. https://doi.org/10.1016/0009-2541(85)90034-8 Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., 2005.Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling:Examples from Eastern Australian Granitoids. Journal of Petrology, 47(2):329-353 https://doi.org/10.1093/petrology/egi077 Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008.The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1-2):48-57. https://doi.org/10.1016/j.epsl.2008.06.010 Cai, Z.H., Xu, Z.Q., He, B.Z., et al., 2012.Age and Tectonic Evolution of Ductile Shear Zones in the Eastern Tianshan-Beishan Orogenic Belt. Acta Petrologica Sinica, 28(6):1875-1895 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201206012 Dai, S., Fang, X.M., Zhang, X., et al., 2003.Island Arc North of the Tarim-SK Plate:The Geology and Geochemistry of Gongpoquan Group. Journal of Lanzhou University (Natural Sciences), 39(4):80-87 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-LDZK200304021.htm Defant, M.J., Drummond, M.S., 1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0 Dodson, J., Li, X.Q., Ji, M., et al., 2009.Early Bronze in Two Holocene Archaeological Sites in Gansu, NW China. Quaternary Research, 72(3):309-314. https://doi.org/10.1016/j.yqres.2009.07.004 Geng, J.Z., Li, H.K., Zhang, J., et al., 2011.Zircon Hf Isotope Analysis by Means of LA-MC-ICP-MS. Geological Bulletin of China, 30(10):1508-1513(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201110004 Gong, Q.S., Liu, M.Q., Li, H.L., et al., 2002.The Type and Basic Characteristics of Beishan Orogenic Belt, Gansu. Northwestern Geology, 35(3):28-34 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz200203004 Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4):237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 Guo, Q.Q., Xiao, W.J., Hou, Q.L., et al., 2014.Construction of Late Devonian Dundunshan Arc in the Beishan Orogen and Its Implication for Tectonics of Southern Central Asian Orogenic Belt. Lithos, 184-187:361-378. https://doi.org/10.1016/j.lithos.2013.11.007 He, S.P., Zhou, H.W., Ren, B.C., et al., 2005.Crustal Evolution of Palaeozoic in Beishan Area, Gansu and Inner Mongolia, China. Northwestern Geology, 38(3):6-15(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz200503002 Hou, Q.Y., Wang, Z., Liu, J.B., et al., 2012.Geochemistry Characteristics and SHRIMP Dating of Yueyashan Ophiolite in Beishan Orogen. Geoscience, 26(5):1008-1018(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201205022 Huang, Z.B., Jin, X., 2006.Tectonic Environment of Basic Volcanic Rocks in the Hongshishan Ophiolite Mélange Zone, Beishan Mountains, Gansu. Geology in China, 33(5):1030-1037 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200605011 Jia, Y.Q., Zhao, Z.X., Xu, H., et al., 2016.Zircon LA-ICP-MS U-Pb Dating and Tectonic Setting of Rhyolites from Baishan Formation in Fengleishan Area of the Beishan Orogenic Belt. Geology in China, 43(1):91-98 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201601006 Jiang, S.H., Nie, F.J., 2006.Nd-Isotope Constrains on Origin of Granitoids in Beishan Mountain Area. Acta Geologica Sinica, 80(6):826-842 (in Chinese with English abstract). Jin, Z.M., Gao, S., 1996.Underplating and Its Geodynamical Significances for the Evolution of Crust-Mantle Boundary. Geological Science and Technology Information, 15(2):1-7 (in Chinese with English abstract). Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., et al., 2007.Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814):980-983. https://doi.org/10.1126/science.1136154 Koschek, G., 1993.Origin and Significance of the SEM Cathodoluminescence from Zircon. Journal of Microscopy, 171(3):223-232. https://doi.org/10.1111/j.1365-2818.1993.tb03379.x Liu, J.L., Sun, F.Y., Wang, Y.D., et al., 2016.Tectonic Setting of Hadahushu Mafic Intrusion in Urad Zhongqi Area, Inner Mongolia:Implications for Early Subduction History of Paleo-Asian Ocean Plate. Earth Science, 41(12):2019-2030(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.141 Liu, Q., Zhao, G.C., Sun, M., et al., 2015.Ages and Tectonic Implications of Neoproterozoic Ortho-and Paragneisses in the Beishan Orogenic Belt, China. Precambrian Research, 266:551-578. https://doi.org/10.1016/j.precamres.2015.05.022 Liu, X.C., Chen, B.L., Jahn, B.M., et al., 2010.Early Paleozoic (ca.465 Ma) Eclogites from Beishan (NW China) and Their Bearing on the Tectonic Evolution of the Southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 42(4):715-731. https://doi.org/10.1016/j.jseaes.2010.10.017 Liu, Y., Gao, S., Hu, Z., et al., 2009.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 Lu, J.C., Niu, Y.Z., Wei, X.Y., et al., 2013.LA-ICP-MS Zircon U-Pb Dating of the Late Paleozoic Volcanic Rocks from the Hongshishan Area of the Beishan Orogenic Belt and Its Tectonic Significances. Acta Petrologica Sinica, 29(8):2685-2694(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201308006 Ludwig, K.R., 2003.Isoplot 3.0-A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Berkeley. Murphy, J.B., Nance, R.D., 2002.Sm-Nd Isotopic Systematics as Tectonic Tracers:An Example from West Avalonia in the Canadian Appalachians. Earth-Science Reviews, 59(1-4):77-100. https://doi.org/10.1016/s0012-8252(02)00070-3 Niu, Y.Z., Lu, J.C., Wei, J.S., et al., 2014.Chronology of the Lütiaoshan Formation in the Beishan Area and Its Tectonic Significances. Geological Review, 60(3):567-576 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201403008 Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 Peccerillo, A., Taylor, S.R., 1976.Rare Earth Elements in East Carpathian Volcanic Rocks. Earth and Planetary Science Letters, 32(2):121-126. https://doi.org/10.1016/0012-821x(76)90050-9 Pirajno, F., 2010.Intracontinental Strike-Slip Faults, Associated Magmatism, Mineral Systems and Mantle Dynamics:Examples from NW China and Altay-Sayan (Siberia). Journal of Geodynamics, 50(3-4):325-346. https://doi.org/10.1016/j.jog.2010.01.018 Pfänder, J.A., Münker, C., Stracke, A., et al., 2007.Nb/Ta and Zr/Hf in Ocean Island Basalts-Implications for Crust-Mantle Differentiation and the Fate of Niobium. Earth and Planetary Science Letters, 254(1-2):158-172. https://doi.org/10.1016/j.epsl.2006.11.027 Qi, R.R., Huang, Z.B., Jin, X., 2006.Geochemical Characteristics and Tectonic Implications of the Dashishan A-Type Granitic Intrusion in Beishan Area, Gansu Province. Acta Petrologica et Mineralogica, 25(2):90-96(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW200602002.htm Ravikant, V., Wu, F.Y., Ji, W.Q., 2011.U-Pb Age and Hf Isotopic Constraints of Detrital Zircons from the Himalayan Foreland Subathu Sub-Basin on the Tertiary Palaeogeography of the Himalaya. Earth and Planetary Science Letters, 304(3-4):356-368. https://doi.org/10.1016/j.epsl.2011.02.009 Rogers, G., Hawkesworth, C.J., 1989.A Geochemical Traverse across the North Chilean Andes:Evidence for Crust Generation from the Mantle Wedge. Earth and Planetary Science Letters, 91(3-4):271-285. https://doi.org/10.1016/0012-821x(89)90003-4 Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3-4):311-324. https://doi.org/10.1016/s0012-821x(04)00012-3 Song, D.F., Xiao, W.J., Han, C.M., et al., 2013.Progressive Accretionary Tectonics of the Beishan Orogenic Collage, Southern Altaids:Insights from Zircon U-Pb and Hf Isotopic Data of High-Grade Complexes. Precambrian Research, 227(1):368-388. http://www.sciencedirect.com/science/article/pii/S0301926812001532 Song, X.Y., Xie, W., Deng, Y.F., et al., 2011.Slab Break-off and the Formation of Permian Mafic-Ultramafic Intrusions in Southern Margin of Central Asian Orogenic Belt, Xinjiang, NW China. Lithos, 127(1-2):128-143. https://doi.org/10.1016/j.lithos.2011.08.011 Su, B.X., Qin, K.Z., Sun, H., et al., 2012.Subduction-Induced Mantle Heterogeneity beneath Eastern Tianshan and Beishan:Insights from Nd-Sr-Hf-O Isotopic Mapping of Late Paleozoic Mafic-Ultramafic Complexes. Lithos, 134-135:41-51. https://doi.org/10.1016/j.lithos.2011.12.011 Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Tian, Z.H., Xiao, W.J., Windley, B.F., et al., 2014.Structure, Age, and Tectonic Development of the Huoshishan-Niujuanzi Ophiolitic Mélange, Beishan, Southernmost Altaids. Gondwana Research, 25(2):820-841. https://doi.org/10.1016/j.gr.2013.05.006 Wang, G., Sun, F.Y., Li, B.L., 2014.Zircon U-Pb Geochronology and Geochemistry of Diorite in Xiarihamu Ore District from East Kunlun and Its Geological Significance. Journal of Jilin University(Earth Science Edition), 44(3):876-891 (in Chinese with English abstract). https://doi.org/10.13278/j.cnki.jjuese.201403113 Wang, G.Q., Li, X.M., Xu, X.Y., et al., 2014.Zircon U-Pb Chronological Study of the Hongshishan Ophiolite in the Beishan Area and Their Tectonic Significance. Acta Petrologica Sinica, 30(6):1685-1694(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201406011.htm Wang, S.Q., Xin, H.T., Hu, X.J., et al., 2016.Geochronology, Geochemistry and Geological Significance of Early Paleozoic Wulanaobaotu Intrusive Rocks, Inner Mongolia. Earth Science, 41(4):555-569 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201604001 Wang, Y.W., Jiang, F.Z., 1997.Features and Distribution of Volcanic Rock Associations of Various Ages in the Beishan Area, Gansu. Regional Geology of China, 16(3):298-304 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD703.010.htm Wei, Z.J., Huang, Z.B., Jin, X., et al., 2004.Geological Characteristics of Ophiolite Migmatitic Complex of Hongshishan Region, Gansu. Northwestern Geology, 37(1):13-18 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz200402003 Williams, I.S., Buick, I.S., Cartwright, I., 1996.An Extended Episode of Early Mesoproterozoic Metamorphic Fluid Flow in the Reynolds Range, Central Australia. Journal of Metamorphic Geology, 14(1):29-47. https://doi.org/10.1111/j.1525-1314.1996.00029.x Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 Wu, Y.B., Zheng, Y.F., 2004.Genetic Mineralogy of Zircons and Its Constraints to the Age of U-Pb Geochronology. Chinese Science Bulletin, 49(16):1589-1604(in Chinese). Xiao, Q.H., Deng, J.F., Qiu, R.Z., et al., 2009.A Preliminary Study of the Relationship between Granitoids and the Growth of Continental Crust:A Case Study of the Formation of Key Orogen Granitoids in China. Geology in China, 36(3):594-622 (in Chinese with English abstract). Xiao, W.J., Han, C.M., Liu, W., et al., 2014.How Many Sutures in the Southern Central Asian Orogenic Belt:Insights from East Xinjiang-West Gansu (NW China)?. Geoscience Frontiers, 5(4):525-536. https://doi.org/10.1016/j.gsf.2014.04.002 Xiao, W.J., Mao, Q.G., Windley, B.F., et al., 2010.Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage. American Journal of Science, 310(10):1553-1594. https://doi.org/10.2475/10.2010.12 Xu, X.W., Li, X.H., Jiang, N., et al., 2015.Basement Nature and Origin of the Junggar Terrane:New Zircon U-Pb-Hf Isotope Evidence from Paleozoic Rocks and Their Enclaves. Gondwana Research, 28(1):288-310. https://doi.org/10.1016/j.gr.2014.03.011 Xu, Z.Q., Zhang, J.X., Xu., H.F., 1996.Ductile Shear Zones in the Main Continental Mountain Chains of China and Their Dynamics.Geological Publishing House, Beijing, 1-294 (in Chinese). Yang, H.Q., Zhao, G.B., Li, Y., et al., 2012.The Relationship between Paleozoic Tectonic Setting and Mineralization in Xinjiang-Gansu-Inner Mongolia Juncture Area. Geological Bulletin of China, 31(2):413-421 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201202027 Yu, F.S., Wang, C.Y., Qi, J.F., et al., 2000.The Clarification and Tectonic Implication of the Early Silurian Ophiolite Mélange in Hongliuhe Area. Journal of Mineralogy and Petrology, 20(4):60-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200004011.htm Yuan, H.L., Gao, S., Liu, X.M., et al., 2004.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3):353-370. https://doi.org//10.1111/j.1751-908x.2004.tb00755.x Yuan, Y., Zong, K.Q., He, Z.Y., et al., 2015.Geochemical and Geochronological Evidence for a Former Early Neoproterozoic Microcontinent in the South Beishan Orogenic Belt, Southernmost Central Asian Orogenic Belt. Precambrian Research, 266:409-424. https://doi.org/10.1016/j.precamres.2015.05.034 Zhang, D.H., Zhao, L.S., 2013.Geochemistry.Geological Publishing House, Beijing, 70(in Chinise). Zhang, Q., Wang, Y., Qian, Q., et al., 2001.The Characteristics and Tectonic-Metallogenic Significances of the Adakites in Yanshan Period from Eastern China. Acta Petrologica Sinica, 17(2):236-244(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200102008 Zhang, W., Pease, V., Wu, T.R., et al., 2012.Discovery of an Adakite-Like Pluton near Dongqiyishan (Beishan, NW China)-Its Age and Tectonic Significance. Lithos, 142-143:148-160. https://doi.org/10.1016/j.lithos.2012.02.021 Zhao, J., Wang, W.L., Dong, L.H., et al., 2012.Application of Geochemical Anomaly Identification Methods in Mapping of Intermediate and Felsic Igneous Rocks in Eastern Tianshan, China. Journal of Geochemical Exploration, 122:81-89. https://doi.org/10.1016/j.gexplo.2012.08.006 Zhao, Z.Y., Zhang, Z.C., Santosh, M., et al., 2015.Early Paleozoic Magmatic Record from the Northern Margin of the Tarim Craton:Further Insights on the Evolution of the Central Asian Orogenic Belt. Gondwana Research, 28(1):328-347./ https://doi.org/10.1016/j.gr.2014.04.007 Zheng, R.G., Wu, T.R., Zhang, W., et al., 2012.Geochemical Characteristic and Tectonic Settings of the Yueyashan-Xichangjing Ophiolite in Beishan Area. Acta Geologica Sinica, 86(6):961-971(in Chinese with English abstract). http://journals.cambridge.org/article_S0016756811000884 Zheng, R.G., Wu, T.R., Zhang, W., et al., 2014a.Geochronology and Geochemistry of Late Paleozoic Magmatic Rocks in the Yinwaxia Area, Beishan:Implications for Rift Magmatism in the Southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 91:39-55. https://doi.org/10.1016/j.jseaes.2014.04.022 Zheng, R.G., Wu, T.R., Zhang, W., et al., 2014b.Late Paleozoic Subduction System in the Northern Margin of the Alxa Block, Altaids:Geochronological and Geochemical Evidences from Ophiolites. Gondwana Research, 25(2):842-858. https://doi.org/10.1016/j.gr.2013.05.011 Zhu, D.C., Zhao, Z.D., Pan, G.T., et al., 2009.Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet:Products of Slab Melting and Subsequent Melt-Peridotite Interaction?. Journal of Asian Earth Sciences, 34(3):298-309. https://doi.org/10.1016/j.jseaes.2008.05.003 Zong, K.Q., Klemd, R., Yuan, Y., et al., 2017.The Assembly of Rodinia:The Correlation of Early Neoproterozoic (ca.900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290:32-48. https://doi.org/10.1016/j.precamres.2016.12.010 Zuo, G.C., He, G.Q., 1990.Series on Tectonics of North Plate, China:Plate Tectonics and Metallogenesis Regularities in Beishan Region.Peking University Press, Beijing, 1-226 (in Chinese). Zuo, G.C., Zhang, S.L., He, G.Q., et al., 1991.Plate Tectonic Characteristics during the Early Paleozoic in Beishan near the Sino-Mongolian Border Region, China. Tectonophysics, 188(3-4):385-392. https://doi.org/10.1016/0040-1951(91)90466-6 蔡志慧, 许志琴, 何碧竹, 等, 2012.东天山-北山造山带中大型韧性剪切带属性及形成演化时限与过程.岩石学报, 28(6):1875-1895. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201206012 戴霜, 方小敏, 张翔, 等, 2003.塔里木-中朝板块北缘的志留纪岛弧公婆泉群火山岩地质地球化学及构造意义.兰州大学学报, 39(4):80-87. http://d.old.wanfangdata.com.cn/Periodical/lzdxxb200304022 耿建珍, 李怀坤, 张健, 等, 2011.锆石Hf同位素组成的LA-MC-ICP-MS测定.地质通报, 30(10):1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004 龚全胜, 刘明强, 李海林, 等, 2002.甘肃北山造山带类型及基本特征.西北地质, 35(3):28-34. doi: 10.3969/j.issn.1009-6248.2002.03.004 何世平, 周会武, 任秉琛, 等, 2005.甘肃内蒙古北山地区古生代地壳演化.西北地质, 38(3):6-15. doi: 10.3969/j.issn.1009-6248.2005.03.002 侯青叶, 王忠, 刘金宝, 等, 2012.北山月牙山蛇绿岩地球化学特征及SHRIMP定年.现代地质, 26(5):1008-1018. doi: 10.3969/j.issn.1000-8527.2012.05.022 黄增保, 金霞, 2006.甘肃北山红石山蛇绿混杂岩带中基性火山岩构造环境分析.中国地质, 33(5):1030-1037. doi: 10.3969/j.issn.1000-3657.2006.05.011 贾元琴, 赵志雄, 许海, 等, 2016.北山风雷山地区白山组流纹岩LA-ICP-MS锆石U-Pb年龄及构造环境.中国地质, 43(1):91-98. doi: 10.3969/j.issn.1000-3657.2016.01.006 江思宏, 聂凤军, 2006.北山地区花岗岩类成因的Nd同位素制约.地质学报, 80(6):826-842. doi: 10.3321/j.issn:0001-5717.2006.06.005 金振民, 高山, 1996.底侵作用(underplating)及其壳-幔演化动力学意义.地质科技情报, 15(2):1-7. doi: 10.1016-j.bmcl.2010.06.083/ 刘金龙, 孙丰月, 王英德, 等, 2016.内蒙古乌拉特中旗哈达呼舒基性岩体形成的构造背景与古亚洲洋的早期俯冲历史.地球科学, 41(12):2019-2030. http://earth-science.net/WebPage/Article.aspx?id=3398 卢进才, 牛亚卓, 魏仙样, 等, 2013.北山红石山地区晚古生代火山岩LA-ICP-MS锆石U-Pb年龄及其构造意义.岩石学报, 29(8):2685-2694. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201308006 牛亚卓, 卢进才, 魏建设, 等, 2014.甘蒙北山地区下石炭统绿条山组时代修正及其构造意义.地质论评, 60(3):567-576. http://d.old.wanfangdata.com.cn/Periodical/dzlp201403008 齐瑞荣, 黄增保, 金霞, 2006.甘肃北山大石山A型花岗岩体的地球化学特征及构造意义.岩石矿物学杂志, 25(2):90-96. doi: 10.3969/j.issn.1000-6524.2006.02.002 王冠, 孙丰月, 李碧乐, 等, 2014.东昆仑夏日哈木矿区闪长岩锆石U-Pb年代学、地球化学及其地质意义.吉林大学学报(地球科学版), 44(3):876-891. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201403014 王国强, 李向民, 徐学义, 等, 2014.甘肃北山红石山蛇绿岩锆石U-Pb年代学研究及构造意义.岩石学报, 30(6):1685-1694. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201406011 王树庆, 辛后田, 胡晓佳, 等, 2016.内蒙古乌兰敖包图早古生代侵入岩年代学、地球化学特征及地质意义.地球科学, 41(4):555-569. http://earth-science.net/WebPage/Article.aspx?id=3274 王玉往, 姜福芝, 1997.北山地区各时代火山岩组合特征及分布.中国区域地质, 16(3):298-304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700735619 魏志军, 黄增保, 金霞, 等, 2004.甘肃红石山地区蛇绿混杂岩地质特征.西北地质, 37(1):13-18. doi: 10.3969/j.issn.1009-6248.2004.01.003 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 肖庆辉, 邓晋福, 邱瑞照, 等, 2009.花岗岩类与大陆地壳生长初探——以中国典型造山带花岗岩类岩石的形成为例.中国地质, 36(3):594-622. doi: 10.3969/j.issn.1000-3657.2009.03.008 许志琴, 张建新, 徐慧芬, 1996.中国主要大陆山链韧性剪切带及动力学.北京:地质出版社, 1-294. 杨合群, 赵国斌, 李英, 等, 2012.新疆-甘肃-内蒙古衔接区古生代构造背景与成矿的关系.地质通报, 31(2):413-421. doi: 10.3969/j.issn.1671-2552.2012.02.027 于福生, 王春英, 漆家福, 等, 2000.甘新交界红柳河地区早志留世蛇绿混杂岩的厘定及大地构造意义.矿物岩石, 20(4):60-66. doi: 10.3969/j.issn.1001-6872.2000.04.012 张德会, 赵仑山, 2013.地球化学.北京:地质出版社, 70. 张旗, 王焰, 钱青, 等, 2001.中国东部燕山期埃达克岩的特征及其构造-成矿意义.岩石学报, 17(2):236-244. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200102008 郑荣国, 吴泰然, 张文, 等, 2012.北山地区月牙山-洗肠井蛇绿岩的地球化学特征及形成环境.地质学报, 86(6):961-971. doi: 10.3969/j.issn.0001-5717.2012.06.010 左国朝, 何国琦, 1990.中国北方板块构造丛书——北山板块构造及成矿规律.北京:北京出版社, 1-226.