• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    祁连地块西段硫磺矿北花岗闪长岩的岩石成因及其地质意义:年代学、地球化学及Hf同位素证据

    陶刚 朱利东 李智武 欧阳慧子 解龙 杨文光 杨珍

    陶刚, 朱利东, 李智武, 欧阳慧子, 解龙, 杨文光, 杨珍, 2017. 祁连地块西段硫磺矿北花岗闪长岩的岩石成因及其地质意义:年代学、地球化学及Hf同位素证据. 地球科学, 42(12): 2258-2275. doi: 10.3799/dqkx.2017.614
    引用本文: 陶刚, 朱利东, 李智武, 欧阳慧子, 解龙, 杨文光, 杨珍, 2017. 祁连地块西段硫磺矿北花岗闪长岩的岩石成因及其地质意义:年代学、地球化学及Hf同位素证据. 地球科学, 42(12): 2258-2275. doi: 10.3799/dqkx.2017.614
    Tao Gang, Zhu Lidong, Li Zhiwu, Ouyang Huizi, Xie Long, Yang Wenguang, Yang Zhen, 2017. Petrogenesis and Geological Significance of the North Liuhuangkuang Granodiorite in the West Sement of the Qilian Terrane: Evidences from Geochronology, Geochemistry, and Hf Isotopes. Earth Science, 42(12): 2258-2275. doi: 10.3799/dqkx.2017.614
    Citation: Tao Gang, Zhu Lidong, Li Zhiwu, Ouyang Huizi, Xie Long, Yang Wenguang, Yang Zhen, 2017. Petrogenesis and Geological Significance of the North Liuhuangkuang Granodiorite in the West Sement of the Qilian Terrane: Evidences from Geochronology, Geochemistry, and Hf Isotopes. Earth Science, 42(12): 2258-2275. doi: 10.3799/dqkx.2017.614

    祁连地块西段硫磺矿北花岗闪长岩的岩石成因及其地质意义:年代学、地球化学及Hf同位素证据

    doi: 10.3799/dqkx.2017.614
    基金项目: 

    中国地质调查项目 12120113033004

    高等学校博士学科点专项科研基金资助项目 20125122110010

    冈底斯-喜马拉雅铜矿资源基地调查项目 DD20160015

    详细信息
      作者简介:

      陶刚(1988-), 男, 博士研究生, 主要从事青藏高原区域地质及古生物学方面研究

    • 中图分类号: P597

    Petrogenesis and Geological Significance of the North Liuhuangkuang Granodiorite in the West Sement of the Qilian Terrane: Evidences from Geochronology, Geochemistry, and Hf Isotopes

    • 摘要: 祁连地区与Rodinia超大陆汇聚有关的新元古代岩浆活动越来越受到地质学者的关注和研究.对硫磺矿北花岗闪长岩体进行了锆石LA-ICP-MS U-Pb定年,结果显示岩体锆石U-Pb年龄加权平均值为926±4 Ma,表明其形成时代新元古代早期.花岗闪长岩的SiO2为59.47%~62.96%,P2O5为0.12%~0.14%,铝饱和指数(A/CNK)为1.01~1.15,主要为一套弱过铝质的高钾钙碱型系列,具Ⅰ型花岗岩的特征.稀土元素总量在118.80×10-6~253.07×10-6之间,(La/Yb)N为7.87~16.17,明显富集轻稀土,具有中等-强Eu负异常(δEu=0.33~0.68),稀土元素配分图呈右倾型特征;微量元素上具有富集大离子亲石元素和不相容元素(Rb、Th和U),亏损高场强元素Nb、Ta、Ti、Sr和P的特征;Nb/Ta、La/Nb、Nb/U及Sm/Nd比值整体反映花岗闪长岩壳源特点;硫磺矿北花岗闪长岩体εHft)主要在0~7之间,二阶段地壳模式年龄主要在1 247~1 801 Ma之间.结合区域新元古代岩浆活动认为硫磺矿北花岗闪长岩体形成于活动大陆边缘,而硫磺矿北花岗闪长岩为中元古代增生的年轻地壳部分熔融的产物,经历一定程度分离结晶,可能也有古老地壳部分熔融成分参与该岩体形成.同时,该时期岩浆活动可能为祁连地块在中新元古代时期对全球Rodinia超大陆聚合事件的响应,进一步为祁连地块属性提供可信研究资料.

       

    • 图  1  祁连地块及邻区构造单元图(a)和硫磺矿北地区地质图(b)

      图a据夏林圻等(2016)修改;代号:Ⅰ.华北克拉通;Ⅱ.塔里木克拉通;Ⅲ.华南地块;Ⅲ1.扬子地块;Ⅲ2.华夏地块;Ⅳ.阿拉善地块;Ⅴ.祁连地块;Ⅵ.柴北缘超高压变质带;Ⅶ.柴达木地块Ⅷ-青藏高原;编号:①.中亚造山带;②.北祁连造山带;③.秦岭-大别造山带;④.昆仑造山带;⑤.喜马拉雅造山带.图b1.第四系;2.新近系;3.白垩系;4.古生界;5.龚岔群;6.花儿地组;7.花岗闪长岩;8.逆冲断裂;9.断层;10.三叠纪高压-超高压变质带;11.早古生代高压-超高压变质带;12.硫磺山-河淌逆冲断裂;13.托莱南山南缘逆冲断裂;12.采样位置

      Fig.  1.  Map of tectonic units for the Qilian block and adjacent areas (a) and geological map of the north Liuhuangkuang, Western Qilian (b)

      图  2  硫磺矿北花岗闪长岩典型锆石阴极发光图像(a)和锆石U-Pb谐和年龄图解(b)

      白色实线圆圈为U-Pb年龄测点,直径为25 μm;黄色实线圆圈为Hf同位素测点,直径为44 μm

      Fig.  2.  Cathodoluminescence images of zircons grains (a) and zircons U-Pb concordia diagrams (b) for granodiorite in northern Liuhuangkuang, western Qilian

      图  3  硫磺矿北花岗闪长岩TAS图解

      McKenzie(1989)

      Fig.  3.  Diagrams of TAS for granodiorites in northern Liuhuangkuang, Western Qilian

      图  4  硫磺矿北花岗闪长岩K2O vs. Si2O图解(a)和A/NK vs. A/CNK图解(b)

      Fig.  4.  Diagrams of K2O vs. Si2O and A/NK vs A/CNKfor granodiorites in northern Liuhuangkuang, Western Qilian

      图  5  硫磺矿北花岗闪长岩稀土元素球粒陨石标准化分布形式图解(a)和微量元素原始地幔标准化多元素图解(b)

      球粒陨石标准数据采用McDonough and Sun(1995)

      Fig.  5.  Chondrite-normalized REE patterns (a) and primitive mantle-normalized multielement diagram (b) for granodiorites in northern Liuhuangkuang, Western Qilian

      图  6  花岗岩类型判别图解

      Zorpi et al.(1989)

      Fig.  6.  Discrimination diagrams of granite type

      图  7  样品εHf(t)-t图解

      Fig.  7.  εHf(t) versus t diagram of the granodiorite

      图  8  Yb-Ta、Y+Nb-Rb构造环境图解

      Fig.  8.  Yb-Ta and Y+Nb-Rb discrimination diagrams for the tectonic interpretation of granites

      表  1  祁连西段硫磺矿北花岗闪长岩锆石LA-ICP-MS U-Pb年龄数据

      Table  1.   LA-MC-ICP-MS U-Pb data of zircon for granodiorites in northern Liuhuangkuang, Western Qilian

      编号 Pb
      (10-6)
      Th
      (10-6)
      U
      (10-6)
      Th/U 比值 年龄(Ma) 谐和度
      (%)
      207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ
      1 131.8 191.4 858.5 0.22 1.518 3 0.024 2 0.070 7 0.001 1 0.155 3 0.001 2 938 10 950 33 931 7 99
      2 98.0 170.1 636.2 0.27 1.517 7 0.031 1 0.071 3 0.001 6 0.154 6 0.002 0 938 13 969 46 927 11 98
      3 69.5 119.0 446.4 0.27 1.492 5 0.027 1 0.070 0 0.001 3 0.154 6 0.001 4 927 11 928 39 927 8 99
      4 60.9 96.9 392.9 0.25 1.484 8 0.033 4 0.070 4 0.001 8 0.153 6 0.001 8 924 14 939 52 921 10 99
      5 66.1 110.8 426.7 0.26 1.471 2 0.036 7 0.069 6 0.001 7 0.153 2 0.001 8 919 15 917 50 919 10 99
      6 97.9 231.0 599.2 0.39 1.511 8 0.050 6 0.070 4 0.002 2 0.155 1 0.002 2 935 20 943 65 930 12 99
      7 89.9 128.0 583.3 0.22 1.489 0 0.023 0 0.071 2 0.001 1 0.151 8 0.001 0 926 9 962 31 911 6 98
      8 75.1 116.7 485.7 0.24 1.460 6 0.040 7 0.069 5 0.001 8 0.152 3 0.001 6 914 17 922 56 914 9 99
      9 91.5 224.9 553.4 0.41 1.557 0 0.047 1 0.073 0 0.002 1 0.154 3 0.001 8 953 19 1 017 53 925 10 96
      10 86.2 112.2 554.5 0.20 1.512 8 0.028 8 0.071 3 0.001 3 0.153 9 0.001 3 936 12 969 39 923 7 98
      11 75.9 184.3 447.8 0.41 1.530 7 0.031 4 0.070 5 0.001 5 0.157 4 0.001 3 943 13 943 43 942 7 99
      12 76.2 145.7 462.7 0.31 1.517 9 0.030 0 0.070 6 0.001 4 0.155 9 0.001 2 938 12 946 42 934 7 99
      13 139.7 325.1 839.2 0.39 1.514 1 0.047 2 0.070 5 0.002 8 0.156 2 0.002 8 936 19 944 86 936 15 99
      14 81.9 140.1 497.2 0.28 1.552 0 0.035 6 0.071 1 0.001 7 0.157 8 0.001 5 951 14 961 44 945 8 99
      15 188.1 450.6 1 721.2 0.26 0.986 6 0.016 8 0.067 0 0.001 1 0.106 5 0.000 9 697 9 839 -164 652 5 93
      16 64.8 141.4 392.7 0.36 1.510 8 0.033 5 0.070 5 0.001 7 0.155 7 0.001 6 935 14 943 49 933 9 99
      17 68.7 140.9 422.0 0.33 1.507 8 0.028 9 0.070 3 0.001 3 0.154 7 0.001 2 934 12 939 39 927 7 99
      18 127.4 187.0 807.0 0.23 1.496 4 0.048 7 0.070 3 0.002 1 0.153 3 0.002 6 929 20 939 60 920 15 98
      19 77.0 193.1 466.2 0.41 1.505 2 0.040 3 0.070 2 0.002 0 0.155 0 0.001 9 932 16 1 000 57 929 10 99
      20 84.6 115.4 532.4 0.22 1.502 4 0.037 2 0.070 3 0.001 7 0.153 9 0.001 6 904 15 937 49 923 9 99
      21 86.3 160.9 538.0 0.30 1.488 8 0.077 6 0.070 9 0.003 7 0.151 1 0.003 1 902 32 954 107 907 17 97
      22 81.9 128.4 504.1 0.25 1.510 7 0.028 8 0.070 2 0.001 4 0.155 1 0.001 4 900 12 1 000 39 929 8 99
      23 74.4 141.8 454.8 0.31 1.554 0 0.038 1 0.073 1 0.001 9 0.153 3 0.001 9 952 15 1 017 52 920 11 96
      24 158.7 255.3 1 005.5 0.25 1.438 6 0.041 0 0.068 6 0.001 9 0.150 7 0.002 2 905 17 887 57 905 12 99
      25 111.3 205.4 684.0 0.30 1.488 8 0.033 8 0.069 7 0.001 6 0.153 6 0.001 5 926 14 918 46 921 8 99
      下载: 导出CSV

      表  2  祁连西段硫磺矿北花岗闪长岩的锆石LA-MC-ICP-MS Lu-Hf同位素数据

      Table  2.   LA-MC-ICP-MS Lu-Hf isotope data of zircon for granodiorites in northern Liuhuangkuang, Western Qilian

      编号 t(Ma) 176Yb/
      177Hf
      2σ 176Lu/
      177Hf
      2σ 176Hf/
      177Hf
      2σ 176Hf/
      177Hf(t)
      εHf(t) TDM1
      (Ma)
      TDM2
      (Ma)
      fLu/Hf
      1 931 0.031 756 0.000 394 0.001 135 0.000 014 0.282 303 0.000 022 0.282 283 3.3 1 346 1 589 -0.97
      2 927 0.043 508 0.000 489 0.001 574 0.000 010 0.282 348 0.000 021 0.282 321 4.5 1 297 1 508 -0.95
      3 927 0.059 008 0.000 386 0.002 047 0.000 012 0.282 439 0.000 020 0.282 404 7.5 1 182 1 322 -0.94
      4 921 0.019 916 0.000 462 0.000 914 0.000 010 0.282 169 0.000 017 0.282 153 -1.5 1 524 1 883 -0.97
      5 919 0.027 673 0.000 294 0.000 985 0.000 011 0.282 135 0.000 027 0.282 118 -2.9 1 575 1 963 -0.97
      6 930 0.044 947 0.000 471 0.001 572 0.000 006 0.282 317 0.000 019 0.282 290 3.5 1 341 1 575 -0.95
      7 911 0.009 521 0.000 207 0.000 354 0.000 009 0.282 194 0.000 018 0.282 188 -0.6 1 468 1 813 -0.99
      8 914 0.037 783 0.000 387 0.001 365 0.000 019 0.282 352 0.000 022 0.282 329 4.5 1 284 1 497 -0.96
      9 925 0.029 272 0.000 508 0.001 041 0.000 010 0.282 282 0.000 022 0.282 264 2.5 1 371 1 634 -0.97
      10 923 0.023 153 0.000 378 0.000 916 0.000 008 0.282 057 0.000 019 0.282 041 -5.5 1 681 2 131 -0.97
      11 942 0.036 032 0.000 679 0.001 293 0.000 016 0.282 381 0.000 025 0.282 358 6.2 1 242 1 415 -0.96
      12 934 0.024 153 0.000 567 0.000 883 0.000 014 0.282 202 0.000 022 0.282 187 -0.1 1 477 1 801 -0.97
      13 936 0.036 604 0.000 848 0.001 309 0.000 019 0.282 263 0.000 024 0.282 240 1.9 1 408 1 681 -0.96
      14 945 0.081 255 0.002 073 0.002 986 0.000 063 0.282 486 0.000 028 0.282 432 8.9 1 145 1 247 -0.91
      16 933 0.029 120 0.000 360 0.001 069 0.000 004 0.282 341 0.000 020 0.282 322 4.7 1 290 1 500 -0.97
      17 927 0.025 779 0.000 569 0.000 937 0.000 016 0.282 254 0.000 017 0.282 237 1.6 1 407 1 692 -0.97
      18 920 0.026 204 0.000 723 0.000 931 0.000 017 0.282 230 0.000 019 0.282 214 0.6 1 440 1 750 -0.97
      19 929 0.015 205 0.000 435 0.000 549 0.000 017 0.282 239 0.000 020 0.282 229 1.3 1 414 1 709 -0.98
      20 923 0.036 767 0.001 013 0.001 292 0.000 029 0.282 332 0.000 020 0.282 310 4.0 1 310 1 534 -0.96
      21 907 0.019 698 0.000 498 0.000 703 0.000 013 0.281 912 0.000 033 0.281 900 -10.8 1 870 2 451 -0.98
      22 929 0.060 901 0.001 781 0.002 147 0.000 052 0.282 428 0.000 024 0.282 391 7.1 1 202 1 349 -0.94
      23 920 0.026 854 0.000 315 0.000 979 0.000 017 0.282 284 0.000 022 0.282 267 2.5 1 367 1 631 -0.97
      24 905 0.039 007 0.001 025 0.001 370 0.000 028 0.282 335 0.000 026 0.282 311 3.7 1 309 1 542 -0.96
      25 921 0.018 796 0.000 397 0.000 668 0.000 014 0.282 072 0.000 023 0.282 060 -4.8 1 649 2 089 -0.98
      下载: 导出CSV

      表  3  祁连西段硫磺矿北花岗闪长岩的全岩主量元素(%)和微量元素(10-6)组成

      Table  3.   Whole-rock major element (%) and trace element (10-6) compositions for granodiorites in northern Liuhuangkuang, Western Qilian

      样品 D2864-H1 D2864-H2 D2864-H3 D2864-H4 D2864-H5 D2864-H6 D2864-H7 D2864-H8 D2864-H9 D2864-H10 D2864-H11
      SiO2 60.55 60.57 61.41 60.71 59.47 61.25 62.13 61.23 62.11 62.96 60.77
      TiO2 0.45 0.58 0.40 0.54 0.53 0.53 0.56 0.59 0.54 0.59 0.47
      Al2O3 15.81 14.52 15.74 15.12 15.59 15.53 15.13 15.29 15.31 14.56 15.42
      Fe2O3T 6.69 8.92 6.30 7.68 7.32 6.59 6.91 7.96 6.16 6.97 7.34
      MnO 0.12 0.16 0.12 0.16 0.14 0.18 0.15 0.11 0.15 0.18 0.14
      MgO 3.24 4.11 3.11 3.53 3.64 3.20 3.26 3.22 2.99 2.68 3.28
      CaO 3.21 3.28 3.70 4.18 3.04 4.37 3.01 3.58 3.46 3.51 3.96
      Na2O 4.19 2.69 3.41 2.93 3.93 3.18 3.80 2.67 3.08 3.27 3.15
      K2O 1.66 2.04 2.60 2.05 2.37 1.93 2.32 2.44 2.70 2.48 2.21
      P2O5 0.12 0.14 0.12 0.13 0.14 0.12 0.12 0.14 0.13 0.12 0.14
      LOI 3.75 2.92 3.08 2.96 3.38 2.98 2.07 2.71 2.88 2.42 3.14
      Total 99.8 99.93 100 99.99 99.56 99.88 99.45 99.93 99.5 99.74 100.02
      Mg# 53.02 51.8 53.53 51.73 53.69 53.1 52.38 48.51 53.09 47.31 51.05
      A/CNK 1.09 1.15 1.04 1.03 1.07 1.02 1.06 1.13 1.07 1.01 1.04
      FeOT 6.02 8.03 5.67 6.91 6.58 5.93 6.21 7.16 5.54 6.27 6.60
      Rb 77.37 88.01 110.60 70.68 91.68 69.12 80.87 100.9 108.1 84.84 82.26
      Sr 180.40 235.50 221.80 164.60 121.90 176.50 116.60 188.30 213.60 163.60 158.40
      Ba 262.70 600.60 482.20 451.60 407.40 411.60 426.30 543.90 565.00 506.40 443.80
      Th 10.32 10.22 10.29 10.07 9.92 9.40 10.38 10.67 10.62 10.43 11.30
      U 1.92 2.22 1.70 2.12 2.31 2.08 2.32 1.87 2.29 1.95 2.14
      Nb 7.02 7.80 5.73 7.88 7.54 7.11 7.99 7.75 7.82 8.92 6.81
      Ta 0.57 0.65 0.47 0.66 0.59 0.57 0.67 0.66 0.65 0.73 0.56
      Zr 214.90 160.40 166.10 185.70 216.90 173.90 183.30 182.20 169.90 189.50 237.80
      Hf 5.23 4.38 4.30 4.90 5.26 4.36 4.62 4.77 4.36 4.89 5.89
      Co 16.69 24.16 16.22 20.01 17.39 17.53 16.97 19.52 15.45 16.16 17.69
      Ni 22.19 35.03 22.76 27.17 22.71 25.33 22.74 23.63 17.82 18.84 25.27
      Cr 92.55 153.6 88.68 96.12 90.07 92.31 85.14 81.47 77.79 76.3 101.2
      V 91.75 113.1 78.86 107 90.56 97.07 89.23 106.6 84.98 96.31 90.17
      Sc 14.84 19.11 13.77 16.33 15.3 14.79 15.29 16.62 14.88 15.99 15.43
      Cs 3.97 2.38 3.97 1.97 6.42 2.11 2.54 2.43 3.29 2.52 3.56
      Ga 19.2 18.99 19.51 19.29 20.78 19.26 19.33 18.68 19.22 19.21 19.57
      Cu 11.62 14.25 14.03 18.23 15.83 16.57 10.56 15.02 12.93 7.35 15.68
      Pb 47.99 25.71 14.07 30.78 12.94 30.35 17.51 9.69 15.82 9.56 17.30
      Zn 111.10 123.90 78.50 140.70 78.06 154.80 119.60 74.25 117.30 107.10 109.70
      Ti 2 918 3 634 2 365 3 551 3 063 3 133 3 362 3 439 3 197 3 617 3 028
      La 23.15 54.01 26.08 30.40 26.96 26.71 29.70 25.07 28.23 28.55 27.63
      Ce 47.81 114.5 52.04 61.55 55.51 53.25 59.84 50.79 58.37 57.75 56.14
      Pr 5.72 12.86 6.20 7.19 6.51 6.41 7.04 5.95 6.71 6.69 6.7
      Nd 21.84 43.64 23.04 27.09 24.56 23.88 26.35 22.53 25.57 24.73 25.28
      Sm 4.81 8.02 4.9 5.67 5.21 4.92 5.53 4.86 5.29 5.27 5.42
      Eu 0.86 0.79 0.95 1.05 1.03 1.04 1.03 0.93 0.97 0.94 1.05
      Gd 4.38 6.81 4.47 5.15 4.81 4.52 5.01 4.45 4.87 4.79 4.97
      Tb 0.65 0.89 0.64 0.72 0.70 0.64 0.72 0.66 0.69 0.69 0.73
      Dy 3.88 4.93 3.76 4.10 4.10 3.63 4.19 3.88 4.00 4.07 4.22
      Ho 0.78 0.94 0.76 0.82 0.82 0.72 0.83 0.78 0.79 0.82 0.83
      Er 2.16 2.54 2.05 2.21 2.29 1.96 2.29 2.16 2.17 2.26 2.29
      Tm 0.32 0.38 0.30 0.33 0.33 0.29 0.33 0.32 0.33 0.34 0.35
      Yb 2.11 2.40 1.96 2.11 2.17 1.89 2.17 2.10 2.07 2.26 2.25
      Lu 0.32 0.36 0.30 0.32 0.34 0.29 0.33 0.32 0.32 0.34 0.34
      Y 20.28 22.94 19.54 20.85 21.89 18.80 21.13 20.14 20.65 20.70 21.37
      K 13 816 16 949 21 619 16 996 19 650 16 006 19 240 20 222 22 418 20 587 18 338
      P 534 590 513 576 617 542 539 596 564 527 606
      ∑REE 118.79 253.07 127.45 148.71 135.34 130.15 145.36 124.80 140.38 139.50 138.20
      LREE 104.19 233.82 113.21 132.95 119.78 116.21 129.49 110.13 125.14 123.93 122.22
      HREE 14.60 19.25 14.24 15.76 15.56 13.94 15.87 14.67 15.24 15.57 15.98
      LREE/HREE 7.14 12.15 7.95 8.44 7.70 8.34 8.16 7.51 8.21 7.96 7.65
      LaN/YbN 7.87 16.17 9.55 10.32 8.92 10.14 9.81 8.55 9.78 9.06 8.82
      δEu 0.57 0.33 0.62 0.59 0.63 0.68 0.60 0.61 0.58 0.57 0.62
      Nb/Ta 12.32 12.00 12.19 11.94 12.78 12.47 11.93 11.74 12.03 12.22 12.16
      La/Nb 3.30 6.92 4.55 3.86 3.58 3.76 3.72 3.23 3.61 3.20 4.06
      Th/Nb 1.47 1.31 1.80 1.28 1.32 1.32 1.30 1.38 1.36 1.17 1.66
      Th/La 0.45 0.19 0.39 0.33 0.37 0.35 0.35 0.43 0.38 0.37 0.41
      Rb/Sr 0.43 0.37 0.50 0.43 0.75 0.39 0.69 0.54 0.51 0.52 0.52
      Rb/Nb 11.02 11.28 19.30 8.97 12.16 9.72 10.12 13.02 13.82 9.51 12.08
        注:Fe2O3T为全铁.A/CNK=Al2O3/(CaO+Na2O+K2O),式中氧化物全为摩尔数;Mg#=100×MgO/(MgO+Fe2O3T),式中氧化物全为摩尔数;LaN/YbN为球粒陨石标准化值,δEu=EuN/(SmN+GdN)1/2.
      下载: 导出CSV

      表  4  祁连山新元古代岩浆事件年龄统计

      Table  4.   Zircon U-Pb ages of Neoproterozoic magmatic events in Qilian Mountains

      地质体 年龄(Ma) 测试方法 资料来源
      中祁连响河花岗岩 917±12 TIMS 郭进京等(2000)
      中祁连湟源群变质火山岩 910.0±6.7 TIMS 郭进京等(2000)
      中祁连黑云母二长花岗岩 943±28 TIMS 万渝生等(2003)
      祁连地块片麻状花岗岩 930±8、918±14 SHRIMP 董国安等(2007)
      祁连地块东段五峰村岩体 846±2
      祁连地块东段五间房岩体 853±2 LA-ICP-MS Yong et al.(2008)
      祁连地块东段向河尔岩体 888±3
      中祁连化隆群 770~950 SHRIMP Yang et al.(2015)
      祁连东段片麻状花岗岩 880~900 LA-ICP-MS 徐旺春等(2007)
      中祁连片麻状花岗岩 875±8 LA-ICP-MS 徐学义等(2008)
      中祁连黑云斜长片麻岩 910±7 LA-ICP-MS 余吉远等(2012)
      下载: 导出CSV
    • Altherr, R., Holl, A., Hegner, E., et al., 2000.High-Potassium, Calc-Alkaline Ⅰ-Type Plutonism in the European Variscides:Northern Vosges(France)and Northern Schwarzwald (Germany).Lithos, 50:51-73.doi: 10.1016/S0024-4937(99)00052-3
      Andersen, T., Griffin, W.L., Sylvester, A.G., 2007.Sveconorwegian Crustal Underplating in Southwestern Fennoscandia:LAM-ICPMS U-Pb and Lu-Hf Isotope Evidence from Granites and Gneisses in Telemark, Southern Norway.Lithos, 93(3-4):273-287.doi: 10.1016/j.lithos.2006.03.068
      Blichert-Toft, J., Chauvel, C., Albarède, F.1997.Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS.Contributions to Mineralogy & Petrology, 127(3):248-260.doi: 10.1007/s004100050278
      Bureau of Geology and Mineral Resources of Qinghai, 1991.Regional Geology of Qinghai Province, Geological Publishing Press, Beijing (in Chinese).
      Chappell, B.W., White, A.J.R., 2001.Two Contrasting Granite Types:25 Years Later.Australian Journal of Earth Sciences, 48(4):489-499.doi: 10.1046/j.1440-0952.2001.00882.x
      Chen, J.F., Foland, K.A., Xing, F.M., et al., 1991.Magmatism along the Southeast Margin of the Yangtze Block:Precambrian Collision of the Yangtze and Cathysia Blocks of China.Geology, 19(8):815.doi:10.1130/0091-7613(1991)019 < 0815:matsmo > 2.3.co; 2
      Chen, J.J, Fu L.B, Wei J.H., et al., 2009.Geochemical Characteristics of Late Ordovician Granodiorite in Gouli Area, Eastern Kunlun Oegrnic Belt, Qinghai Province:Implications on the evolution of Proto-Tethys Ocean.Earth Science, 41(11):1863-1882 (in Chinese with English abstract). doi: 10.1007/s12583-017-0745-5
      Collins, W.J., Richards, S.W., 2008.Geodynamic Significance of S-Type Granites in Circum-Pacific Orogens.Geology, 36(7):559.doi: 10.1130/g24658a.1
      Depaolo, D.J., Daley, E.E., 2000.Neodymium Isotopes in Basalts of the Southwest Basin and Range and Lithospheric Thinning during Continental Extension.Chemical Geology, 169(1):157-185. https://www.sciencedirect.com/science/article/pii/S0009254100002618
      Diwu, C.R., Sun, Y., Wang, Q., 2012.The Crustal Growth and Evolution of North China Craton:Revealed by Hf Isotopes in Detrital Zircons from Modern Rivers.Acta Petrologica Sinica, 28(11):3520-3530 (in Chinese with English abstract). http://www.oalib.com/paper/1475681
      Dong, G.A., Yang, H.R., Yang, H.Y., et al, 2007.the Zircon SHIMP U-Pb Dating and Its Significance of the Precambrian Basement, Qilian Tererance.Chinese Science Bulletin, 52(13):1572-1585 (in Chinese with English abstract).
      Du, D.D., Qu, X.M., Wang, G.H., et al., 2011.Bidirectional Subduction of the Middle Tethys Oceanic Basin in the West Segment of Bangonghu-Nujiang Suture, Tibet:Evidence from Zircon U-Pb LAICPMS Dating and Petrogeochemistry of Arc Granites.Acta Petrologica Sinica, 27(7):1993-2002 (in Chinese with English abstract).
      Du, Y.S., Zhu, J., Gu, S.Z., 2006.Sedimentary Geochemistry and Tectonic Significance of ordovician Cherts in Sunan, North Qilian Mountains.Earth Science, 31(1):101-109 (in Chinese). doi: 10.1007/s11707-007-0005-6
      Du, D.D., Qu, X.M., Wang, G.H., et al., 2011.Bidirectional Subduction of the Middle Tethys Oceanic Basin in the West Segment of Bangonghu-Nujiang Suture, Tibet:Evidence from Zircon U-b LAICPMS Dating and Petrogeochemistry of Arc Granites.Acta Petrologica Sinica, 27(7):1993-2002 (in Chinese with English Abstract).
      Feng, Y.M., He, S.P., 1996.The Tectonic and Orogenic Process of Qilian Mountains.Geological Press, Beijing (in Chinese without English Abstract).
      Feng, Y.M., 1997.Investigatory Summary of the Qilian Orogenic Belt, China:History, Presence and Prospect.Advence in Earth Sciences, 12(4):5-12 (in Chinese with English abstract). doi: 10.11867/j.issn.1001-8166.1997.04.0307
      Feng, Y.M., He, S.P., 1995.Research for Geology and Geochemistry of Severalophiolites in the North Qilian Mountains, China.Acta Petrologica Sinica, 11(S1):125-140, 142-146 (in Chinese with English abstract).
      Foley, S., 1992.Vein-Plus-Wall-Rock Melting Mechanisms in the Lithosphere and the Origin of Potassic Alkaline Magmas.Lithos, 28(3-6):435-453.doi: 10.1016/0024-4937(92)90018-t
      Gehrels, G.E., Yin, A., Wang, X.F., 2003.Magmatic History of the Northeastern Tibetan Plateau.Journal of Geophysical Research:Solid Earth, 108(B9):1-10.doi: 10.1029/2002jb001876
      Green, T.H., 1995.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System.Chemical Geology, 120(3-4):347-359.doi: 10.1016/0009-2541(94)00145-x
      Greentree, M.R., Li, Z.X., Li, X.H., et al., 2006.Late Mesoproterozoic to Earliest Neoproterozoic Basin Record of the Sibao Orogenesis in Western South China and Relationship to the Assembly of Rodinia.Precambrian Research, 151(1-2):79-100.doi: 10.1016/j.precamres.2006.08.002
      Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269.doi: 10.1016/s0024-4937(02)00082-8
      Guan, J.L., Geng, Q.R., Peng, Z.M., et al., 2016.Petrology, Petrochemistry and Zircon U-Pb Dating and Hf Isotope Features of Xiamari Granites in Tanggula Magmatic Belt, Qinghai-Tibet Plateau.Acta Geologica Sinica, 90(2):304-333 (in Chinese with English Abstract).
      Guo, J.J., Zhao, F.Q., Li, H.K., et al., 2000.New Chronological Evidence of the Age of Huangyuan Group in the Eastern Segment of Mid-Qilian Massif and its Geological Significance.Regional Geology of China, 19(1):26-31 (in Chinese with English abstract). http://www.adearth.ac.cn/EN/abstract/abstract11421.shtml
      Guo, Y.S., Sun, S.R., Fu, X.M., 1993.Characteristics of Trace Elements for the Ultrabasic Rocks of Ophiolite in the Western Part of the North Qilian and its Geological Significance.Journal of Lanzhou University:Natural Science Edition, (3):206-212 (in Chinese with English abstract).
      Guo, J.J., Zhang, G.W., Lu, S.N., et al., 1999.A discussion on the Proterozoic Stratigraphy Framework in the Basement of Eastern Section of the Mid-Qilian Massif.Regional Geology of China, 14(4):379-382 (in Chinese with English Abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GTJL199301003.htm
      He, J.W., Zhu, W.B., Ge, R.F., et al., 2014.Detrital Zircon U-Pb Ages and Hf Isotopes of Neoproterozoic Strata in the Aksu Area, Northwestern Tarim Craton:Implications for Supercontinent Reconstruction and Crustal Evolution.Precambrian Research, 254:194-209.doi: 10.1016/j.precamres.2014.08.016
      Hou, K.J., Li, Y.H., Tian, Y.R., 2009.In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS.Mineral Deposits, 28(4):481-492 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_kcdz200904010.aspx
      Huang, Z.B., Zheng, J.P., Li, B.H., et al., 2016.Age and Geochemistry of the Early Paleozoic Back-arc Type Ophiolite in Dadaoerji Area, South Qilian, China.Geotectonica et Metallogenia, 40(4):826-838 (in Chinese with English Abstract). http://d.wanfangdata.com.cn/Periodical_ddgzyckx201604016.aspx
      Jiang, G.L., Zhang, S., Liu, K.F., et al., 2014.Evolution of Neoproterozoic-Mesozoic Sedimentary Basins in Qilian-Qaidam-East Kunlun Are.Earth Science, 39(8):1000-1016 (in Chinese with English Abstract). http://earth-science.net/WebPage/Article.aspx?id=2908
      Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., et al., 2007.Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon.Science, 315(5814):980-983.doi: 10.1126/science.1136154
      Knudsen, T.L., Griffin, W., Hartz, E., et al., 2001.In-Situ Hafnium and Lead Isotope Analyses of Detrital Zircons from the Devonian Sedimentary Basin of NE Greenland:A Record of Repeated Crustal Reworking.Contributions to Mineralogy and Petrology, 141(1):83-94.doi: 10.1007/s004100000220
      Li, J.F., Zhang, Z.C., Han, B.F., 2010.Geochronology and Geochemistry of Early Paleozoic Granitic Plutons from Subei and Shibaocheng Areas, the Western Segment of Central Qilian and their Geological Implications.Acta Petrologica Sinica, 26(8):2431-2444 (in Chinese with English abstract).
      Li, X.H., Li, W.X., Li, Z.X., 2007.On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China.Chinese Science Bulletin, 52(14):1873-1885.doi: 10.1007/s11434-007-0259-0
      Li, Z.X., Evans, D.A.D., Halverson, G.P., 2013.Neoproterozoic Glaciations in a Revised Global Palaeogeography from the Breakup of Rodinia to the Assembly of Gondwanaland.Sedimentary Geology, 294:219-232.doi: 10.1016/j.sedgeo.2013.05.016
      Li, C.N., 1992.Trace Elements in Igneous Petrology.China University of Geosciences Publishing House, Wuhan (in Chinese).
      Li, Z., Chen, Y.L., Liu, C.Z., et al., 2016.Formation and Evolution History on the Northern Qilian Orognen:the Evidences from Compositions of Rivers' Sediments and Their Zircon U-Pb Ages, Hf Isotopic Compositions.Acta Geologica Sinica, 90(2):267-283 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX200505031.htm
      Liu, J.H., Liu, F.L., Ding, Z.J., et al., 2013.U-Pb Dating and Hf Isotope Study of Detrital Zircons from the Zhifu Group, Jiaobei Terrane, North China Craton:Provenance and Implications for Precambrian Crustal Growth and Recycling.Precambrian Research, 235:230-250.doi: 10.1016/j.precamres.2013.06.014
      Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546.doi: 10.1007/s11434-010-3052-4
      Liu, Y., Liu, H.C., Li, X.H., 1996.Simultaneous and Precise Determination of 40 Trace Elements in Rock Samples Using ICP-MS.Geochimica, 25(6):552-558. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX606.003.htm
      Lu, S.N., Li, H.K., Zhang, C.L., et al., 2008.Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments.Precambrian Research, 160(1-2):94-107.doi: 10.1016/j.precamres.2007.04.025
      McDonough, W.F., Sun, S.S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253.doi: 10.1016/0009-2541(94)00140-4
      McKenzie, D., 1989.Some Remarks on the Movement of Small Melt Fractions in the Mantle.Earth and Planetary Science Letters, 95(1-2):53-72.doi: 10.1016/0012-821x(89)90167-2
      Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983.doi: 10.1093/petrology/25.4.956
      Pearce, J.A., 1996.Sources and Setting of Granitic Rocks.Episodes, 19(4):120-125. http://www.oalib.com/references/19035424
      Pei, X.Z., Li, Z.C., Li, R.B., et al., 2012.LA-ICP-MS U-Pb Ages of Detrital Zircons from the Meta-Detrital Rocks of the Early Palaeozoic Huluhe Group in Eastern Part of Qilian Orogenic Belt:Constraints of Material Source and Sedimentary Age.Earth Science Frontiers, 19(5):205-224 (in Chinese with English abstract). doi: 10.1007/s00531-013-0912-6
      Qian, Q., Sun, X.M., Zhang, Q., et al., 1999.Lithogeochemical Characteristics of Jiugequan Ophiolite and its Overlying Rock Suites, North Qilian:The Geodynamic Significance.Geological Review, 45(S1):1038-1046 (in Chinese with English abstract). http://en.cnki.com.cn/Journal_en/A-A011-DZLP-1999-S1.htm
      Qian, J.Q., Gong, B.J., Dou, S.R., et al., 1986.The Proterozoic Stromatolites from the Weatern Region of the Middle Qilian Mountain.Gansu Geology:5:1-32 (in Chinese with English Abstract).
      Qin, H.P., Wu, C.L., Wang, C.S., et al., 2014.LA-ICP-MS Zircon U-Pb Dating and Geochemical Characteristics of High Sr/Y-type Granite from Xigela, Eastern Qilian Area.Acta Geologica Sinica, 30(12):3759-3771 (in Chinese with English Abstract). doi: 10.1007/s00531-017-1522-5
      Qin, H.P., Wu, C.L., Wang, C.S., et al., 2014.LA-ICP-MS Zircon U-Pb Geochronology and Geochemical Characteristics of Xiagucheng Granite in North Qilian.Acta Geologica Sinica, 88(10):1832-1842 (in Chinese with English Abstract).
      Qiu, J.S., Xiao, E., Hu, J., et al., 2008.Petrogenesis of Highly Fractionated Ⅰ-Type Granites in the Coastal Area of Northeastern Fujian Province:Constraints from Zircon U-Pb Geochronology, Geochemistry and Nd-Hf Isotopes.Acta Petrologica Sinica, 24(11):2468-2484 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20081102
      Rudnick, R.L., Gao, S., 2003.Composition of the Continental Crust.Treatise on Geochemistry, 1-64.doi: 10.1016/b0-08-043751-6/03016-4
      Salters, V.J., Hart, S.R., 1991.The Mantle Sources of Ocean Ridges, Islands and Arcs:the Hf-isotope Connection.Earth & Planetary Science Letters, 104(2-4):364-380. https://www.sciencedirect.com/science/article/pii/0012821X91902165
      Shu, L.S., Deng, X.L., Zhu, W.B., et al., 2011.Precambrian Tectonic Evolution of the Tarim Block, NW China:New Geochronological Insights from the Quruqtagh Domain.Journal of Asian Earth Sciences, 42(5):774-790.doi: 10.1016/j.jseaes.2010.08.018
      Simon, L.H., Nigel, M.K., 2007.Zircon:Tiny but Timely.Elements, 3(1):13-18. doi: 10.2113/gselements.3.1.13
      Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219(3-4):311-324.doi: 10.1016/s0012-821x(04)00012-3
      Song, S.G., Su, L., Li, X.H., et al., 2012.Grenville-Age Orogenesis in the Qaidam-Qilian Block:The Link between South China and Tarim.Precambrian Research, 220-221:9-22.doi: 10.1016/j.precamres.2012.07.007
      Song, S.G., Niu, Y.L., Su, L., et al., 2013.Tectonics of the North Qilian Orogen, NW China.Gondwana Research, 23:1378-1401. doi: 10.1016/j.gr.2012.02.004
      Song, S.G., Zhang, G.B., Zhang, C., et al., 2013.Dynamic Process of Oceanic Subduction and Continental Collision:Petrological Constraints of HP-UHP Belts in Qilian-Qaidam, the Northern Tibetan Plateau.Chin Sci Bull, 58(23):2240-2245 (in Chinese).
      Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19
      Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution, An Examination of the Geochemical Record Preserved in Sedimentary Rocks.Journal of Geology, 94(4):632-633. https://searchworks.stanford.edu/view/1596217
      Tung, K.A., Yang, H.Y., Liu, D.Y., et al., 2013.The Neoproterozoic Granitoids from the Qilian Block, NW China:Evidence for a Link between the Qilian and South China Blocks.Precambrian Research, 235:163-189.doi: 10.1016/j.precamres.2013.06.016
      Tung, K.A., Yang, H.Y., Yang, H.J., et al., 2016.Magma Sources and Petrogenesis of the Early-middle Paleozoic Backarc Granitoids from the Central Part of the Qilian Block, NW China.Gondwana Research, 38:197-219.doi: 10.1016/j.gr.2015.11.012
      Wan, Y.S., Xu, Z.Q., Yang, J.S., et al., 2003.The Precambrian High-Grade Basement of the Qilian Terrane and Neighboring Areas:Its Ages and Compositions.Acta Geoscientia Sinica, 24(4):319-324 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXW200104004.htm
      Wang, C., Li, R.S., Smithies, R.H., et al., 2017.Early Paleozoic Felsic Magmatic Evolution of the Western Central Qilian Belt, Northwestern China, and Constraints on Convergent Margin Processes.Gondwana Research, 41:301-324.doi: 10.1016/j.gr.2015.12.009
      Wang, H.L., He, S.P., Chen, J.L., et al., 2007.LA-ICPMS Dating of Zircon U-Pb and its Tectonic Significance of Maxianshan Granitoid Intrusive Complex, Gansu Province.Acta Geologica Sinica, 81(1):72-78 (in Chinese with English abstract).
      Wen, B., Evans, D.A.D., Li, Y.X., 2017.Neoproterozoic Paleogeography of the Tarim Block:An Extended or Alternative "Missing-Link" Model for Rodinia?Earth and Planetary Science Letters, 458:92-106.doi: 10.1016/j.epsl.2016.10.030
      Wolf, M.B., London, D., 1994.Apatite Dissolution into Peraluminous Haplogranitic Melts:An Experimental Study of Solubilities and Mechanisms.Geochimica et Cosmochimica Acta, 58(19):4127-4145.doi: 10.1016/0016-7037(94)90269-0
      Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://www.oalib.com/paper/1492671
      Wu, C.L., Yang, J.S., Yang, H.Y., et al., 2005.The Zircon SHRIMP Dating and Geological Significance of the two I-type Granites in the Eastern Qilian.Acta Geologica Sinica, 20(2):286 (in Chinese with English Abstract).
      Xia, L.Q., Li, X.M., Yu, J.Y., et al., 2016.Mid-Late Neoproterozoic to Early Paleozoic Volcanism and Tectonic Evolution of the Qilian Mountain.Geology in China, 43(4):1087-1138 (in Chinese with English Abstract).
      Xiao, W.J., Windley, B.F., Yong, Y., et al., 2009.Early Paleozoic to Devonian Multiple-Accretionary Model for the Qilian Shan, NW China.Journal of Asian Earth Sciences, 35(3-4):323-333.doi: 10.1016/j.jseaes.2008.10.001
      Xu, J.Q., Li, Z., Shi, Y.H., 2013.Jurassic Detrital Zircon U-Pb and Hf Isotopic Geochronology of Luxi Uplift, Eastern North China, and its Provenance Implications for Tectonic-paleogeographic Reconstruction.Journal of Asian Earth Sciences, 78:184-197.doi: 10.1016/j.jseaes.2013.05.024
      Xu, X.Y., Wang, H.L., Chen, J.L., et al., 2008.Zircon U-Pb Dating and Petrogenesis of Xinglongshan Group Basic Volcanic Rocks at Eastern Segment of Middle Qilian Mrs.Acta Petrologica Sinica, 24(4):827-840 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_ysxb98200804022.aspx
      Xu, X., Song S.G., Su, L., et al., 2015.The 600-580Ma Continental Rift Basalts in North Qilian Shan, Northwest China:Links between the Qilian-Qaidam Block and SE Australia, and the Reconstruction of East Gondwana.Precambrian Research, 257:47-64.doi: 10.1016/j.precamres.2014.11.017
      Xu, Y.J., Du, Y.S., Yang, J.H., 2013.Tectonic Evolution of the North Qilian Orogenic Belt from the Late Ordovician to Devonian:Evidence from Detrital Zircon Geochronology.Earth Science, (5):934-946 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201305004.htm
      Xu, Z.Q., Xu, H.F., Zhang, J.X., et al., 1994.The Zhoulangnanshan Caledonian Subductive Complex in the Northern Qilian Mountains and its Dynamics.Acta Geologica Sinica, 68(1):1-15 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxw199403000&dbname=CJFD&dbcode=CJFQ
      Xu, W.C., Zhang, H.F., Liu, X.M., 2007.The chronology and Tectonic Significance of the High-grade Metamorphic Rocks of Qilian Mountains:Constraints from Zircon U-Pb Dating.Chinese Science Bulletin, 10:1174-1180 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxtw200704016&dbname=CJFD&dbcode=CJFQ
      Yang, H., Zhang, H.F., Luo, B.J., et al., 2015.Early Paleozoic Intrusive Rocks from the Eastern Qilian Orogen, NE Tibetan Plateau:Petrogenesis and Tectonic Significance.Lithos, 224-225:13-31.doi: 10.1016/j.lithos.2015.02.020
      Yong, Y., Xiao, W.J., Yuan, C., et al., 2008.Geochronology and Geochemistry of Paleozoic Granitic Plutons Friom the Eastern Central Qilian and their Tectonic Implications.Acta Petrologica Sinica, 24(4):855-866 (in Chinese with English abstract). http://or.nsfc.gov.cn/bitstream/00001903-5/268699/1/1000013666849.pdf
      Yu, S.Y., Zhang, J.X., Real, P.G.D., et al., 2013.The Grenvillian Orogeny in the Altun-Qilian-North Qaidam Mountain Belts of Northern Tibet Plateau:Constraints from Geochemical and Zircon U-Pb Age and Hf Isotopic Study of Magmatic Rocks.Journal of Asian Earth Sciences, 73:372-395.doi: 10.1016/j.jseaes.2013.04.042
      Yuan, H.L., Gao, S., Dai, M.N., et al., 2008.Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS.Chemical Geology, 247(1-2):100-118.doi: 10.1016/j.chemgeo.2007.10.003
      Zhang, B.H., Zhang, J., Zhang, Y.P., et al., 2016.Tectonic Affinity of the Alxa Block, Northwest China:Constrained by Detrital Zircon U-Pb Ages from the Early Paleozoic Strata on its Southern and Eastern Margins.Sedimentary Geology, 339:289-303.doi: 10.1016/j.sedgeo.2016.02.017
      Zhang, C., Bader, T., Zhang, L.F., et al., 2017.The Multi-Stage Tectonic Evolution of the Xitieshan Terrane, North Qaidam Orogen, Western China:From Grenville-Age Orogeny to Early-Paleozoic Ultrahigh-Pressure Metamorphism.Gondwana Research, 41:290-300.doi: 10.1016/j.gr.2015.04.011
      Zhang, J.X., Meng, F.C., Yu, S.Y., 2010.Two Contrasting HP/LT and UHP Metamorphic Belts:Constraint on Early Paleozoic Orogeny in Qilian-Altun Orogen.Acta Petrologica Sinica, 26(7):1967-1992 (in Chinese with English abstract).
      Zhang, J., Zhang, Y.P., Xiao, W.X., et al., 2015.Linking the Alxa Terrane to the Eastern Gondwana during the Early Paleozoic:Constraints from Detrital Zircon U-Pb Ages and Cambrian Sedimentary Records.Gondwana Research, 28(3):1168-1182.doi: 10.1016/j.gr.2014.09.012
      Zhang, L.F., Wang, Q.J., Song, S.G., 2009.Lawsonite Blueschist in Northern Qilian, NW China:P-T Pseudosections and Petrologic Implications.Journal of Asian Earth Sciences, 35(3-4):354-366.doi: 10.1016/j.jseaes.2008.11.007
      Zhang, Q., Sun, X.M., Zhou, D.J., et al., 1997.The Characteristics of North Qilian Ophiolites, Forming Settings and their Tectonic Significance.Advence in Earth Sciences, 12(4):64-91 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ704.008.htm
      Zhang, Q., Wang, Y., Li, C.D., et al., 2006.Granite Classification on the Basis of Sr and Yb Contents and its Implications.Acta Petrologica Sinica, 22(9):2249-2269 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=200609238
      Zhang, Q., Wang, Y., Pan, G.Q., et al., 2008.Sources of Granites:Some Crucial Questions on Granite Study (4).Acta Petrologica Sinica, 24(6):1193-1204 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200806004.htm
      Zhang, Z.C., Mao, J.W., Yang, J.M., et al., 1998.Geochemical Evidences on the Petrogenesis of the Aoyougou Ophiolite in North Qilian Mountains.Acta Geologica Sinica, 72(1):42-51 (in Chinese with English abstract). doi: 10.1007/s11434-012-5069-3
      Zhang, Q., Chen, Y., Zhou, D.J., et al., 1998.The Geochemical Characteristics and Forming Process of the Dachadaban Ophiolite in the North Qilian Moubntains.Sciences in China(Series D), 19(1):30-34 (in Chinese). doi: 10.1007/s11434-010-3207-3
      Zhang, Y.J., Sun, F.Y., Xu, C.H., et al., 2016.Geochronology, Geochemistry and Zircon Hf Isotopes of the Tanjianshan Granite Porphyry Intrusion in Dachaidan Area of the North Margin of Qaidam Basin, NW China.Earth Science, 41(11):1830-1844 (in Chinese with English Abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201611002.htm
      Zhang, Z.W., Li, W.Y., Wang, Y.L., et al., 2015.Geological and Geochemical Characteristics of Mafic-ultramafic Intrusions in the Hualong Area, Southern Qilian Mountains and Its Ni-Cu Mineralization.Acta Geologica Sinica, 89(3):632-644 (in Chinese with English Abstract).
      Zorpi, M.J., Coulon, C., Orsini, J.B., et al., 1989.Magma Mingling, Zoning and Emplacement in Calc-Alkaline Granitoid Plutons.Tectonophysics, 157(4):315-329.doi: 10.1016/0040-1951(89)90147-9
      Zuo, G.C., Liu, J.C., 1987.The Evolution of Tectonic of Early Paleozoic in North Qilian Range, China.Chinese Journal of Geology, 22(1):14-24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX198701001.htm
      陈加杰, 付乐兵, 魏俊浩, 等, 2016.东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约.地球科学, 41(11):1863-1882. http://earth-science.net/WebPage/Article.aspx?id=3384
      第五春荣, 孙勇, 王倩, 2012.华北克拉通地壳生长和演化:来自现代河流碎屑锆石Hf同位素组成的启示.岩石学报, 28(11):3520-3530. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201211009&dbname=CJFD&dbcode=CJFQ
      董国安, 杨怀仁, 杨宏仪, 等.2007.祁连地块前寒武纪基底锆石SHRIMP U-Pb年代学及其地质意义.科学通报, 52(13):1572-1585. doi: 10.3321/j.issn:0023-074X.2007.13.015
      杜德道, 曲晓明, 王根厚, 等, 2011.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据.岩石学报, 27(7):1993-2002. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201107009&dbname=CJFD&dbcode=CJFQ
      杜远生, 朱杰, 顾松竹, 等, 2006.北祁连造山带寒武系-奥陶系硅质岩沉积地球化学特征及其多岛洋构造意义.地球科学, 31(1):101-109. http://earth-science.net/WebPage/Article.aspx?id=1542
      冯益民, 何世平, 1995.北祁连蛇绿岩的地质地球化学研究.岩石学报, 11(S1):125-140+142-146. http://www.doc88.com/p-3347468570798.html
      冯益民, 何世平, 1996.祁连山大地构造与造山作用.北京:地质出版社.
      冯益民, 1997.祁连造山带研究概况——历史、现状及展望.地球科学进展, 12(4):5-12. doi: 10.11867/j.issn.1001-8166.1997.04.0307
      关俊雷, 耿全如, 彭智敏等, 2016.西藏唐古拉岩浆岩带夏马日花岗岩体的岩石学、岩石地球化学、锆石U-Pb测年及Hf同位素组成.地质学报, 90(2):304-333. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxe201602008&dbname=CJFD&dbcode=CJFQ
      郭进京, 张国伟, 陆松年, 等, 1999.中祁连地块东段元古宙基底地层格架讨论.中国区域地质, 18(4):379-382. http://www.cqvip.com/qk/95894X/199904/3874574.html
      郭进京, 赵凤清, 李怀坤, 等, 2000.中祁连东段湟源群的年代学新证据及其地质意义.中国区域地质, 19(1):26-31. http://www.cqvip.com/qk/95894X/200001/4231400.html
      郭原生, 孙淑荣, 傅学明, 1993.北祁连西段蛇绿岩型超基性岩微量元素特征及其地质意义.兰州大学学报, (3):206-212. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ldzk199303039&dbname=CJFD&dbcode=CJFQ
      侯可军, 李延河, 田有荣, 2009.LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质, 28(4):481-492. http://mall.cnki.net/magazine/Article/KCDZ200904009.htm
      黄增保, 郑建平, 李葆华, 等, 2016.南祁连大道尔吉早古生代弧后盆地型蛇绿岩的年代学、地球化学特征及意义.大地构造与成矿学, 40(4):826-838. http://d.wanfangdata.com.cn/Periodical_ddgzyckx201604016.aspx
      姜高磊, 张思敏, 柳坤峰, 等, 2014.祁连-柴达木-东昆仑新元古-中生代沉积盆地演化.地球科学, (8):1000-1016. http://earth-science.net/WebPage/Article.aspx?id=2908
      李昌年, 1992.火成岩微量元素岩石学.武汉:中国地质大学出版社.
      李建锋, 张志诚, 韩宝福, 2010.中祁连西段肃北、石包城地区早古生代花岗岩年代学、地球化学特征及其地质意义.岩石学报, 26(8):2431-2444. http://d.wanfangdata.com.cn/Periodical/ysxb98201008016
      李兆, 陈岳龙, 刘长征, 等, 2016.北祁连的形成与演化历史:来自河流沉积物地球化学及其碎屑锆石U-Pb年龄、Hf同位素组成的证据.地质学报, 90(2):267-283. http://www.oalib.com/paper/4875049
      刘颖, 刘海臣, 李献华.1996.用ICP-MS准确测定岩石样品中的40余种微量元素.地球化学, 25(6):552-558. http://www.doc88.com/p-9039619866095.html
      裴先治, 李佐臣, 李瑞保, 等, 2012.祁连造山带东段早古生代葫芦河群变质碎屑岩中碎屑锆石LA-ICP-MSU-Pb年龄:源区特征和沉积时代的限定.地学前缘, 19(5):205-224. http://mall.cnki.net/magazine/Article/DXQY201205022.htm
      钱家骐, 宫保军, 窦尚仁, 等, 1986. 中祁连山西段元古界的叠层石研究. 甘肃地质, (0): 1-32+147-160.
      钱青, 孙晓猛, 张旗, 等, 1999.北祁连九个泉蛇绿岩及其上覆岩系的岩石地球化学特征和地球动力学意义.地质论评, 45(S1):1038-1046. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1999S1152.htm
      青海省地矿局, 1991.青海省区域地质志.北京:地质出版社.
      秦海鹏, 吴才来, 王次松, 等, 2014a.北祁连下古城花岗岩体LA-ICP-MS锆石U-Pb年代学及岩石化学特征.地质学报, 88(10):1832-1842. http://www.cnki.com.cn/Article/CJFDTotal-DZXE201410005.htm
      秦海鹏, 吴才来, 王次松, 等, 2014b.祁连东部西格拉高Sr/Y型花岗岩LA-ICP-MS锆石U-Pb定年及其地球化学特征.岩石学报, 30(12):3759-3771. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201412024.htm
      邱检生, 肖娥, 胡建, 等, 2008.福建北东沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约.岩石学报, 24(11):2468-2484. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200811003&dbname=CJFD&dbcode=CJFQ
      宋述光, 张贵宾, 张聪, 等, 2013.大洋俯冲和大陆碰撞的动力学过程:北祁连-柴北缘高压-超高压变质带的岩石学制约.科学通报, 58(23):2240-2245. http://www.oalib.com/paper/4273662
      万渝生, 许志琴, 杨经绥, 等, 2003.祁连造山带及邻区前寒武纪深变质基底的时代和组成.地球学报, 24(4):319-324. http://d.wanfangdata.com.cn/Periodical/dqxb200304005
      王洪亮, 何世平, 陈隽璐, 等, 2007.甘肃马衔山花岗岩杂岩体LA-ICPMS锆石U-Pb测年及其构造意义.地质学报, 81(1):72-78. http://www.oalib.com/paper/4874042
      吴才来, 杨经绥, 杨宏仪, 等, 2005.北祁连东部两类Ⅰ型花岗岩定年及其地质意义.地质学报, 79(2):286. http://www.cqvip.com/QK/95080X/2005002/15499494.html
      吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://d.wanfangdata.com.cn/Periodical/ysxb98200702001
      夏林圻, 李向民, 余吉远, 等, 2016.祁连山新元古代中-晚期至早古生代火山作用与构造演化.中国地质, 43(4):1087-1138. http://www.cqvip.com/QK/90050X/201604/669848882.html
      徐旺春, 张宏飞, 柳小明, 2007.锆石U-Pb定年限制祁连山高级变质岩系的形成时代及其构造意义.科学通报, 52(10):1174-1180. doi: 10.3321/j.issn:0023-074X.2007.10.014
      徐学义, 王洪亮, 陈隽璐, 等, 2008.中祁连东段兴隆山群基性火山岩锆石U-Pb定年及岩石成因研究.岩石学报, 24(4):827-840. http://d.wanfangdata.com.cn/Periodical/ysxb98200804022
      徐亚军, 杜远生, 杨江海, 2013.北祁连造山带晚奥陶世-泥盆纪构造演化:碎屑锆石年代学证据.地球科学, (5):934-946. http://earth-science.net/WebPage/Article.aspx?id=2785
      许志琴, 徐惠芬, 张建新, 等, 1994.北祁连走廊南山加里东俯冲杂岩增生地体及其动力学.地质学报, 68(1):1-15. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxe199401000&dbname=CJFD&dbcode=CJFQ
      雍拥, 肖文交, 袁超, 等, 2008.中祁连东段古生代花岗岩的年代学、地球化学特征及其大地构造意义.岩石学报, 24(4):855-866. http://www.wenkuxiazai.com/doc/3c0f25c628ea81c758f5789a.html
      张建新, 孟繁聪, 于胜尧, 2010.两条不同类型的HP/LT和UHP变质带对祁连-阿尔金早古生代造山作用的制约.岩石学报, 26(7):1967-1992. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201007003&dbname=CJFD&dbcode=CJFQ
      张旗, Chen, Y., 周德进, 等, 1998.北祁连大岔大坂蛇绿岩的地球化学特征及其成因.中国科学:D辑:地球科学, (1):30-34. http://www.wenkuxiazai.com/doc/35a5c13431126edb6f1a10b6-2.html
      张旗, 孙晓猛, 周德进, 等, 1997.北祁连蛇绿岩的特征、形成环境及其构造意义.地球科学进展, 12(4):64-91. http://www.cqvip.com/QK/94287X/199704/2575795.html
      张旗, 王焰, 李承东, 等, 2006.花岗岩的Sr-Yb分类及其地质意义.岩石学报, 22(9):2249-2269. http://d.wanfangdata.com.cn/Periodical/ysxb98200609001
      张旗, 王焰, 潘国强, 等, 2008.花岗岩源岩问题——关于花岗岩研究的思考之四.岩石学报, 24(6):1193-1204. http://www.wenkuxiazai.com/doc/a80b3cebdd3383c4bb4cd2aa.html
      张延军, 孙丰月, 许成瀚, 等, 2016.柴北缘大柴旦滩间山花岗斑岩体锆石U-Pb年代学、地球化学及Hf同位素.地球科学, 41(11):1830-1844. http://earth-science.net/WebPage/Article.aspx?id=3382
      张招崇, 毛景文, 杨建民, 等, 1998.北祁连熬油沟蛇绿岩岩石成因的地球化学证据.地质学报, 72(1):42-51. http://www.oalib.com/paper/4874569
      张照伟, 李文渊, 王亚磊, 等, 2015.南祁连化隆地区镁铁-超镁铁质侵入岩地质、地球化学特征与铜镍成矿.地质学报, 89(3):632-644. http://cdmd.cnki.com.cn/Article/CDMD-10710-1014032420.htm
      左国朝, 刘寄陈, 1987.北祁连早古生代大地构造演化.地质科学, 22(1):14-24. http://www.wenkuxiazai.com/doc/729c19dd5022aaea998f0f28.html
    • 加载中
    图(8) / 表(4)
    计量
    • 文章访问数:  4738
    • HTML全文浏览量:  2143
    • PDF下载量:  20
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-03-15
    • 刊出日期:  2017-12-15

    目录

      /

      返回文章
      返回