• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西天山吐拉苏岩体中花岗岩的年代学和地球化学特征及其地质意义

    张京渤 安芳 魏少妮

    引用本文:
    Citation:

    西天山吐拉苏岩体中花岗岩的年代学和地球化学特征及其地质意义

      作者简介: 张京渤(1994—), 男, 硕士研究生, 矿物学、岩石学、矿床学专业.
      通讯作者: 安芳, anfang_china@163.com
    • 基金项目:

      国家自然科学基金项目 41403033

      陕西省自然科学基金面上项目 S2018-JC-YB-1300

      陕西省教育厅科技计划项目 14KJ1761

    • 中图分类号: P588;P597

    Geochronology and Geochemistry of Granite in Tulasu Pluton in West Tianshan, and Its Geological Significance

      Corresponding author: An Fang, anfang_china@163.com ;
    • CLC number: P588;P597

    • 摘要: 吐拉苏岩体位于西天山吐拉苏盆地的东北缘,由石英闪长玢岩、辉石闪长玢岩和花岗岩组成,其中花岗岩主要为花岗闪长玢岩和花岗斑岩.它们表现出高硅、高铝、富碱的特征,里特曼指数(σ)=1.61~3.18,A/CNK=1.00~1.09,A/NK=1.07~1.68,为准铝质-弱过铝质高钾钙碱性花岗岩;相对富集Rb、Th、U等大离子亲石元素,明显亏损Nb、Ta、Sr、P、Ti等元素;轻重稀土分馏明显,(La/Yb)N=7.48~12.12、中等Eu负异常(δEu=0.47~0.62),无Ce异常.但花岗斑岩较花岗闪长玢岩碱含量更高,更加接近准铝质钾玄岩系列,Sr、P、Ti等元素的亏损程度更强,且轻稀土更富集,可能说明花岗斑岩中壳源物质含量增加.锆石LA-ICP-MS U-Pb定年研究获得花岗斑岩的侵位年龄为305.9±5.9 Ma.锆石Hf同位素组成显示,εHft)值介于0.4~8.7,表明花岗岩的岩浆源区有幔源物质的加入;TDM2值介于766~1 294 Ma,表明岩浆源区为中元古代-新元古代新生地壳.综合吐拉苏岩体中两类花岗岩的地质、地球化学特征、年代学和区域地质背景,认为从花岗闪长玢岩到花岗斑岩结晶分异增强、壳源物质的贡献增大,花岗岩形成于后碰撞环境,岩浆源区为中元古代-新元古代新生地壳,但有不同比例幔源物质的加入.
    • 图 1  西天山区域地质略图(a)和吐拉苏盆地区域地质图(b)

      Figure 1.  Regional geological map of Chinese West Tianshan (a) and regional geological map of the Tulasu basin (b)

      图 2  吐拉苏岩体地质图

      Figure 2.  Geological map of the Tulasu pluton

      图 3  吐拉苏岩体花岗闪长玢岩和花岗斑岩的岩石学特征

      Figure 3.  Petrological features of granodiorite porphyry and granite porphyry in the Tulasu pluton

      图 4  吐拉苏岩体中花岗岩的TAS分类图解

      Figure 4.  TAS diagram of the granite in the Tulasu pluton

      图 5  吐拉苏岩体中花岗岩的K2O-SiO2图(a)和A/NK-A/CNK图(b)

      Figure 5.  K2O-SiO2 diagram (a) and A/NK-A/CNK diagram (b) of the granite in the Tulasu pluton

      图 6  吐拉苏岩体中花岗岩的微量元素原始地幔标准化蛛网图(a)和球粒陨石标准化稀土元素配分模式图(b)

      Figure 6.  Primitive mantle-normalized spider diagrams (a) and chondrite-normalized REE patterns (b) of granite in the Tulasu pluton

      图 7  吐拉苏岩体中花岗岩的锆石CL图像(a)及定年结果(b)

      Figure 7.  Zircon CL graphics (a) and zircon U-Pb dating results (b) of the granite in the Tulasu pluton

      图 8  西天山地区部分侵入岩的锆石εHf(t)-t图解

      Figure 8.  Zircon εHf(t)-t diagram of some intrusions in the West Tianshan

      图 9  吐拉苏岩体中花岗岩哈克图解

      Figure 9.  Harker diagrams of the granite in the Tulasu pluton

      图 10  吐拉苏岩体中花岗岩Nb/Ta-La/Yb图解

      Figure 10.  Nb/Ta-La/Yb diagram of the granite in the Tulasu pluton

      图 11  吐拉苏岩体中花岗岩微量元素构造环境判别图解

      Figure 11.  Tectonic discrimination diagrams of the granite trace elements in the Tulasu pluton

      表 1  吐拉苏岩体中花岗岩的主量元素(%)和微量元素(10-6)分析结果

      Table 1.  Major element (%) and trace element (10-6) compositions of granite in Tulasu pluton

      样品号 16A-85 16A-86 16A-86R 16A-88 16A-89
      岩石类型 花岗闪长玢岩 花岗斑岩
      SiO2 69.43 70.83 70.88 73.43 73.52
      TiO2 0.58 0.53 0.52 0.19 0.17
      Al2O3 14.76 14.88 14.85 14.19 14.18
      Fe2O3T 4.24 3.87 3.86 1.58 1.57
      MnO 0.10 0.08 0.09 0.05 0.05
      MgO 1.66 0.38 0.38 0.17 0.13
      CaO 2.59 2.55 2.54 0.50 0.53
      Na2O 3.04 3.33 3.36 4.51 4.52
      K2O 3.48 3.42 3.41 5.33 5.30
      P2O5 0.12 0.12 0.12 0.03 0.02
      LOI 1.45 1.38 1.36 0.52 0.34
      Na2O+K2O 6.52 6.75 6.77 9.84 9.82
      K2O/Na2O 1.14 1.03 1.02 1.18 1.17
      σ 1.61 1.64 1.64 3.18 3.16
      A/CNK 1.09 1.08 1.07 1.00 1.00
      A/NK 1.68 1.62 1.61 1.07 1.08
      Li 32.8 14.7 14.6 30.3 26.7
      Be 2.08 1.94 1.92 3.55 3.69
      Sc 10.70 9.79 9.70 4.52 4.66
      V 65.40 45.30 45.50 4.01 2.46
      Cr 27.10 18.80 18.70 8.76 1.28
      Co 31.0 28.1 27.7 26.9 30.5
      Ni 22.60 14.70 14.60 6.03 1.63
      Cu 16.30 10.60 10.60 2.51 2.16
      Zn 54.2 45.3 44.6 50.1 53.4
      Ga 17.6 17.1 17.0 18.9 19.0
      Ge 1.52 1.53 1.54 1.45 1.46
      Rb 115 117 115 190 191
      Sr 185.0 228.0 226.0 31.3 28.9
      Y 27.6 29.4 29.1 28.0 33.5
      Zr 206 178 185 230 262
      Nb 9.41 8.61 8.60 19.80 21.20
      Cs 4.31 4.79 4.77 7.62 8.00
      Ba 499 519 517 426 413
      La 28.5 28.9 29.2 49.5 50.6
      Ce 62.0 61.5 63.0 106.0 108.0
      Pr 6.98 7.04 7.15 12.10 12.40
      Nd 27.8 28.1 28.3 42.3 43.2
      Sm 5.89 6.01 6.06 7.70 7.95
      Eu 1.17 1.15 1.15 1.20 1.16
      Gd 5.53 5.70 5.69 6.37 6.74
      Tb 0.84 0.88 0.87 0.93 1.03
      Dy 4.94 5.21 5.19 5.35 6.09
      Ho 0.97 1.03 1.03 1.02 1.20
      Er 2.79 2.93 2.93 2.92 3.49
      Tm 0.41 0.43 0.43 0.44 0.53
      Yb 2.63 2.77 2.77 2.93 3.45
      Lu 0.39 0.41 0.41 0.43 0.51
      Hf 5.55 5.02 5.20 6.94 7.68
      Ta 0.87 0.83 0.84 1.65 1.69
      Pb 20.3 32.8 32.6 29.4 31.0
      Th 12.2 12.5 12.9 22.2 22.5
      U 2.42 1.43 1.43 1.55 3.61
      ΣREE 150.87 152.01 154.16 238.91 245.99
      LREE/HREE 7.15 6.85 6.98 10.71 9.68
      δEu 0.62 0.59 0.59 0.51 0.47
      (La/Yb)N 7.77 7.48 7.57 12.12 10.52
      下载: 导出CSV

      表 2  吐拉苏岩体中花岗闪长玢岩LA⁃ICP⁃MS锆石U⁃Pb定年结果

      Table 2.  LA-ICP-MS zircon U-Pb data of granodiorite porphyry in Tulasu pluton

      测点号 元素含量(10-6) Th/U 同位素比值 年龄(Ma)
      206Pb 232Th 238U 207Pb/206Pb 207Pb/235U 206Pb/238U 206Pb/238U
      16A-86-01 25.79 64.92 126.36 0.51 0.051 94 0.004 49 0.360 84 0.030 42 0.050 38 0.001 09 316.9 6.68
      16A-86-02 54.55 140.28 278.08 0.50 0.049 99 0.001 59 0.334 20 0.010 19 0.048 48 0.000 51 305.2 3.11
      16A-86-03 27.62 61.66 143.31 0.43 0.054 75 0.002 40 0.360 93 0.015 35 0.047 80 0.000 61 301.0 3.76
      16A-86-04 29.77 65.65 151.05 0.43 0.050 08 0.002 18 0.338 05 0.014 27 0.048 95 0.000 61 308.1 3.78
      16A-86-05 22.89 52.36 117.62 0.45 0.054 07 0.002 58 0.361 83 0.016 75 0.048 53 0.000 66 305.5 4.08
      16A-86-06 98.18 147.90 496.66 0.30 0.051 30 0.001 33 0.349 06 0.008 60 0.049 35 0.000 48 310.5 2.92
      16A-86-07 44.12 107.82 226.34 0.48 0.057 92 0.002 07 0.389 10 0.013 38 0.048 72 0.000 56 306.7 3.47
      16A-86-08 23.84 57.44 122.09 0.47 0.049 91 0.002 52 0.337 17 0.016 59 0.048 99 0.000 65 308.3 4.02
      16A-86-09 28.73 69.97 151.15 0.46 0.053 83 0.002 41 0.355 74 0.015 43 0.047 93 0.000 63 301.8 3.88
      16A-86-10 75.22 238.36 394.15 0.60 0.051 44 0.001 54 0.341 78 0.009 85 0.048 19 0.000 50 303.4 3.06
      16A-86-11 47.35 106.90 246.12 0.43 0.054 03 0.001 80 0.362 35 0.011 64 0.048 64 0.000 54 306.1 3.30
      16A-86-12 26.95 60.57 142.67 0.42 0.048 95 0.002 19 0.322 75 0.014 05 0.047 83 0.000 61 301.2 3.77
      16A-86-13 58.89 92.50 305.40 0.30 0.053 03 0.001 50 0.357 34 0.009 69 0.048 88 0.000 50 307.6 3.05
      下载: 导出CSV

      表 3  吐拉苏岩体中花岗闪长玢岩的锆石Lu-Hf分析结果

      Table 3.  Zircon Lu-Hf isotopic compositions of granodiorite porphyry in Tulasu pluton

      测点号 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf σ εHf(t) σ tDM1(Ma) tDM2(Ma) fLu/Hf
      16A-86-01 305 0.038 538 0.001 012 0.282 750 0.000 021 5.7 0.8 712 953 -0.97
      16A-86-02 306 0.054 889 0.001 438 0.282 739 0.000 022 5.3 0.8 736 984 -0.96
      16A-86-03 306 0.052 396 0.001 409 0.282 649 0.000 025 2.1 0.9 864 1 185 -0.96
      16A-86-04 301 0.013 739 0.000 322 0.282 694 0.000 021 3.8 0.7 777 1 074 -0.99
      16A-86-05 308 0.038 677 0.001 015 0.282 670 0.000 023 2.9 0.8 826 1 133 -0.97
      16A-86-06 306 0.021 480 0.000 478 0.282 723 0.000 020 4.9 0.7 741 1 009 -0.99
      16A-86-07 311 0.045 256 0.001 191 0.282 833 0.000 025 8.7 0.9 598 766 -0.96
      16A-86-08 307 0.045 879 0.001 410 0.282 600 0.000 034 0.4 1.2 934 1 294 -0.96
      16A-86-09 306 0.048 069 0.001 326 0.282 815 0.000 023 8.0 0.8 626 812 -0.96
      16A-86-10 306 0.034 753 0.000 922 0.282 697 0.000 024 3.9 0.8 786 1 072 -0.97
      下载: 导出CSV
    • [1] Amelin, Y., Lee, D. C., Halliday, A. N., 2000. Early-Middle Archaean Crustal Evolution Deduced from Lu-Hf and U-Pb Isotopic Studies of Single Zircon Grains. Geochimica et Cosmochimica Acta, 64(24): 4205-4225. https://doi.org/10.1016/s0016-7037(00)00493-2 doi: 10.1016/s0016-7037(00)00493-2
      [2] Amelin, Y., Lee, D. C., Halliday, A. N., et al., 1999. Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrital Zircons. Nature, 399(6733): 252-255. https://doi.org/10.1038/20426 doi: 10.1038/20426
      [3] An, F., Zhu, Y.F., 2008. Study on Trace Elements Geochemistry and SHRIMP Chronology of Volcanic Rocks in Tulasu Basin, Northwest Tianshan. Acta Petrologica Sinica, 24(12): 2741-2748(in Chinese with English abstract). doi: 10.1016-j.jep.2011.06.009/
      [4] Baker, J. A., Menzies, M. A., Thirlwall, M. F., et al., 1997. Petrogenesis of Quaternary Intraplate Volcanism, Sana'a, Yemen: Implications for Plume-Lithosphere Interaction and Polybaric Melt Hybridization. Journal of Petrology, 38(10): 1359-1390. https://doi.org/10.1093/petroj/38.10.1359 doi: 10.1093/petroj/38.10.1359
      [5] Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605-626. https://doi.org/10.1016/s0024-4937(98)00085-1 doi: 10.1016/s0024-4937(98)00085-1
      [6] Belousova, E.A., Griffin, W.L., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7 doi: 10.1007/s00410-002-0364-7
      [7] Charvet, J., Shu, L. S., Laurent-Charvet, S., et al., 2011. Palaeozoic Tectonic Evolution of the Tianshan Belt, NW China. Science China Earth Sciences, 54(2): 166-184. https://doi.org/10.1007/s11430-010-4138-1 doi: 10.1007/s11430-010-4138-1
      [8] Chen, M., Sun, M., Buslov, M. M., et al., 2016. Crustal Melting and Magma Mixing in a Continental Arc Setting: Evidence from the Yaloman Intrusive Complex in the Gorny Altai Terrane, Central Asian Orogenic Belt. Lithos, 252/253: 76-91. https://doi.org/10.1016/j.lithos.2016.02.016 doi: 10.1016/j.lithos.2016.02.016
      [9] Cheng, Y. B., Mao, J. W., 2010. Age and Geochemistry of Granites in Gejiu Area, Yunnan Province, SW China: Constraints on Their Petrogenesis and Tectonic Setting. Lithos, 120(3/4): 258-276. https://doi.org/10.1016/j.lithos.2010.08.013 doi: 10.1016/j.lithos.2010.08.013
      [10] Coleman, R. G., 1989. Continental Growth of Northwest China. Tectonics, 8(3): 621-635. https://doi.org/10.1029/tc008i003p00621 doi: 10.1029/tc008i003p00621
      [11] Corfu, F., Stott, G. M., 1993. Age and Petrogenesis of Two Late Archean Magmatic Suites, Northwestern Superior Province, Canada: Zircon U-Pb and Lu-Hf Isotopic Relations. Journal of Petrology, 34(4): 817-838. https://doi.org/10.1093/petrology/34.4.817 doi: 10.1093/petrology/34.4.817
      [12] Ewart, A., 1982. The Mineralogy and Petrology of Tertiary-Recent Orogenic Volcanic Rocks with Special Reference to the Andesitic-Basaltic Compositional Range. In: Thorpe, R.S., ed., Andesites. Wiley, Chichester, 25-87.
      [13] Gao, J., Klemd, R., Qian, Q., et al., 2011. The Collision between the Yili and Tarim Blocks of the Southwestern Altaids: Geochemical and Age Constraints of a Leucogranite Dike Crosscutting the HP-LT Metamorphic Belt in the Chinese Tianshan Orogen. Tectonophysics, 499(1-4): 118-131. https://doi.org/10.1016/j.tecto.2011.01.001 doi: 10.1016/j.tecto.2011.01.001
      [14] Gao, J., Li, M. S., Xia, X. C., et al., 1998. Paleozoic Tectonic Evolution of the Tianshan Orogen, Northwestern China. Tectonophysics, 287(1-4): 213-231. https://doi.org/10.1016/s0040-1951(97)00211-4 doi: 10.1016/s0040-1951(97)00211-4
      [15] Gao, J., Long, L. L., Klemd, R., et al., 2009. Tectonic Evolution of the South Tianshan Orogen and Adjacent Regions, NW China: Geochemical and Age Constraints of Granitoid Rocks. International Journal of Earth Sciences, 98(6): 1221-1238. https://doi.org/10.1007/s00531-008-0370-8 doi: 10.1007/s00531-008-0370-8
      [16] Gao, J., Long, L. L., Qian, Q., et al., 2006. South Tianshan: A Late Paleozoic or a Triassic Orogen?. Acta Petrologica Sinica, 22(5): 1049-1061(in Chinese with English abstract).http://d.old.wanfangdata.com.cn/Periodical/ysxb98200605001
      [17] Gao, J., Qian, Q., Long, L.L., et al., 2009.Accretionary Orogenic Process of Western Tianshan, China. Geological Bulletin of China, 28(12):1804-1816(in Chinese with English abstract). doi: 10.1016-j.ejim.2011.05.012/
      [18] Griffin, W. L., Belousova, E. A., Shee, S. R., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131(3/4): 231-282. https://doi.org/10.1016/j.precamres.2003.12.011 doi: 10.1016/j.precamres.2003.12.011
      [19] Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4): 237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 doi: 10.1016/s0024-4937(02)00082-8
      [20] Gu, X.X., Zhang, Y.M., Peng, Y.W., et al., 2014. The Fe-Cu-Mo Polymetallic Mineralization System Related to Intermediate-Acid Intrusions in the Boluokenu Metallogenic Belt of the West Tianshan, Xinjiang: Rock- and Ore-Forming Geochemistry and Tectonomagmatic Evolution. Earth Science Frontiers, 21(5): 156-175(in Chinese with English abstract).http://d.old.wanfangdata.com.cn/Periodical/dxqy201405012
      [21] Gu, X.X., Zhang, Y.M., Wang, X.L., et al., 2013. Geochronology of Intrusive Rocks and Associated Ores of the Kekesala-Aimusidaiyi Fe-Cu Deposit in the West Tianshan, Xinjiang and Its Geologic Significance. Earth Science Frontiers, 20(6): 195-209(in Chinese with English abstract).http://d.old.wanfangdata.com.cn/Periodical/dxqy201306024
      [22] Han, B.F., Guo, Z.J., He, G.Q., 2010. Timing of Major Suture Zones in North Xinjiang, China: Constraints from Stitching Plutons. Acta Petrologica Sinica, 26(8): 2233-2246(in Chinese with English abstract).http://cn.bing.com/academic/profile?id=ad9e55d6a446828fca81f13b95e6db8f&encoded=0&v=paper_preview&mkt=zh-cn
      [23] Han, B. F., Guo, Z. J., Zhang, Z. C., et al., 2010. Age, Geochemistry, and Tectonic Implications of a Late Paleozoic Stitching Pluton in the North Tian Shan Suture Zone, Western China. Geological Society of America Bulletin, 122(3-4): 627-640. https://doi.org/10.1130/b26491.1 doi: 10.1130/b26491.1
      [24] Hanchar, J. M., Rudnick, R. L., 1995. Revealing Hidden Structures: The Application of Cathodoluminescence and Back-Scattered Electron Imaging to Dating Zircons from Lower Crustal Xenoliths. Lithos, 36(3-4): 289-303. https://doi.org/10.1016/0024-4937(95)00022-4 doi: 10.1016/0024-4937(95)00022-4
      [25] Hu, A.Q., Wei, G.J., Zhang, J.B., et al., 2008.SHRIMP U-Pb Ages for Zircons of the Amphibolites and Tectonic Evolution Significance from the Wenquan Domain in the West Tianshan Mountains, Xinjiang, China. Acta Petrologica Sinica, 24(12):2731-2740(in Chinese with English abstract).http://cn.bing.com/academic/profile?id=85cb5f91767e56592cf620316cbc6fcc&encoded=0&v=paper_preview&mkt=zh-cn
      [26] Huang, D., Zhang, C.L., Ma, Z.P., et al., 2017. Origin and Its Geological Significance of Late Carboniferous-Middle Permian Intermediate-Acid Small Plutons in the Southeastern Awulale Area of West Tianshan, China. Journal of Earth Sciences and Environment, 39(2): 175-193(in Chinese with English abstract).http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201702004
      [27] Huang, H., Wang, T., Qin, Q., et al., 2015. Zircon Hf Isotopic Characteristics of Granitoids from the Baluntai Region, Central Tianshan: Implications for Tectonic Evolution and Continental Growth. Acta Geologica Sinica, 89(12): 2286-2313(in Chinese with English abstract).http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201512008.htm
      [28] Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055 doi: 10.1139/e71-055
      [29] Jonathan Patchett, P., Kouvo, O., Hedge, C. E., et al., 1982. Evolution of Continental Crust and Mantle Heterogeneity: Evidence from Hf Isotopes. Contributions to Mineralogy and Petrology, 78(3): 279-297. https://doi.org/10.1007/bf00398923 doi: 10.1007/bf00398923
      [30] Kinny, P. D., Maas, R., 2003. Lu-Hf and Sm-Nd Isotope Systems in Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327-341. https://doi.org/10.2113/0530327 doi: 10.2113/0530327
      [31] Li, C., Xiao, W. J., Han, C. M., et al., 2015a. Late Devonian-Early Permian Accretionary Orogenesis along the North Tianshan in the Southern Central Asian Orogenic Belt. International Geology Review, 57(5-8): 1023-1050. https://doi.org/10.1080/00206814.2014.913268 doi: 10.1080/00206814.2014.913268
      [32] Li, N. B., Niu, H. C., Shan, Q., et al., 2015b. Two Episodes of Late Paleozoic A-Type Magmatism in the Qunjisayi Area, Western Tianshan: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 113: 238-253. https://doi.org/10.1016/j.jseaes.2014.12.015 doi: 10.1016/j.jseaes.2014.12.015
      [33] Li, N.B., Niu, H. C., Shan, Q., et al., 2013. Zircon U-Pb Geochronology and Geochemistry of Post-Collisional Granitic Porphyry from Yuantoushan, Nileke, Xinjiang. Acta Petrologica Sinica, 29(10): 3402-3412(in Chinese with English abstract).http://d.old.wanfangdata.com.cn/Periodical/ysxb98201310007
      [34] Liegeois, J. P., Navez, J., Hertogen, J., et al., 1996. Contrasting Origin of Post-Collisional High-K Calc-Alkaline and Shoshonitic versus Alkalin and Peralkaline Granitoids. The Use of Sliding Normalization. Lithos, 45(1-4): 1-28.
      [35] Long, L. L., Gao, J., Klemd, R., et al., 2011. Geochemical and Geochronological Studies of Granitoid Rocks from the Western Tianshan Orogen: Implications for Continental Growth in the Southwestern Central Asian Orogenic Belt. Lithos, 126(3-4): 321-340. https://doi.org/10.1016/j.lithos.2011.07.015 doi: 10.1016/j.lithos.2011.07.015
      [36] Long, L. L., Gao, J., Xiong, X. M., et al., 2007.Geochemistry and Geochronology of Granitoids in Bikai Region, Southern Central-Tianshan Mountains, Xinjiang. Acta Petrologica Sinica, 23(4):719-732 (in Chinese with English abstract).http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200704004
      [37] Ludwig, K., 2003. User's Manual for Isoplot/V. 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 4: 1-70.
      [38] MacDonald, R., 2001. Plume-Lithosphere Interactions in the Generation of the Basalts of the Kenya Rift, East Africa. Journal of Petrology, 42(5): 877-900. https://doi.org/10.1093/petrology/42.5.877 doi: 10.1093/petrology/42.5.877
      [39] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101 < 0635:tdog > 2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      [40] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 doi: 10.1016/0012-8252(94)90029-9
      [41] Pearce, J. A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. doi: 10.18814/epiiugs/1996/v19i4/005
      [42] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 doi: 10.1093/petrology/25.4.956
      [43] Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343 doi: 10.1146/annurev.ea.23.050195.001343
      [44] Peng, Y. W., Gu, X. X., Cheng, W. B., et al., 2016. Genesis of the Tawuerbieke Gold Deposit in the Tulasu Basin, Western Tianshan: Evidence from Geochronology and Stable Isotopes. Acta Petrologica Sinica, 32(5): 1361-1378(in Chinese with English abstract).http://d.old.wanfangdata.com.cn/Periodical/ysxb98201605008
      [45] Qi, S. J., 1999. The Tectonic Characteristics of Tulasu Volcanic Basin in Yining and Its Relation to Gold Mineralization. Xinjiang Geology, 17(2): 121-128(in Chinese with English abstract).http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI902.003.htm
      [46] Richards, J. P., 2009. Postsubduction Porphyry Cu-Au and Epithermal Au Deposits: Products of Remelting of Subduction-Modified Lithosphere. Geology, 37(3): 247-250(in Chinese with English abstract).http://adsabs.harvard.edu/abs/2009geo....37..247r
      [47] Rubatto, D., Gebauer, D., 2000. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps. In: Rubatto, D., Gebauer, D., eds., Cathodoluminescence in Geosciences. Springer, Berlin Heidelberg, 373-400.
      [48] Şeng r, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0 doi: 10.1038/364299a0
      [49] Sun, L. H., Wang, Y. J., Fan, W. M., et al., 2008. Post-Collisional Potassic Magmatism in the Southern Awulale Mountain, Western Tianshan Orogen: Petrogenetic and Tectonic Implications. Gondwana Research, 14(3): 383-394. https://doi.org/10.1016/j.gr.2008.04.002 doi: 10.1016/j.gr.2008.04.002
      [50] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/gsl.sp.1989.042.01.19
      [51] Tang, G. J., Wang, Q., Zhao, Z. H., et al., 2009. LA-ICP-MS Zircon U-Pb Geochronology, Element Geochemistry and Petrogenesis of the Andesites in the Eastern Taerbieke Gold Deposit of the Western Tianshan Region. Acta Petrologica Sinica, 25(6): 1341-1352(in Chinese with English abstract).http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200906006
      [52] Tian, L. D., Sun, F. Y., Wang, L., et al., 2018. Geochemistry, Hf Isotopes and Petrogenesis of Badaogou Monzonotic Granites from Linjiang, Jilin Province. Earth Science, 43(2): 436-448 (in Chinese with English abstract).http://d.old.wanfangdata.com.cn/Periodical/dqkx201802007
      [53] Tong, Y., Wang, T., Hong, D.W., et al., 2010. Spatial and Temporal Distribution of the Carboniferous-Permian Granitoids in Northern Xinjiang and Its Adjacent Areas, and Its Tectonic Significance. Acta Petrologica et Mineralogica, 29(6): 619-641(in Chinese with English abstract).http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201006003
      [54] Wang, B., Faure, M., Cluzel, D., et al., 2006. Late Paleozoic Tectonic Evolution of the Northern West Chinese Tianshan Belt. Geodinamica Acta, 19(3/4): 237-247. https://doi.org/10.3166/ga.19.237-247 doi: 10.3166/ga.19.237-247
      [55] Wang, B., Faure, M., Shu, L., et al., 2008. Paleozoic Tectonic Evolution of the Yili Block, Western Chinese Tianshan. Bulletin de La Societe Geologique de France, 179(5): 483-490. https://doi.org/10.2113/gssgfbull.179.5.483 doi: 10.2113/gssgfbull.179.5.483
      [56] Wang, B., Shu, L.S., Cluzel, D., et al., 2007.Geochronological and Geochemical Studies on the Borohoro Plutons, North of Yili, NW Tianshan and Their Tectonic Implication. Acta Petrologica Sinica, 23(8):1885-1900(in Chinese with English abstract).http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200708010
      [57] Wang, B., Shu, L. S., Faure, M., et al., 2011. Paleozoic Tectonics of the Southern Chinese Tianshan: Insights from Structural, Chronological and Geochemical Studies of the Heiyingshan Ophiolitic Mélange (NW China). Tectonophysics, 497(1-4): 85-104. https://doi.org/10.1016/j.tecto.2010.11.004 doi: 10.1016/j.tecto.2010.11.004
      [58] Wang, J.B., Xu, X., 2006.Post-Collisional Tectonic Evolution and Metallogenesis in Northern Xinjiang, China. Acta Geologica Sinica, 80(1):23-31(in Chinese with English abstract).http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200601003
      [59] Wang, M., Zhang, J. J., Zhang, B., et al., 2015. An Early Paleozoic Collisional Event along the Northern Margin of the Central Tianshan Block: Constraints from Geochemistry and Geochronology of Granitic Rocks. Journal of Asian Earth Sciences, 113: 325-338. https://doi.org/10.1016/j.jseaes.2014.07.001 doi: 10.1016/j.jseaes.2014.07.001
      [60] Wang, Y., Ma, C. Q., Wang, L. X., et al., 2018. Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes of the Neoproterozoic Granites on the Southeastern Margin of the Yangtze Block: Constraint on Crustal Growth. Earth Science, 43(3): 635-654 (in Chinese with English abstract).http://d.old.wanfangdata.com.cn/Periodical/dqkx201803001
      [61] Wang, Z. X., Wu, J. Y., Lü, X. C., 1990. Polycyclic Tectonic Evolution and Metallogeny of Tianshan Mountains, China. Science Press, Beijing(in Chinese).
      [62] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract).http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001
      [63] Xia, L. Q., Xu, X. Y., Xia, Z. C., et al., 2004. Petrogenesis of Carboniferous Rift-Related Volcanic Rocks in the Tianshan, Northwestern China. Geological Society of America Bulletin, 116(3): 419. https://doi.org/10.1130/b25243.1 doi: 10.1130/b25243.1
      [64] Xia, L.Q., Li, X.M., Xia, Z.C., et al., 2006. Carboniferous-Permian Rift-Related Volcanism and Mantle Plume in the Tianshan, Northwestern China. Northwestern Geology, 39(1): 1-49(in Chinese with English abstract).http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz200601001
      [65] Xia, L.Q., Zhang, G.W., Xia, Z.C., et al., 2002. Constraints on the Timing of Opening and Closing of the Tianshan Paleozoic Oceanic Basin: Evidence from Sinian and Carboniferous Volcanic Rocks. Geological Bulletin of China, 21(2): 55-62(in Chinese with English abstract).
      [66] Xia, L.Q., Xia, Z.C., Xu, X.Y., et al., 2004. Carboniferous Tianshan Igneous Megaprovince and Mantle Plume. Geological Bulletin of China, 23(9-10): 903-910(in Chinese with English abstract).http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200409012
      [67] Xia, L.Q., Xia, Z.C., Xu, X.Y., et al., 2008. Petrogenesis of Carboniferous-Early Permian Rift-Related Volcanic Rocks in the Tianshan and Its Neighboring Areas, Northwestern China. Northwestern Geology, 41(4): 1-68(in Chinese with English abstract).
      [68] Xia, L.Q., Li, X.M., Xia, Z.C., et al., 2006.Carboniferous-Permian Rift-Related Volcanism and Mantle Plume in the Tianshan, Northwestern China. Northwestern Geology, 39(1):1-49(in Chinese with English abstract).http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz200601001
      [69] Xiao, W. J., Windley, B. F., Badarch, G., et al., 2004a. Palaeozoic Accretionary and Convergent Tectonics of the Southern Altaids: Implications for the Growth of Central Asia. Journal of the Geological Society, 161(3): 339-342. https://doi.org/10.1144/0016-764903-165 doi: 10.1144/0016-764903-165
      [70] Xiao, W. J., Zhang, L. C., Qin, K. Z., et al., 2004b. Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China): Implications for the Continental Growth of Central Asia. American Journal of Science, 304(4): 370-395. https://doi.org/10.2475/ajs.304.4.370 doi: 10.2475/ajs.304.4.370
      [71] Xinjiang Bureau of Geology and Mineral Resources, 1993. Regional Geology of Xinjiang Uygur Autonomou Region. Geological Publishing House, Beijing(in Chinese).
      [72] Xu, X.Y., Li, X.M., Ma, Z.P., et al., 2006a. LA-ICPMS Zircon U-Pb Dating of Gabbro from the Bayingou Ophiolite in the Northern Tianshan Mountains. Acta Geologica Sinica, 80(8): 1168-1176(in Chinese with English abstract).http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200608010
      [73] Xu, X.Y., Ma, Z.P., Xia, Z.C., et al., 2006b. TIMS U-Pb Isotopic Dating and Geochemical Characteristics of Paleozoic Granitic Rocks from the Middle-Western Section of Tianshan. Northwestern Geology, 39(1): 50-75(in Chinese with English abstract).http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz200601002
      [74] Xu, X.Y., Xia, L.Q., Ma, Z.P., et al., 2006c. SHRIMP Zircon U-Pb Geochronology of the Plagiogranites from Bayingou Ophiolite in North Tianshan Mountains and the Petrogenesis of the Ophiolite. Acta Petrologica Sinica, 22(1): 83-94(in Chinese with English abstract).http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200601009
      [75] Xue, C.J., Wang, H.G., Zhao, X.B., et al., 2013. Kexiaxi Cluster of Small Intrusions in the Tulasu Gold Mineralization District, Western Tianshan, Xinjiang, and Its Copper Exploration Prospect. Earth Science Frontiers, 20(6): 180-194(in Chinese with English abstract).http://d.old.wanfangdata.com.cn/Periodical/dxqy201306023
      [76] Xue, C.J., Zhao, X.B., Mo, X.X., et al., 2014.Tectonic-Metallogenic Evolution of Western Tianshan Giant Au-Cu-Zn-Pb Metallogenic Belt and Prospecting Orietation. Acta Geologica Sinica, 88(12):2490-2531(in Chinese with English abstract).http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201412025
      [77] Yang, R., Zhang, C.L., Chen, C.Y., et al., 2017. Determination and Geological Significance of Late Carboniferous Magma Mixing Granitoids in the West Tianshan Mountains—Evidence from Zircon LA-ICP-MS U-Pb Ages and Petro-Geochemical Characteristics of Yuqibulake and Wutujinghe Plutons. Geological Review, 63(5): 1226-1254(in Chinese with English abstract).http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201705008
      [78] Yuan, H. L., Gao, S., Dai, M. N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1-2): 100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003 doi: 10.1016/j.chemgeo.2007.10.003
      [79] Zhai, W., Sun, X.M., Gao, J., et al., 2006. SHRIMP Dating of Zircons from Volcanic Host Rocks of Dahalajunshan Formation in Axi Gold Deposit, Xinjiang, China, and Its Geological Implications. Acta Petrologica Sinica, 22(5): 1399-1404(in Chinese with English abstract).http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200605028
      [80] Zhao, X. B., Xue, C. J., Chi, G. X., et al., 2014. Epithermal Au and Polymetallic Mineralization in the Tulasu Basin, Western Tianshan, NW China: Potential for the Discovery of Porphyry Cu-Au Deposits. Ore Geology Reviews, 60: 76-96. https://doi.org/10.1016/j.oregeorev.2013.12.018 doi: 10.1016/j.oregeorev.2013.12.018
      [81] Zhao, Z.H., Bai, Z.H., Xiong, X.L., et al., 2003.40Ar/39Ar Chronological Study of Late Paleozoic Volcanic-Hypabyssal Igneous Rocks in Western Tianshan, Xinjiang. Geochimica, 32(4):317-327(in Chinese with English abstract).http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200304003
      [82] Zhu, Z.X., Dong, L.H., Wang, K.Z., et al., 2013. Tectonic Division and Regional Tectonic Evolution of West Tianshan Organic Belt. Geological Bulletin of China, 32(2-3): 297-306(in Chinese with English abstract).http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201302009
      [83] Zhu, Z.X., Wang, K.Z., Xu, D., et al., 2006. SHRIMP U-Pb Dating of Zircons from Carboniferous Intrusive Rocks on the Active Continental Margin of Eren Habirga, West Tianshan, Xinjiang, China, and Its Geological Implications. Geological Bulletin of China, 25(8): 986-991(in Chinese with English abstract).http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200608017
      [84] 安芳, 朱永峰, 2008.西北天山吐拉苏盆地火山岩SHRIMP年代学和微量元素地球化学研究.岩石学报, 24(12):2741-2748.http://d.old.wanfangdata.com.cn/Periodical/ysxb98200812008
      [85] 高俊, 龙灵利, 钱青, 等, 2006.南天山:晚古生代还是三叠纪碰撞造山带?岩石学报, 22(5):1049-1061.http://d.old.wanfangdata.com.cn/Periodical/ysxb98200812010
      [86] 高俊, 钱青, 龙灵利, 等, 2009.西天山的增生造山过程.地质通报, 28(12):1804-1816. doi: 10.3969/j.issn.1671-2552.2009.12.013
      [87] 顾雪祥, 章永梅, 彭义伟, 等, 2014.西天山博罗科努成矿带与侵入岩有关的铁铜钼多金属成矿系统:成岩成矿地球化学与构造-岩浆演化.地学前缘, 21(5):156-175.http://d.old.wanfangdata.com.cn/Periodical/dxqy201405012
      [88] 顾雪祥, 章永梅, 王新利, 等, 2013.新疆西天山可克萨拉-艾木斯呆依铁铜矿床成岩成矿年代学及其地质意义.地学前缘, 20(6):195-209.http://d.old.wanfangdata.com.cn/Periodical/dxqy201306024
      [89] 韩宝福, 郭召杰, 何国琦, 2010."钉合岩体"与新疆北部主要缝合带的形成时限.岩石学报, 26(8):2233-2246.http://d.old.wanfangdata.com.cn/Periodical/ysxb98201008001
      [90] 胡霭琴, 韦刚健, 张积斌, 等, 2008.西天山温泉地区早古生代斜长角闪岩的锆石SHRIMP U-Pb年龄及其地质意义.岩石学报, 24(12):2731-2740.http://d.old.wanfangdata.com.cn/Periodical/ysxb98200812007
      [91] 黄栋, 张成立, 马中平, 等, 2017.西天山阿吾拉勒东南部晚石炭世-中二叠世中酸性小岩体成因及地质意义.地球科学与环境学报, 39(2):175-193. doi: 10.3969/j.issn.1672-6561.2017.02.004
      [92] 黄河, 王涛, 秦切, 等, 2015.中天山巴仑台地区花岗质岩石的Hf同位素研究:对构造演化及大陆生长的约束.地质学报, 89(12):2286-2313. doi: 10.3969/j.issn.0001-5717.2015.12.008
      [93] 李宁波, 牛贺才, 单强, 等, 2013.新疆尼勒克县圆头山后碰撞花岗斑岩的同位素年代学及地球化学特征.岩石学报, 29(10):3402-3412.http://d.old.wanfangdata.com.cn/Periodical/ysxb98201310007
      [94] 龙灵利, 高俊, 熊贤明, 等, 2007.新疆中天山南缘比开(地区)花岗岩地球化学特征及年代学研究.岩石学报, 23(4):719-732.http://d.old.wanfangdata.com.cn/Periodical/ysxb98200704004
      [95] 彭义伟, 顾雪祥, 程文斌, 等, 2016.西天山吐拉苏盆地塔吾尔别克金矿床成因探讨:来自同位素年代学和稳定同位素证据.岩石学报, 32(5):1361-1378.http://d.old.wanfangdata.com.cn/Periodical/ysxb98201605008
      [96] 漆树基, 1999.伊宁吐拉苏火山盆地构造与金矿成矿关系.新疆地质, 17(2):121-128.http://www.cqvip.com/QK/82738X/19992/3000850408.html
      [97] 唐功建, 王强, 赵振华, 等, 2009.西天山东塔尔别克金矿区安山岩LA-ICP-MS锆石U-Pb年代学、元素地球化学与岩石成因.岩石学报, 25(6):1341-1352.http://d.old.wanfangdata.com.cn/Periodical/ysxb98200906006
      [98] 田力丹, 孙丰月, 王力, 等, 2018.吉林临江八道沟二长花岗岩地球化学、Hf同位素特征及其成因.地球科学, 43(2):436-448.http://d.old.wanfangdata.com.cn/Periodical/dqkx201802007
      [99] 童英, 王涛, 洪大卫, 等, 2010.北疆及邻区石炭-二叠纪花岗岩时空分布特征及其构造意义.岩石矿物学杂志, 29(6):619-641. doi: 10.3969/j.issn.1000-6524.2010.06.003
      [100] 王博, 舒良树, Cluzel, D., 等, 2007.伊犁北部博罗霍努岩体年代学和地球化学研究及其大地构造意义.岩石学报, 23(8):1885-1900. doi: 10.3969/j.issn.1000-0569.2007.08.010
      [101] 王京彬, 徐新, 2006.新疆北部后碰撞构造演化与成矿.地质学报, 80(1):23-31.http://d.old.wanfangdata.com.cn/Periodical/dizhixb200601003
      [102] 王艳, 马昌前, 王连训, 等, 2018.扬子东南缘新元古代花岗岩的锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素:对地壳生长的制约.地球科学, 43(3):635-654.http://www.cnki.com.cn/Article/CJFDTotal-DQKX201803001.htm
      [103] 王作勋, 邬继易, 吕喜朝, 1990.天山多旋回构造演化与成矿.北京:地质出版社.
      [104] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220.http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001
      [105] 夏林圻, 李向民, 夏祖春, 等, 2006.天山石炭-二叠纪大火成岩省裂谷火山作用与地幔柱.西北地质, 39(1):1-49. doi: 10.3969/j.issn.1009-6248.2006.01.001
      [106] 夏林圻, 夏祖春, 徐学义, 等, 2004.天山石炭纪大火成岩省与地幔柱.地质通报, 23(9):903-910. doi: 10.3969/j.issn.1671-2552.2004.09.012
      [107] 夏林圻, 夏祖春, 徐学义, 等, 2008.天山及邻区石炭纪-早二叠世裂谷火山岩岩石成因.西北地质, 41(4):1-68. doi: 10.3969/j.issn.1009-6248.2008.04.001
      [108] 夏林圻, 张国伟, 夏祖春, 等, 2002.天山古生代洋盆开启、闭合时限的岩石学约束:来自震旦纪、石炭纪火山岩的证据.地质通报, 21(2):55-62. doi: 10.3969/j.issn.1671-2552.2002.02.002
      [109] 新疆地质矿产局, 1993. 新疆维吾尔族自治区地质志.北京:地质出版社
      [110] 徐学义, 李向民, 马中平, 等, 2006a.北天山巴音沟蛇绿岩形成于早石炭世:来自辉长岩LA-ICPMS锆石U-Pb年龄的证据.地质学报, 80(8):1168-1176.
      [111] 徐学义, 马中平, 夏祖春, 等, 2006c.天山中西段古生代花岗岩TIMS法锆石U-Pb同位素定年及岩石地球化学特征研究.西北地质, 39(1):50-75.http://d.old.wanfangdata.com.cn/Periodical/xbdz200601002
      [112] 徐学义, 夏林圻, 马中平, 等, 2006b.北天山巴音沟蛇绿岩斜长花岗岩SHRIMP锆石U-Pb年龄及蛇绿岩成因研究.岩石学报, 22(1):83-94.http://d.old.wanfangdata.com.cn/Periodical/ysxb98200601009
      [113] 薛春纪, 王洪刚, 赵晓波, 等, 2013.新疆西天山吐拉苏金矿集区克峡希小岩体群及其铜矿找矿前景.地学前缘, 20(6):180-194.http://d.old.wanfangdata.com.cn/Periodical/csjsllyj2015226134
      [114] 薛春纪, 赵晓波, 莫宣学, 等, 2014.西天山巨型金铜铅锌成矿带构造成矿演化和找矿方向.地质学报, 88(12):2490-2531.http://d.old.wanfangdata.com.cn/Periodical/dizhixb201412025
      [115] 杨蓉, 张成立, 陈春勇, 等, 2017.西天山晚石炭世岩浆混合花岗岩的确定及其地质意义:来自玉奇布拉克和乌图精河岩体的LA-ICP-MS锆石U-Pb年龄和岩石地球化学证据.地质论评, 63(5):1226-1254.http://d.old.wanfangdata.com.cn/Periodical/dzlp201705008
      [116] 翟伟, 孙晓明, 高俊, 等, 2006.新疆阿希金矿床赋矿围岩:大哈拉军山组火山岩SHRIMP锆石年龄及其地质意义.岩石学报, 22(5):1399-1404.http://d.old.wanfangdata.com.cn/Periodical/ysxb98200605028
      [117] 赵振华, 白正华, 熊小林, 等, 2003.西天山北部晚古生代火山-浅侵位岩浆岩40Ar/39Ar同位素定年.地球化学, 32(4):317-327. doi: 10.3321/j.issn:0379-1726.2003.04.003
      [118] 朱志新, 董连慧, 王克卓, 等, 2013.西天山造山带构造单元划分与构造演化.地质通报, 32(2):297-306. doi: 10.3969/j.issn.1671-2552.2013.02.009
      [119] 朱志新, 王克卓, 徐达, 等, 2006.依连哈比尔尕山石炭纪侵入岩锆石SHRIMP U-Pb测年及其地质意义.地质通报, 25 (8):986-991. doi: 10.3969/j.issn.1671-2552.2006.08.017
    • [1] 许伟,  徐学义,  卢进才,  牛亚卓,  陈高潮,  史冀忠,  党犇,  宋博,  张宇轩,  张乔.  北山野马井地区泥盆纪富钾酸性岩浆岩地球化学特征及其地质意义[J] . 地球科学, 2019, 44(8): 2775-2793. doi: 10.3799/dqkx.2019.048
      [2] 张天福,  郭硕,  辛后田,  张云,  何鹏,  刘文刚,  张阔,  刘传宝,  王可祥,  张超.  大兴安岭南段维拉斯托高分异花岗岩体的成因与演化及其对Sn-(Li-Rb-Nb-Ta)多金属成矿作用的制约[J] . 地球科学, 2019, 44(1): 248-267. doi: 10.3799/dqkx.2018.246
      [3] 赵亚云,  刘晓峰,  刘远超,  次琼,  肖兰斌,  李莉,  张小强.  西藏次玛班硕地区由秋米斑岩体锆石U-Pb年龄、地球化学特征[J] . 地球科学, 2018, 43(12): 4551-4565. doi: 10.3799/dqkx.2018.118
      [4] 王月飞,  李猛,  查显锋,  胡朝斌,  李瑶,  高晓峰.  祁漫塔格阿确墩地区花岗岩岩石成因:来自锆石U-Pb年代学、地球化学及Hf同位素的制约[J] . 地球科学, 2018, 43(12): 4319-4333. doi: 10.3799/dqkx.2018.133
      [5] 李世杰,  魏启荣,  次琼,  邓小俊,  郑秋平,  卢浩东,  吉雪峰,  王健,  许欢,  杨长青.  西藏达布矿区含矿岩体的时代、岩石地球化学特征及岩石成因[J] . 地球科学, 2018, 43(9): 3218-3233. doi: 10.3799/dqkx.2018.231
      [6] 郑海涛,  郑有业,  徐净,  吴松,  郭建慈,  高顺宝,  次琼.  西藏青草山斑岩铜金矿床含矿斑岩锆石U-Pb年代学及岩石成因[J] . 地球科学, 2018, 43(8): 2858-2874. doi: 10.3799/dqkx.2018.111
      [7] 张诗启,  戚学祥,  韦诚,  陈松永.  拉萨地体北部永珠地区早白垩世岩浆岩地球化学、锆石U-Pb年代学、Hf同位素组成及其地质意义[J] . 地球科学, 2018, 43(4): 1085-1109. doi: 10.3799/dqkx.2018.711
      [8] 田红彪,  陈有炘,  杨永强,  李伦.  中国阿尔泰东北部哈拉尔次花岗岩的年龄、成因及构造意义[J] . 地球科学, 2017, 42(10): 1658-1672. doi: 10.3799/dqkx.2017.553
      [9] 张延军,  孙丰月,  许成瀚,  禹禄.  柴北缘大柴旦滩间山花岗斑岩体锆石U-Pb年代学、地球化学及Hf同位素[J] . 地球科学, 2016, 41(11): 1830-1844. doi: 10.3799/dqkx.2016.127
      [10] 侯红星,  张德会,  张荣臻.  东秦岭中生代石瑶沟隐伏花岗岩年代学、地球化学特征及地质意义[J] . 地球科学, 2016, 41(10): 1665-1682. doi: 10.3799/dqkx.2016.122
      [11] 张炜,  周汉文,  朱云海,  毛武林,  佟鑫,  马占青,  曹永亮.  东昆仑与成矿有关的三叠纪花岗岩演化:基于莫河下拉岩体岩石学、地球化学和锆石U-Pb年代学的证据[J] . 地球科学, 2016, 41(8): 1334-1348. doi: 10.3799/dqkx.2016.520
      [12] 刘清泉,  邵拥军,  陈昕梦,  刘忠法,  张喆.  豫南新县岩体地球化学、年代学和Hf同位素特征及地质意义[J] . 地球科学, 2016, 41(8): 1275-1294. doi: 10.3799/dqkx.2016.507
      [13] 刘金龙,  孙丰月,  张雅静,  马芳,  刘峰旭,  曾乐.  辽宁省清原县南口前岩体锆石U-Pb年代学、地球化学及Hf同位素[J] . 地球科学, 2016, 41(1): 55-66. doi: 10.3799/dqkx.2016.004
      [14] 刘金龙,  孙丰月,  林博磊,  王英德,  胡安新, .  吉林延边地区棉田岩体锆石U-Pb年代学、 地球化学及Hf同位素[J] . 地球科学, 2015, 24(1): 49-60. doi: 10.3799/dqkx.2015.004
      [15] 王 程,  魏启荣,  刘小念,  丁鹏飞,  卜 涛,  孙 骥,  张小强,  王敬元.  冈底斯印支晚期后碰撞花岗岩:锆石U-Pb年代学及岩石地球化学证据[J] . 地球科学, 2014, 23(9): 1277-1288. doi: 10.3799/dqkx.2014.109
      [16] 杨 振,  刘 锐,  王新宇,  周国发, .  云开地区燕山晚期花岗岩的岩石成因及构造意义: 锆石U-Pb年龄及Hf同位素证据[J] . 地球科学, 2014, 23(9): 1258-1276. doi: 10.3799/dqkx.2014.108
      [17] 钟玉芳,  马昌前,  佘振兵,  续海金,  王世明,  王连训.  赣西北蒙山岩体的锆石U-Pb-Hf、地球化学特征及成因[J] . 地球科学, 2011, 20(4): -. doi: 10.3799/dqkx.2011.071
      [18] 钟玉芳,  马昌前,  佘振兵,  续海金,  王世明,  王连训.  赣西北蒙山岩体的锆石U Pb Hf-地球化学特征及成因(附表1)[J] . 地球科学, 2011, 20(4): -.
      [19] 焦建刚,  汤中立,  钱壮志,  袁海潮,  闫海卿,  孙涛,  徐刚,  李小东.  东秦岭金堆城花岗斑岩体的锆石U Pb年龄-物质来源及成矿机制[J] . 地球科学, 2010, 19(6): -. doi: 10.3799/dqkx.2010.114
      [20] 林广春.  川西石棉花岗岩的锆石U Pb年龄和岩石地球化学特征:岩石成因与构造意义[J] . 地球科学, 2010, 19(4): -. doi: 10.3779/dqkx.2010.076
    • 加载中
    图(11) / 表(3)
    计量
    • 文章访问数:  32
    • HTML全文浏览量:  31
    • PDF下载量:  8
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-12-17
    • 刊出日期:  2019-10-01

    西天山吐拉苏岩体中花岗岩的年代学和地球化学特征及其地质意义

      通讯作者: 安芳, anfang_china@163.com
      作者简介: 张京渤(1994—), 男, 硕士研究生, 矿物学、岩石学、矿床学专业
    • 1. 西北大学地质学系大陆动力学国家重点实验室, 陕西西安 710069
    • 2. 西安科技大学地质与环境学院, 陕西西安 710054
    基金项目:  国家自然科学基金项目 41403033陕西省自然科学基金面上项目 S2018-JC-YB-1300陕西省教育厅科技计划项目 14KJ1761

    摘要: 吐拉苏岩体位于西天山吐拉苏盆地的东北缘,由石英闪长玢岩、辉石闪长玢岩和花岗岩组成,其中花岗岩主要为花岗闪长玢岩和花岗斑岩.它们表现出高硅、高铝、富碱的特征,里特曼指数(σ)=1.61~3.18,A/CNK=1.00~1.09,A/NK=1.07~1.68,为准铝质-弱过铝质高钾钙碱性花岗岩;相对富集Rb、Th、U等大离子亲石元素,明显亏损Nb、Ta、Sr、P、Ti等元素;轻重稀土分馏明显,(La/Yb)N=7.48~12.12、中等Eu负异常(δEu=0.47~0.62),无Ce异常.但花岗斑岩较花岗闪长玢岩碱含量更高,更加接近准铝质钾玄岩系列,Sr、P、Ti等元素的亏损程度更强,且轻稀土更富集,可能说明花岗斑岩中壳源物质含量增加.锆石LA-ICP-MS U-Pb定年研究获得花岗斑岩的侵位年龄为305.9±5.9 Ma.锆石Hf同位素组成显示,εHft)值介于0.4~8.7,表明花岗岩的岩浆源区有幔源物质的加入;TDM2值介于766~1 294 Ma,表明岩浆源区为中元古代-新元古代新生地壳.综合吐拉苏岩体中两类花岗岩的地质、地球化学特征、年代学和区域地质背景,认为从花岗闪长玢岩到花岗斑岩结晶分异增强、壳源物质的贡献增大,花岗岩形成于后碰撞环境,岩浆源区为中元古代-新元古代新生地壳,但有不同比例幔源物质的加入.

    English Abstract

    • 天山造山带位于中亚造山带(CAOB)的南部, 是中亚造山带的重要组成部分, 以88°E为界可分为东天山和西天山(朱志新等, 2013), 对其构造演化的研究对于整个中亚造山带演化历史的认识具有极其重要的意义, 因此近年来备受科学家们的关注(Şeng r et al., 1993; Gao et al., 1998, 2009, 2011; Xiao et al., 2004a, 2004b; Wang et al., 2006; 高俊等, 2006, 2009; 龙灵利等, 2007; Long et al., 2011; Wang et al., 2015).西天山由北天山造山带、伊犁板块和南天山造山带构成.古生代期间, 该造山带经历了俯冲、增生和碰撞的复杂演化过程, 于不同阶段形成不同成因的侵入岩和火山岩(Xiao et al., 2004a; 顾雪祥等, 2013, 2014; 薛春纪等, 2014).西天山北部岩浆岩在空间上呈近东西向带状展布, 由北向南可划分为准噶尔阿拉套、赛里木-科古琴、博罗科努、伊什基里克-阿吾拉勒和那拉提5条构造岩浆岩带(赵振华等, 2003).带内各种类型火山岩及浅侵位岩浆岩分布广泛, 侵入岩出露面积约占造山带的30%, 其中晚古生代花岗岩类的年龄主要集中于398.3~266.0 Ma, 在伊犁-中天山板块北缘表现为呈带状连续分布的不同规模的侵入岩岩基, 岩石类型主要包括闪长岩、花岗闪长岩、斜长花岗岩、花岗岩、二长花岗岩、黑云母花岗岩、碱长花岗岩等(王作勋等, 1990; 徐学义等, 2006c; 朱志新等, 2006; 王博等, 2007; Long et al., 2011; Wang et al., 2015), 然而有关这些晚古生代岩浆岩的成因、形成环境及其演化过程至今还存在较大分歧.一部分学者根据西天山广泛出露的早石炭世大哈拉军山组火山岩的研究, 提出西天山造山带早石炭世已转入与造山后裂谷有关的构造演化阶段, 且认为这些石炭纪-早二叠世形成的大量裂谷火山岩构成与地幔柱有关的大火成岩省(Xia et al., 2004; 夏林圻等, 2004, 2006, 2008), 但这也受到了质疑(Li et al., 2015a, 2015b).与此同时, 关于北天山洋闭合的时间引起了更广泛的讨论, 一部分学者根据“钉合岩体”等证据认为北天山洋闭合发生在晚石炭世(Han et al., 2010; Long et al., 2011); 还有一部分学者提出挤压到伸展、拉张的转变持续到早二叠世(赵振华等, 2003), 以及碰撞造山作用持续到中二叠世中期(王博等, 2007), 可见北天山造山带构造演化极其复杂.

      花岗岩类岩石因其多样的岩石组合和地球化学特征是探讨构造背景的优良指示剂(Pearce et al., 1984; Barbarin, 1999; Chen et al., 2016), 也是斑岩型、矽卡岩型以及浅成低温热液型矿床成矿物质和成矿动力的主要提供者(Richards, 2009).吐拉苏盆地是西天山重要的金矿集区, 但盆地中未见明显的后碰撞花岗岩类岩石, 这使得吐拉苏盆地中能否形成后碰撞环境下的浅成低温热液型金矿成为谜团.本文首次在吐拉苏盆地东北缘吐拉苏岩体中识别出了晚石炭世后碰撞花岗岩, 并通过地球化学、LA⁃ICP⁃MS锆石U⁃Pb定年和锆石Lu⁃Hf同位素分析, 讨论了其岩石成因, 结合前人研究成果, 探讨其形成的构造背景和地质意义, 并为深入理解吐拉苏盆地中的金成矿作用提供资料.

      • 西天山被由蛇绿岩带定义的早古生代南天山缝合带和晚古生代北天山缝合带分为3个构造单元, 即北天山造山带、伊犁-中天山板块和南天山造山带(Wang et al., 2008; Gao et al., 2009; Charvet et al., 2011).吐拉苏盆地位于北天山造山带西段, 大地构造位置处于伊犁-中天山板块北缘活动大陆边缘(图 1a), 是古生代北天山洋壳向南部伊犁-中天山板块之下俯冲形成的博罗霍洛晚古生代岛弧带上的一个火山断陷盆地(漆树基, 1999), 主体呈NWW向展布, 其北侧以科古琴山南坡断裂为界, 南侧以伊犁盆地北缘深大断裂为界(图 1b).该火山岩盆地基底为双层结构, 由变质程度不同的两个构造层组成:下部为前寒武系浅变质岩, 由中元古界蓟县系库木契克群(Jxk)灰岩、钙质砂岩和新元古界青白口系开尔塔斯组(Qnk)泥质岩、白云岩及大理岩组成; 上部为加里东期未变质沉积岩, 包括中奥陶统奈楞格勒达坂组(O2nl)凝灰质钙质粉砂岩、上奥陶统呼独克达坂组(O3h)灰岩夹细碎屑岩、下志留统尼勒克河组(S1n)碳酸盐岩夹碎屑岩、上泥盆统吐乎拉苏组(D3t)石英砂岩和砂砾岩.盆地盖层由下石炭统大哈拉军山组(C1d)陆相钙碱性安山岩、玄武安山岩及相关火山碎屑岩以及不整合覆盖于其上的阿恰勒河组(C1a)海相碎屑岩和生物碎屑岩组成(新疆地质矿产局, 1993).吐拉苏盆地四周分别在西、东北和东南部各出露一个较大面积的花岗岩类侵入体, 吐拉苏岩体即为出露于东北部的侵入体(图 1b), 它由石英闪长玢岩、辉石闪长玢岩和花岗岩3个岩相组成, 其中石英闪长玢岩主要位于其中部, 约占60%;辉石闪长玢岩主要位于其北部, 约占15%;而花岗岩主要位于其东部, 约占25%(图 2).

        图  1  西天山区域地质略图(a)和吐拉苏盆地区域地质图(b)

        Figure 1.  Regional geological map of Chinese West Tianshan (a) and regional geological map of the Tulasu basin (b)

        图  2  吐拉苏岩体地质图

        Figure 2.  Geological map of the Tulasu pluton

        本次研究的样品(16A⁃85、16A⁃86、16A⁃88、16A⁃89)均采自吐拉苏岩体东侧花岗岩岩相带中(图 2), 其中16A⁃85和16A⁃86为花岗闪长玢岩, 16A⁃88和16A⁃89为花岗斑岩.花岗闪长玢岩样品手标本呈浅灰色、灰白色, 可见明显的长石斑晶(图 3a), 其斑晶主要由斜长石(50%)、角闪石(20%)、石英(20%)和碱性长石(10%)组成, 基质主要由微细粒碱性长石、石英、斜长石和微量角闪石、黑云母组成.斜长石斑晶呈半自形板状或长柱状, 聚片双晶发育(图 3b), 长约700~1 200 μm; 角闪石斑晶为自形-半自形长柱状, 长约400~700 μm(图 3c); 石英颗粒呈现出两种形态, 一种是以大斑晶形式出现, 粒径约700~1 100 μm(图 3c), 另一种则被包裹于斜长石内部(图 3b).花岗斑岩样品手标本呈灰黑色(图 3d), 其斑晶主要由石英(40%)、钾长石(35%)、斜长石(15%)、少量角闪石和黑云母(5%)组成.他形粒状石英斑晶熔蚀结构发育, 被熔蚀成浑圆状和港湾状(图 3e~3f); 钾长石斑晶半自形-他形粒状, 表面高岭土化, 呈土褐色(图 3e), 基质由微细粒碱性长石、石英、斜长石和微量角闪石、黑云母组成.

        图  3  吐拉苏岩体花岗闪长玢岩和花岗斑岩的岩石学特征

        Figure 3.  Petrological features of granodiorite porphyry and granite porphyry in the Tulasu pluton

      • 全岩主微量元素、锆石阴极发光照相(CL)、锆石U⁃Pb定年和Lu⁃Hf同位素分析工作均在西北大学大陆动力学国家重点实验室完成.

        全岩主量元素分析采用玻璃熔饼法在X荧光光谱仪(XRF, Rigaku RIX2100)上测定, GBW07105标样监控, 分析精度优于2%, 烧失量(LOI)在烘箱中高温(1 000℃)烘烤90 min后称重获得; 全岩微量和稀土元素测试在电感耦合等离子质谱(ICP⁃MS)仪上测定, 样品测试中以AGV⁃2、BHVO⁃2、BCR⁃2、GSP⁃1为标样监控, 分析误差小于5%~10%.

        锆石样品按照常规重力和磁选方法分选, 并将分选出的锆石在双目镜下选择晶形较好、透明、无裂隙的代表性锆石颗粒用环氧树脂固定, 待其充分固化后抛光至锆石露出核部, 然后进行锆石的CL显微图像及LA⁃ICP⁃MS分析.锆石U⁃Pb年龄和微量元素分析测定是在连接193 nm深紫外ArF激光器(Geolas 2005)的Agilent 7700型ICP⁃MS上进行的, 激光束斑直径为32 μm, 采用单点剥蚀方式, 激光剥蚀样品的深度为20~30 μm.数据处理采用Glitter (Ver 4.0)程序, 年龄计算以标准锆石91500为外标进行同位素比值分馏校正, 元素浓度计算采用NIST 610做外标, 29Si为内标, 样品的谐和图、加权平均年龄计算及图件绘制采用Isoplot软件(Ludwig, 2003).

        锆石微区原位Lu⁃Hf同位素在配备了193 nm准分子激光剥蚀系统(Resolution M⁃50, ASI)的Nu plasma II多接收等离子体质谱仪(MC⁃ICP⁃MS)上完成, 激光能量密度为6 J/cm2, 频率为5 Hz, 斑束为43 μm, 载气为高纯氦气, 为280 mL/min.Lu⁃Hf同位素分馏校正采用指数法则计算, 采用176Lu/175Lu=0.026 56和176Yb/173Yb=0.786 96比值扣除176Lu和176Yb对176Hf的干扰, 获得准确的176Hf信号值. Hf和Lu同位素比值采用179Hf/177Hf=0.732 5进行仪器质量歧视效应校正, Yb同位素比值采用173Yb/171Yb=1.123 46进行仪器质量歧视效应校正.在分析过程中, 国际标准锆石样品91500和Mudtank作为监控样品, 每8个样品插入一组国际标样, 数据采集模式为TRA模式, 积分时间为0.2 s, 背景采集时间为30 s, 样品积分时间为50 s, 吹扫时间为40 s, 详细分析方法和仪器参数见Yuan et al. (2008).

      • 主量元素分析结果显示花岗闪长玢岩中SiO2含量为69.43% ~ 70.88%(表 1, 图 4), Al2O3含量为14.76%~14.88%, 碱含量为6.52%~6.77%, 且相对富钾(K2O/Na2O含量比值为1.02~1.14), 在TAS图中位于花岗闪长岩和花岗岩的过渡区域(图 4), A/CNK=1.07~1.09, A/NK=1.61~1.68, TiO2、MnO、MgO、CaO、P2O5含量较低(表 1), Fe2O3T含量为3.86%~4.24%.里特曼指数(σ)为1.61~1.64, 为弱钙碱性系列, 在K2O⁃SiO2图中样品点落入高钾钙碱性系列区域(图 5a), A/NK⁃A/CNK图解中显示为弱过铝质(图 5b).花岗斑岩中SiO2含量为73.43%~73.52%, Al2O3含量为14.18%~14.19%, 碱含量较高为9.82%~9.84%, 且相对富钾(K2O/Na2O含量比值为1.17~1.18), 在TAS图中位于花岗岩范围, A/CNK=1.00, A/NK=1.07~1.08, TiO2、MnO、P2O5含量较低, MgO、CaO含量极低(表 1), Fe2O3T含量为1.57%~1.58%.里特曼指数(σ)为3.16~3.18, 为强钙碱性系列, 在K2O⁃SiO2图中样品点落入高钾钙碱性系列与钾玄岩系列边界区域(图 5a), A/NK⁃A/CNK图解中显示为准铝质-弱过铝质(图 5b).

        样品号 16A-85 16A-86 16A-86R 16A-88 16A-89
        岩石类型 花岗闪长玢岩 花岗斑岩
        SiO2 69.43 70.83 70.88 73.43 73.52
        TiO2 0.58 0.53 0.52 0.19 0.17
        Al2O3 14.76 14.88 14.85 14.19 14.18
        Fe2O3T 4.24 3.87 3.86 1.58 1.57
        MnO 0.10 0.08 0.09 0.05 0.05
        MgO 1.66 0.38 0.38 0.17 0.13
        CaO 2.59 2.55 2.54 0.50 0.53
        Na2O 3.04 3.33 3.36 4.51 4.52
        K2O 3.48 3.42 3.41 5.33 5.30
        P2O5 0.12 0.12 0.12 0.03 0.02
        LOI 1.45 1.38 1.36 0.52 0.34
        Na2O+K2O 6.52 6.75 6.77 9.84 9.82
        K2O/Na2O 1.14 1.03 1.02 1.18 1.17
        σ 1.61 1.64 1.64 3.18 3.16
        A/CNK 1.09 1.08 1.07 1.00 1.00
        A/NK 1.68 1.62 1.61 1.07 1.08
        Li 32.8 14.7 14.6 30.3 26.7
        Be 2.08 1.94 1.92 3.55 3.69
        Sc 10.70 9.79 9.70 4.52 4.66
        V 65.40 45.30 45.50 4.01 2.46
        Cr 27.10 18.80 18.70 8.76 1.28
        Co 31.0 28.1 27.7 26.9 30.5
        Ni 22.60 14.70 14.60 6.03 1.63
        Cu 16.30 10.60 10.60 2.51 2.16
        Zn 54.2 45.3 44.6 50.1 53.4
        Ga 17.6 17.1 17.0 18.9 19.0
        Ge 1.52 1.53 1.54 1.45 1.46
        Rb 115 117 115 190 191
        Sr 185.0 228.0 226.0 31.3 28.9
        Y 27.6 29.4 29.1 28.0 33.5
        Zr 206 178 185 230 262
        Nb 9.41 8.61 8.60 19.80 21.20
        Cs 4.31 4.79 4.77 7.62 8.00
        Ba 499 519 517 426 413
        La 28.5 28.9 29.2 49.5 50.6
        Ce 62.0 61.5 63.0 106.0 108.0
        Pr 6.98 7.04 7.15 12.10 12.40
        Nd 27.8 28.1 28.3 42.3 43.2
        Sm 5.89 6.01 6.06 7.70 7.95
        Eu 1.17 1.15 1.15 1.20 1.16
        Gd 5.53 5.70 5.69 6.37 6.74
        Tb 0.84 0.88 0.87 0.93 1.03
        Dy 4.94 5.21 5.19 5.35 6.09
        Ho 0.97 1.03 1.03 1.02 1.20
        Er 2.79 2.93 2.93 2.92 3.49
        Tm 0.41 0.43 0.43 0.44 0.53
        Yb 2.63 2.77 2.77 2.93 3.45
        Lu 0.39 0.41 0.41 0.43 0.51
        Hf 5.55 5.02 5.20 6.94 7.68
        Ta 0.87 0.83 0.84 1.65 1.69
        Pb 20.3 32.8 32.6 29.4 31.0
        Th 12.2 12.5 12.9 22.2 22.5
        U 2.42 1.43 1.43 1.55 3.61
        ΣREE 150.87 152.01 154.16 238.91 245.99
        LREE/HREE 7.15 6.85 6.98 10.71 9.68
        δEu 0.62 0.59 0.59 0.51 0.47
        (La/Yb)N 7.77 7.48 7.57 12.12 10.52

        表 1  吐拉苏岩体中花岗岩的主量元素(%)和微量元素(10-6)分析结果

        Table 1.  Major element (%) and trace element (10-6) compositions of granite in Tulasu pluton

        图  4  吐拉苏岩体中花岗岩的TAS分类图解

        Figure 4.  TAS diagram of the granite in the Tulasu pluton

        图  5  吐拉苏岩体中花岗岩的K2O-SiO2图(a)和A/NK-A/CNK图(b)

        Figure 5.  K2O-SiO2 diagram (a) and A/NK-A/CNK diagram (b) of the granite in the Tulasu pluton

        微量元素原始地幔标准化蛛网图上, 花岗闪长玢岩和花岗斑岩中的Rb、Th、U、K等强不相容元素和LREE富集, Ba、Nb、Ta、Sr、P、Ti、HREE等元素亏损, 花岗斑岩中的Sr、P、Ti等元素的亏损程度更强(图 6a), 表明岩浆演化中经历了斜长石的分离结晶作用.花岗闪长玢岩样品中, ∑REE=150.87×10-6~154.16×10-6, LREE/HREE=6.85~7.15, (La/Yb)N=7.48~7.77, 中等Eu负异常(δEu=0.59~0.62);花岗斑岩样品中, 稀土总量明显较高(∑REE=238.91×10-6~245.99×10-6), 轻重稀土分馏和Eu负异常更强((La/Yb)N=10.52~12.12, δEu=0.47~0.51)(图 6b).

        图  6  吐拉苏岩体中花岗岩的微量元素原始地幔标准化蛛网图(a)和球粒陨石标准化稀土元素配分模式图(b)

        Figure 6.  Primitive mantle-normalized spider diagrams (a) and chondrite-normalized REE patterns (b) of granite in the Tulasu pluton

      • 年代学研究所用锆石挑选自花岗闪长玢岩样品(16A⁃86), 锆石为无色-淡黄色, 长柱状, 长160~250 μm, 宽50~120 μm, 边界清晰、平直, 柱面发育.阴极发光(CL)图像显示, 锆石不同晶域发光强度不同, 显示具有不同的U、Th、REE含量(Hanchar and Rudnick, 1995), 多数锆石发育较好的岩浆振荡环带并具有核幔结构(图 7a).锆石具有低的Th含量和高的U含量, Th含量为52.36×10-6~238.36×10-6, U含量为117.62×10-6~496.66×10-6, Th/U比值为0.30~0.60(表 2).通常情况下认为岩浆锆石的Th/U比值大于0.4(Rubatto and Gebauer, 2000; Belousova et al., 2002), 再结合锆石自形程度高、岩浆振荡环带明显的特征, 确定本次样品中的锆石为岩浆成因, 而其幔部为岩浆结晶时形成, 可以反映其岩浆结晶的时间, 因此选取锆石的幔部进行分析.

        图  7  吐拉苏岩体中花岗岩的锆石CL图像(a)及定年结果(b)

        Figure 7.  Zircon CL graphics (a) and zircon U-Pb dating results (b) of the granite in the Tulasu pluton

        测点号 元素含量(10-6) Th/U 同位素比值 年龄(Ma)
        206Pb 232Th 238U 207Pb/206Pb 207Pb/235U 206Pb/238U 206Pb/238U
        16A-86-01 25.79 64.92 126.36 0.51 0.051 94 0.004 49 0.360 84 0.030 42 0.050 38 0.001 09 316.9 6.68
        16A-86-02 54.55 140.28 278.08 0.50 0.049 99 0.001 59 0.334 20 0.010 19 0.048 48 0.000 51 305.2 3.11
        16A-86-03 27.62 61.66 143.31 0.43 0.054 75 0.002 40 0.360 93 0.015 35 0.047 80 0.000 61 301.0 3.76
        16A-86-04 29.77 65.65 151.05 0.43 0.050 08 0.002 18 0.338 05 0.014 27 0.048 95 0.000 61 308.1 3.78
        16A-86-05 22.89 52.36 117.62 0.45 0.054 07 0.002 58 0.361 83 0.016 75 0.048 53 0.000 66 305.5 4.08
        16A-86-06 98.18 147.90 496.66 0.30 0.051 30 0.001 33 0.349 06 0.008 60 0.049 35 0.000 48 310.5 2.92
        16A-86-07 44.12 107.82 226.34 0.48 0.057 92 0.002 07 0.389 10 0.013 38 0.048 72 0.000 56 306.7 3.47
        16A-86-08 23.84 57.44 122.09 0.47 0.049 91 0.002 52 0.337 17 0.016 59 0.048 99 0.000 65 308.3 4.02
        16A-86-09 28.73 69.97 151.15 0.46 0.053 83 0.002 41 0.355 74 0.015 43 0.047 93 0.000 63 301.8 3.88
        16A-86-10 75.22 238.36 394.15 0.60 0.051 44 0.001 54 0.341 78 0.009 85 0.048 19 0.000 50 303.4 3.06
        16A-86-11 47.35 106.90 246.12 0.43 0.054 03 0.001 80 0.362 35 0.011 64 0.048 64 0.000 54 306.1 3.30
        16A-86-12 26.95 60.57 142.67 0.42 0.048 95 0.002 19 0.322 75 0.014 05 0.047 83 0.000 61 301.2 3.77
        16A-86-13 58.89 92.50 305.40 0.30 0.053 03 0.001 50 0.357 34 0.009 69 0.048 88 0.000 50 307.6 3.05

        表 2  吐拉苏岩体中花岗闪长玢岩LA⁃ICP⁃MS锆石U⁃Pb定年结果

        Table 2.  LA-ICP-MS zircon U-Pb data of granodiorite porphyry in Tulasu pluton

        LA⁃ICP⁃MS锆石U⁃Pb定年结果见表 2, 16A⁃86样品剔除不谐和点后的206Pb/238U年龄介于301.0~316.9 Ma, 13个锆石点获得的U⁃Pb加权平均年龄为305.9±5.9 Ma(MSWD=0.87, 图 7b), 该年龄代表了吐拉苏岩体中花岗岩的结晶年龄, 为晚石炭世.

      • 吐拉苏岩体中花岗闪长玢岩中锆石Lu⁃Hf同位素分析结果显示, 10个测点的176Lu/177Hf比值均小于0.002, 176Lu/177Hf的变化范围为0.000 322 ~ 0.001 438(表 3), 表明锆石在形成后具有极少的放射性成因Hf累积, 其Hf同位素组成可以代表岩石形成时体系的Hf同位素组成.10个锆石测点Hf同位素组成较均一, 176Hf/177Hf比值为0.282 600 ~ 0.282 833;εHf(t)变化于+0.4~+8.7之间; 单阶段模式年龄(TDM1)为598~934 Ma; 两阶段模式年龄(TDM2)为766~1 294 Ma.

        测点号 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf σ εHf(t) σ tDM1(Ma) tDM2(Ma) fLu/Hf
        16A-86-01 305 0.038 538 0.001 012 0.282 750 0.000 021 5.7 0.8 712 953 -0.97
        16A-86-02 306 0.054 889 0.001 438 0.282 739 0.000 022 5.3 0.8 736 984 -0.96
        16A-86-03 306 0.052 396 0.001 409 0.282 649 0.000 025 2.1 0.9 864 1 185 -0.96
        16A-86-04 301 0.013 739 0.000 322 0.282 694 0.000 021 3.8 0.7 777 1 074 -0.99
        16A-86-05 308 0.038 677 0.001 015 0.282 670 0.000 023 2.9 0.8 826 1 133 -0.97
        16A-86-06 306 0.021 480 0.000 478 0.282 723 0.000 020 4.9 0.7 741 1 009 -0.99
        16A-86-07 311 0.045 256 0.001 191 0.282 833 0.000 025 8.7 0.9 598 766 -0.96
        16A-86-08 307 0.045 879 0.001 410 0.282 600 0.000 034 0.4 1.2 934 1 294 -0.96
        16A-86-09 306 0.048 069 0.001 326 0.282 815 0.000 023 8.0 0.8 626 812 -0.96
        16A-86-10 306 0.034 753 0.000 922 0.282 697 0.000 024 3.9 0.8 786 1 072 -0.97

        表 3  吐拉苏岩体中花岗闪长玢岩的锆石Lu-Hf分析结果

        Table 3.  Zircon Lu-Hf isotopic compositions of granodiorite porphyry in Tulasu pluton

      • 锆石是一种非常稳定的副矿物, 具有极度抗风化、高Lu⁃Hf同位素体系封闭温度、高Hf含量与低Lu/Hf比值等特点.锆石形成后, 基本没有明显的放射性成因Hf积累, 很少受到后期构造热事件的改造, 在其形成以后即使在高级变质作用下也可以保存其形成时体系的Hf同位素组成, 因此笔者能够较为准确地获得锆石形成时的Hf同位素组成, 这使得锆石Hf同位素研究成为目前探讨地壳演化和示踪岩石源区的重要工具(Jonathan et al., 1982; Amelin et al., 1999, 2000; Griffin et al., 2002; 吴福元等, 2007; 田力丹等, 2018; 王艳等, 2018).已有研究表明, 具有低的176Hf/177Hf比值以及εHf(t)值的岩石往往指示地壳源区或者源区经过地壳物质的混染; 而具有较高的176Hf/177Hf比值以及εHf(t)值的岩石直接来自亏损地幔或由起源于亏损地幔的新生壳源物质部分熔融形成(Corfu and Stott, 1993; Kinny and Maas, 2003).西天山吐拉苏岩体花岗岩中的锆石具有高的176Hf/177Hf值(0.282 600~0.282 833)和εHf(t)值(+0.4~+8.7), 表明锆石寄主岩的源岩浆与亏损地幔有密切关系.在εHf(t)⁃t图中, 所有测点均位于球粒陨石CHUR演化线之上, 而远低于亏损地幔演化线, 反映它们来自相对年轻的地壳.与此类似, 西天山晚石炭世以来的部分侵入岩体也表现出了与吐拉苏岩体花岗岩相似的Hf同位素特征, 表明它们的源区存在相当数量的年轻陆壳物质, 而有些地区样品的εHf(t)值接近亏损地幔演化线, 则说明幔源物质的比例增加(图 8).吐拉苏岩体花岗岩的两阶段模式年龄TDM2为766~1 294 Ma, 明显大于其形成年龄, 也说明了岩浆源自相对年轻的地壳.同时, εHf(t)较大的变化范围也反映了这些锆石既不同于具有高的176Hf/177Hf值和εHf(t)值的亏损地幔源岩浆锆石, 也不同于具有低的176Hf/177Hf值和εHf(t)值的壳源岩浆锆石, 而是具有壳幔混合源的特征(Griffin et al., 2004; 吴福元等, 2007).在岩相学观察中, 吐拉苏岩体花岗岩中可见大量的包裹结构, 如斜长石包裹石英(图 2b), 斜长石包裹角闪石等不同矿物镶嵌现象, 并且被包裹矿物与包裹在其外部的矿物具有明显的形态差异, 暗示了两个不同阶段矿物形成过程组分和结晶条件的差异, 可能暗示发生过岩浆混合作用.同时杨蓉等(2017)在西天山博罗科努地区的晚石炭世花岗岩体中也识别出了壳源和幔源岩浆混合的岩石学和地球化学证据.

        图  8  西天山地区部分侵入岩的锆石εHf(t)-t图解

        Figure 8.  Zircon εHf(t)-t diagram of some intrusions in the West Tianshan

        吐拉苏岩体中的花岗闪长玢岩和花岗斑岩具有高K、富碱、低CaO和MgO含量的特征, 为准铝质-弱铝质、高钾钙碱性甚至钾玄岩系列岩石(图 5).相对富集Rb、Th、U等大离子亲石元素, 明显亏损Nb、Ta、Sr、P、Ti等元素, 具壳源岛弧区岩浆产物的地球化学特征(Pearce and Peate, 1995).由哈克图解显示, 吐拉苏花岗岩随着SiO2含量的升高, TiO2、MgO、Al2O3、CaO、P2O5、Fe2O3T等含量降低的特征(图 9), 暗示花岗岩质岩浆演化过程中可能发生了斜长石、辉石、磷灰石、钛铁矿等矿物的结晶分异; 同时, P、Ti的强烈亏损(图 5a), 也指示了花岗质岩浆曾发生了矿物的分离结晶(Cheng and Mao, 2010).前人研究表明, δEu可以作为衡量岩浆分异程度的指标, δEu值越小, 岩浆的结晶分异程度越高(Cheng and Mao, 2010).吐拉苏岩体花岗岩从花岗闪长玢岩到花岗斑岩δEu值逐渐降低, 表明从花岗闪长玢岩到花岗斑岩分离结晶程度逐渐增强的特点.高场强元素Y在岩浆结晶分异过程中往往易于在残留岩浆中富集, 也是岩浆发生分离结晶作用的指示剂.从花岗闪长玢岩到花岗斑岩Y含量逐渐增大, 也表明了从花岗闪长玢岩到花岗斑岩分离结晶程度逐渐增强.此外, 壳源物质的加入可以引起岩浆Nb/Ta和La/Yb比值的增加, 在Nb/Ta⁃La/Yb图解上表现为正相关(Baker et al., 1997; MacDonald, 2001).吐拉苏岩体花岗岩在图解中表现了较明显的正相关(图 10), 结合碱含量增加的趋势, 认为从花岗闪长玢岩到花岗斑岩壳源物质的含量明显增加.

        图  9  吐拉苏岩体中花岗岩哈克图解

        Figure 9.  Harker diagrams of the granite in the Tulasu pluton

        图  10  吐拉苏岩体中花岗岩Nb/Ta-La/Yb图解

        Figure 10.  Nb/Ta-La/Yb diagram of the granite in the Tulasu pluton

      • 西天山作为中亚造山带的重要组成部分, 其形成涉及大洋俯冲、陆陆碰撞以及新生地壳的垂向增生等过程(Coleman, 1989; Xiao et al., 2004a, 2004b).岩浆岩的年代学、地球化学和同位素特征可以为研究这些作用过程提供重要约束, 根据已有的年代学资料, 西天山北部晚古生代的岩浆活动大致可分为中晚泥盆世-早石炭世、晚石炭世和早中二叠世3期, 对应于北天山洋的俯冲消减、洋盆闭合和陆内伸展(顾雪祥等, 2013, 2014; 薛春纪等, 2014).前人研究表明, 北天山洋的打开可能发生在早寒武世(夏林圻等, 2002), 并在晚奥陶世前就已开始向伊犁-中天山板块俯冲(胡霭琴等, 2008).北天山巴音沟蛇绿岩中获得的辉长岩(344 Ma)和斜长花岗岩(325 Ma)的年龄, 表明早石炭世仍存在规模不大的洋盆(徐学义等, 2006a, 2006b).此外, 侵位于北天山蛇绿混杂岩带中的四棵树“钉合岩体”(315.9±2.5 Ma, Han et al., 2010)以及西天山阿吾拉勒正长岩(311.9±2.5 Ma, Sun et al., 2008)的侵位表明西天山北部在316 Ma之后构造体制可能已发生转变, 进入后碰撞阶段(韩宝福等, 2010; 童英等, 2010).吐拉苏岩体中的花岗岩相对富集Rb、Th、U等大离子亲石元素、明显亏损Nb、Ta、Sr、P、Ti等元素的特征, 也与后碰撞花岗岩的岩石地球化学特征相似(Liegeois et al., 1996).

        吐拉苏岩体中的花岗岩样品在(Y+Nb)⁃Rb、Yb⁃Ta、(Y+Ta)⁃Rb、Y⁃Nb微量元素构造判别图解上(图 11a~11d), 大都落在后碰撞花岗岩的范围(Post⁃COLG), 表现出与岛弧岩浆产物有较高的地球化学亲缘性(Pearce et al., 1984).对于岩石样品表现出的岛弧地球化学特性, 可能是在后碰撞环境下, 岩石圈伸展促使软流圈地幔上涌并加热, 被俯冲带物质改造过的下地壳物质, 导致其发生部分熔融所致.结合前人研究成果以及本次吐拉苏岩体花岗岩中的锆石U⁃Pb年龄(305.9±5.9 Ma)和地球化学特征, 推断吐拉苏岩体花岗岩形成于后碰撞环境, 晚石炭世-早二叠世北天山洋盆向伊犁-中天山板块的俯冲已经结束, 西天山已进入后碰撞松弛阶段向伸展环境的转变.

        图  11  吐拉苏岩体中花岗岩微量元素构造环境判别图解

        Figure 11.  Tectonic discrimination diagrams of the granite trace elements in the Tulasu pluton

        同时, 前人提出后碰撞环境也是浅成低温热液型金矿形成的有利构造背景(Richards, 2009), 与俯冲成矿良好的区域侧向分带性相比, 后碰撞成矿的区域侧向分带性不明显, 而更多表现在相近空间中不同类型、不同时代(阶段)的矿床集中分布或叠加成矿(王京彬和徐新, 2006).本次研究所获得的吐拉苏岩体花岗闪长玢岩的年龄(305.9±5.9 Ma)是吐拉苏盆地内首次报道的~300 Ma左右的岩浆岩年龄, 该年龄明显晚于盆地内已知的与成矿有关的京希流纹岩(386.4±9.3 Ma, 安芳和朱永峰, 2008)、阿希安山岩(363.2±5.7 Ma, 翟伟等, 2006)、塔吾尔别克二长斑岩和安山岩(347.2±1.6 Ma, 唐功建等, 2009; 367.1±3.2 Ma, 彭义伟等, 2016; 360.5±3.4 Ma, Zhao et al., 2014)以及克峡希辉石闪长岩(357.2±3.0 Ma)、石英闪长岩(356.4±2.2 Ma)、花岗闪长岩(350.8±3.8 Ma)和闪长玢岩(348.0±2.2 Ma)(薛春纪等, 2013)等岛弧岩浆的产物, 属于后碰撞环境下的产物.因此对后碰撞构造演化的规律性认识, 将为吐拉苏盆地成矿作用的研究和找矿预测提供新的思路.

      • (1) 吐拉苏岩体中花岗岩由花岗闪长玢岩和花岗斑岩组成, 前者斑晶由斜长石、角闪石、石英和碱性长石组成, 后者斑晶由石英、钾长石、斜长石、少量角闪石和黑云母组成, 二者基质为微细粒长石、石英等矿物组成.

        (2) 吐拉苏岩体中花岗岩的侵位年龄为305.9±5.9 Ma.岩石属准铝质-弱过铝质的高钾钙碱性岩类, 相对富集Rb、Th、U等大离子亲石元素, 明显亏损Nb、Ta、Sr、P、Ti等元素.花岗斑岩中的Sr、P、Ti等元素的亏损程度更强且轻稀土元素更富集, 表明从花岗闪长玢岩到花岗斑岩结晶分异增强、壳源物质含量增加.花岗岩形成于后碰撞环境, 岩浆源区为年轻地壳, 但有不同比例幔源物质的加入.其构造环境或为吐拉苏盆地成矿作用提供新思路.

    参考文献 (119)

    目录

      /

      返回文章
      返回