Nanominerals and Their Environmental Effects
-
摘要: 纳米矿物作为连接原子/分子和块体矿物材料的桥梁,在建立矿物微观反应机制和宏观现象的研究中具有重要的意义.随着纳米地质学的迅速发展,纳米矿物在地表环境中的分布、存在形式及其反应活性引起了越来越多关注.综述了天然环境中常见的纳米矿物的成因、存在方式、特殊的尺寸效应、团聚行为、生物/非生物界面反应的分子机制,及其对地表环境和元素生物地球化学循环的影响;着重介绍了具有重要环境意义的纳米矿物与其对应的大尺寸矿物颗粒在吸附行为、溶解速率、团聚状态、催化活性、界面电子传递效率等方面的差异.对于纳米矿物与其对应的宏观矿物晶体之间差异的研究,有助于全面认识矿物对各种地质过程的作用,对于推动地球科学向更加微观和深入的方向发展具有极其重要的意义.
-
关键词:
- 纳米矿物 /
- 界面反应 /
- 矿物-微生物相互作用 /
- 矿物-污染物相互作用 /
- 环境效应 /
- 矿物学
Abstract: Nanominerals are the bridge to link atoms/molecules to bulk materials and therefore important for investigating microscopic mechanisms of macroscopic phenomena involving minerals. With rapid development of nanogeosciences, more and more studies have been made on the origin, distribution, and reactivity of nanominerals in natural environment. In this paper, the origin, size-dependent properties, aggregation behavior, biotic and abiotic interfacial reactions of common naturally occurring nanominerals, as well as their impacts on biogeochemical cycles of elements, are summarized. Specifically, the special adsorption capacity, dissolution rate, aggregation state, catalytic activity, and redox reactivity of environmental related nanominerals are discussed in detail. It is of particular importance to study the different properties and relativities between nanominerals and their bulk counterparts for completely understanding the roles of minerals in various geological processes, which can promote the studies in geosciences at molecular scale. -
图 1 矿物颗粒表面原子占比与颗粒粒径的相关性(a)和粒径约为5 nm的二氧化钛颗粒(近)表面与内部原子排布示意(b)
据Banfield and Zhang(2001).a.随着矿物颗粒粒径减小,位于颗粒表面的原子占比显著增加;b.通过分子动力学模拟计算得到的粒径约为5 nm的二氧化钛颗粒的晶体结构示意,颗粒(近)表面和内部原子排布存在巨大的差异性
Fig. 1. The correlation between the percentage of atoms on mineral surface and particle diameter (a) and the different atom arrangements on (near) surface region and in particle interior of 5 nm TiO2 nanoparticle (b)
图 2 方铅矿纳米颗粒团聚体的扫描电镜照片(a)、团聚体纵切面的透射电镜照片(b)和部分溶解的方铅矿纳米颗粒高分辨透射电镜照片(c)
据Liu et al.(2009).图a和图b显示在方铅矿纳米颗粒团聚体内部,颗粒之间普遍存在纳米尺寸的有限空间;图c显示同一颗粒上的同等{110}晶面(白线标识)在开放空间(颗粒左侧)中的溶解速度大于在有限空间(颗粒右测)中的溶解速度
Fig. 2. SEM image of aggregated PbS nanoparticles (a), high-resolution TEM (HRTEM) image of the section of aggregated PbS nanoparticle (b) and HRTEM image of the post-dissolution PbS nanocrystal (c)
图 3 嗜中性铁氧化菌S. lithotrophicus ES-1利用蛋白质MtoA、MtoB、MtoD和CymA组成跨膜电子传递链(a)和钛磁铁矿纳米颗粒与蛋白质MtoA界面电子传递机理(b)
Fig. 3. The Mto extracellular electron transfer pathway of S. lithotrophicus ES-1 composed of c-type cytochromes MtoA, MtoB, MtoD and CymA (a), the interfacial electron transfer between titanomagnetite nanoparticles and MtoA (b)
图 4 天然环境中半导体矿物和微生物在日光照射下协同作用进行能量转化的机制
Fig. 4. Energy transduction by the synergy of semiconducting minerals and microbes under the illustration of sunlight in natural environment
-
Anschutz, A.J., Penn, R.L., 2005.Reduction of Crystalline Iron (Ⅲ) Oxyhydroxides Using Hydroquinone:Influence of Phase and Particle Size.Geochemical Transactions, 6(3):60-66. doi: 10.1186/1467-4866-6-60 Auerbach, S.M., Carrado, K.A., Dutta, P.K., 2004.Handbook of Layered Materials.CRC Press, New York. Auffan, M., Rose, J., Bottero, J.Y., et al., 2009.Towards a Definition of Inorganic Nanoparticles from an Environmental, Health and Safety Perspective.Nature Nanotechnology, 4(10):634-641. doi: 10.1038/nnano.2009.242 Baer, D.R., Grosz, A.E., Ilton, E.S., et al., 2010.Separation, Characterization and Initial Reaction Studies of Magnetite Particles from Hanford Sediments.Physics & Chemistry of the Earth Parts A/B/C, 35(6-8):233-241. https://www.sciencedirect.com/science/article/pii/S1474706510000756 Banfield, J.F., Zhang, H.Z., 2001.Nanoparticles in the Environment.Reviews in Mineralogy and Geochemistry, 44(1):1-58. doi: 10.2138/rmg.2001.44.01 Bargar, J., Bernier-Latmani, R., Giammar, D.E., et al., 2008.Biogenic Uraninite Nanoparticles and Their Importance for Uranium Remediation.Elements, 4(6):407-412. doi: 10.2113/gselements.4.6.407 Barton, L.E., Grant, K.E., Kosel, T., et al., 2011.Size-Dependent Pb Sorption to Nanohematite in the Presence and Absence of a Microbial Siderophore.Environmental Science & Technology, 45(8):3231-3237. doi: 10.1021/es1026135?ai=1mw0&ui=2xbbk Bonneville, S., Cappellen, P.V., Behrends, T., 2004.Microbial Reduction of Iron (Ⅲ) Oxyhydroxides:Effects of Mineral Solubility and Availability.Chemical Geology, 212(3-4):255-268. doi: 10.1016/j.chemgeo.2004.08.015 Bose, S., Hochella, M.F.Jr., Gorby, Y.A., et al., 2009.Bioreduction of Hematite Nanoparticles by the Dissimilatory Iron Reducing Bacterium Shewanella oneidensis MR1.Geochimica et Cosmochimica Acta, 73(4):962-976. doi: 10.1016/j.gca.2008.11.031 Brown, G.E.Jr., Calas, G., 2012.Mineral-Aqueous Solution Interfaces and Their Impact on the Environment.Geochemical Perspectives, 1(4-5):483-742. Byrne, J.M., Klueglein, N., Pearce, C., et al., 2015.Redox Cycling of Fe (Ⅱ) and Fe (Ⅲ) in Magnetite by Fe-Metabolizing Bacteria.Science, 347(6229):1473-1476. doi: 10.1126/science.aaa4834 Chen, T.H., Chen, J., Ji, J.F., et al., 2005.Nanometer-Scale Investigation on the Loess of Luochuan:Nano-Rod Calcite.Geological Review, 51(6):107-136 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/morphological-characters-and-multi-element-isotopic-signatures-of-ZWRFrPAU0s Cheng, D., Liao, P., Yuan, S.H., 2016.Effect of FeS Colloids on Desorption of As (Ⅴ) Adsorbed on Ferric Iron.Earth Science, 41(2):325-330 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.024 Cheng, L., Weir, M.D., Xu, H.H., et al., 2012.Antibacterial Amorphous Calcium Phosphate Nanocomposites with a Quaternary Ammonium Dimethacrylate and Silver Nanoparticles.Dental Materials Official Publication of the Academy of Dental Materials, 28(5):561-572. doi: 10.1016/j.dental.2012.01.005 Chernyshova, I.V., Hochella, M.F.Jr., Madden, A.S., 2007.Size-Dependent Structural Transformations of Hematite Nanoparticles.1.Phase Transition.Physical Chemistry Chemical Physics, 9(14):1736-1750. doi: 10.1039/b618790k Chernyshova, I.V., Ponnurangam, S., Somasundaran, P., 2010.On the Origin of an Unusual Dependence of (Bio) Chemical Reactivity of Ferric Hydroxides on Nanoparticle Size.Physical Chemistry Chemical Physics, 12(42):14045-14056. doi: 10.1039/c0cp00168f Cwiertny, D.M., Hunter, G.J., Pettibone, J.M., et al., 2009.Surface Chemistry and Dissolution of α-FeOOH Nanorods and Microrods:Environmental Implications of Size-Dependent Interactions with Oxalate.Journal of Physical Chemistry C, 113(6):2175-2186. doi: 10.1021/jp807336t de Jonge, N., Ross, F.M., 2011.Electron Microscopy of Specimens in Liquid.Nature Nanotechnology, 6:695-704. doi: 10.1038/nnano.2011.161 de Yoreo, J.J., Gilbert, P.U., Sommerdijk, N.A., et al., 2015.Crystallization by Particle Attachment in Synthetic, Biogenic, and Geologic Environments.Science, 349(6247):6760. doi: 10.1126/science.aaa6760 Dichristina, T.J., Fredrickson, J.K., Zachara, J.M., 2005.Enzymology of Electron Transport:Energy Generation with Geochemical Consequences.Reviews in Mineralogy and Geochemistry, 59(1):27-52. doi: 10.2138/rmg.2005.59.3 Echigo, T., Aruguete, D.M., Murayama, M., et al., 2012.Influence of Size, Morphology, Surface Structure, and Aggregation State on Reductive Dissolution of Hematite Nanoparticles with Ascorbic Acid.Geochimica et Cosmochimica Acta, 90(4):149-162. https://www.researchgate.net/publication/256485269_Influence_of_size_morphology_surface_structure_and_aggregation_state_on_reductive_dissolution_of_hematite_nanoparticles_with_ascorbic_acid Gao, J., Zheng, T.L., Deng, Y.M., et al., 2017.Indigenous Iron-Reducing Bacteria and Their Impacts on Arsenic Release in Arsenic-Affected Aquifer in Jianghan Plain.Earth Science, 42(5):716-726 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.059 Gilbert, B., Banfield, J.F., 2005.Molecular-Scale Processes Involving Nanoparticulate Minerals in Biogeochemical Systems.Reviews in Mineralogy and Geochemistry, 59(1):109-155. doi: 10.2138/rmg.2005.59.6 Hassellov, M., von der Kammer, F., 2008.Iron Oxides as Geochemical Nanovectors for Metal Transport in Soil-River Systems.Elements, 4(6):401-406. doi: 10.2113/gselements.4.6.401 Hochella, M.F.Jr., 2002a.Nanoscience and Technology:The Next Revolution in the Earth Sciences.Earth and Planetary Science Letters, 203(2):593-605. doi: 10.1016/S0012-821X(02)00818-X Hochella, M.F.Jr., 2002b.There's Plenty of Room at the Bottom:Nanoscience in Geochemistry.Geochimica et Cosmochimica Acta, 66(5):735-743. doi: 10.1016/S0016-7037(01)00868-7 Hochella, M.F.Jr., 2008.Nanogeoscience:From Origins to Cutting-Edge Applications.Elements, 4(6):373-379. doi: 10.2113/gselements.4.6.373 Hochella, M.F.Jr., Lower, S.K., Maurice, P.A., et al., 2008.Nanominerals, Mineral Nanoparticles, and Earth Systems.Science, 319(5870):1631-1635. doi: 10.1126/science.1141134 Hotze, E.M., Phenrat, T., Lowry, G.V., 2010.Nanoparticle Aggregation:Challenges to Understanding Transport and Reactivity in the Environment.Journal of Environmental Quality, 39(6):1909-1924. doi: 10.2134/jeq2009.0462 Hu, M.A., 1997.Relations among the Geological Thermal Events, Organic Matters and Metallogenesis.Geological Science and Technology Information, 16(2):67-72 (in Chinese with English abstract). http://www.oalib.com/paper/4874228 Jegadeesan, G., Al-Abed, S. R., Sundaram, V., et al., 2010. Arsenic Sorption on TiO2, Nanoparticles: Size and Crystallinity Effects. Water Research, 44(3): 965-973. Ju, Y.W., Sun, Y., Wan, Q., et al., 2016.Nanogeology:A Revolutionary Challenge in Geosciences.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):1-20 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601001 Kato, S., Hashimoto, K., Watanabe, K., 2012.Microbial Interspecies Electron Transfer via Electric Currents through Conductive Minerals.Proceedings of the National Academy of Sciences of the United States of America, 109(25):10042. doi: 10.1073/pnas.1117592109 Landa, E.R., Phillips, E.J.P., Lovley, D.R., 1991.Release of 226Ra from Uranium Mill Tailings by Microbial Fe (Ⅲ) Reduction.Applied Geochemistry, 6(6):647-652. doi: 10.1016/0883-2927(91)90075-Z Lead, J.R., Smith, E., 2009.Environmental and Human Health Impacts of Nanotechnology.Wiley, 7(1):132. http://www.who.int/occupational_health/publications/manufactured-nanomaterials/en/ Lee, J.H., Kim, M.G., Yoo, B., et al., 2007.Biogenic Formation of Photoactive Arsenic-Sulfide Nanotubes by Shewanella sp. Strain HN-41.Proceedings of the National Academy of Sciences of the United States of America, 104(51):20410-20415. http://www.pnas.org/content/104/51/20410/F1.expansion.html?cited-by=yes&legid=pnas;104/51/20410 Li, C.M., Wei, M., Evans, D.G., et al., 2014.Layered Double Hydroxide-Based Nanomaterials as Highly Efficient Catalysts and Adsorbents.Small, 10(22):4469-4486. doi: 10.1002/smll.v10.22 Li, D.S., Nielsen, M.H., Lee, J.R.I., et al., 2012.Direction-Specific Interactions Control Crystal Growth by Oriented Attachment.Science, 336(6084):1014. doi: 10.1126/science.1219643 Lin, K., Liu, W., Gant, J., 2009.Oxidative Removal of Bisphenol A by Manganese Dioxide:Efficacy, Products, and Pathways.Environmental Science & Technology, 43(10):3860-3864. http://adsabs.harvard.edu/abs/2009EnST...43.3860L Liu, J., Aruguete, D.M., Jinschek, J.R., et al., 2008a.The Non-Oxidative Dissolution of Galena Nanocrystals:Insights into Mineral Dissolution Rates as a Function of Grain Size, Shape, and Aggregation State.Geochimica et Cosmochimica Acta, 72(24):5984-5996. doi: 10.1016/j.gca.2008.10.010 Liu, W., Huang, F., Liao, Y., et al., 2008b.Treatment of Cr Ⅵ-Containing Mg (OH)2 Nanowaste.Angewandte Chemie International Edition, 47(30):5619-5622. doi: 10.1002/anie.v47:30 Liu, J., Aruguete, D.M., Murayama, M., et al., 2009a.Influence of Size and Aggregation on the Reactivity of an Environmentally and Industrially Relevant Nanomaterial (PbS).Environmental Science & Technology, 43(21):8178-8183. doi: 10.1021/es902121r%40proofing Liu, M.H., Han, M.F., Yu, W.W., 2009b.Hydrogenation of Chlorobenzene to Cyclohexane over Colloidal Pt Nanocatalysts under Ambient Conditions.Environmental Science & Technology, 43(7):2519-2524. https://www.researchgate.net/publication/24437688_Hydrogenation_of_Chlorobenzene_to_Cyclohexane_over_Colloidal_Pt_Nanocatalysts_under_Ambient_Conditions Liu, J., Pearce, C.I., Liu, C., et al., 2013.Fe3-x TixO4 Nanoparticles as Tunable Probes of Microbial Metal Oxidation.Journal of the American Chemical Society, 135(24):8896-8907. doi: 10.1021/ja4015343 Liu, J., Pearce, C.I., Qafoku, O., et al., 2012a.Tc (Ⅶ) Reduction Kinetics by Titanomagnetite (Fe3-xTixO4) Nanoparticles.Geochimica et Cosmochimica Acta, 92(9):67-81. Liu, J., Wang, Z., Belchik, S.M., et al., 2012b.Identification and Characterization of MtoA:A Decaheme c-Type Cytochrome of the Neutrophilic Fe (Ⅱ)-Oxidizing Bacterium Sideroxydans lithotrophicus ES-1.Frontiers in Microbiology, 3:37. Liu, J., Wang, Z.W., Sheng, A.X., et al., 2016.In Situ Observation of Hematite Nanoparticle Aggregates Using Liquid Cell Transmission Electron Microscopy.Environmental Science & Technology, 50(11):5606-5613. doi: 10.1021/acs.est.5b06305 Liu, N.J., Deng, Y.M., Wu, Y., 2017.Arsenic, Iron and Organic Matter in Quaternary Aquifer Sediments from Western Hetao Basin, Inner Mongolia.Journal of Earth Science, 28(3):473-483. https://doi.org/10.1007/s12583-017-0727-7 Lower, S.K., Hochella, M.F.Jr., Beveridge, T.J., 2001.Bacterial Recognition of Mineral Surfaces:Nanoscale Interactions between Shewanella and α-FeOOH.Science, 292(5520):1360-1360. doi: 10.1126/science.1059567 Lu, A., Li, Y., Jin, S., et al., 2012.Growth of Non-Phototrophic Microorganisms Using Solar Energy through Mineral Photocatalysis.Nature Communications, 3(1):768-775. doi: 10.1038/ncomms1768 Lu, A.H., Guo, Y.J., Liu, J., et al., 2004.Photocatalytic Effect of Nature and Modified Ⅴ-Bearing Rutile.Chinese Science Bulletin, 49(21):2284-2287. doi: 10.1360/03wd0612 Lu, A.H., Wang, C.Q., Li, Y., 2015.Introduction to Environmental Property of Mineralogy.Science Press, Beijing (in Chinese). Madden, A.S., Hochella, M.F.Jr., 2005.A Test of Geochemical Reactivity as a Function of Mineral Size:Manganese Oxidation Promoted by Hematite Nanoparticles.Geochimica et Cosmochimica Acta, 69(2):389-398. doi: 10.1016/j.gca.2004.06.035 Madden, A.S., Hochella, M.F.Jr., Luxton, T.P., 2006.Insights for Size-Dependent Reactivity of Hematite Nanomineral Surfaces through Cu2+, Sorption.Geochimica et Cosmochimica Acta, 70(16):4095-4104. doi: 10.1016/j.gca.2006.06.1366 Maurice, P.A., 2009.Environmental Surfaces and Interfaces from the Nanoscale to the Global Scale.Wiley, 28(4):24. http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470400366.html Mayo, J.T., Yavuz, C., Yean, S., et al., 2007.The Effect of Nanocrystalline Magnetite Size on Arsenic Removal.Science & Technology of Advanced Materials, 8(1-2):71-75. http://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.files/fileID/14449 Novikov, A.P., Kalmykov, S.N., Utsunomiya, S., et al., 2006.Colloid Transport of Plutonium in the Far-Field of the Mayak Production Association, Russia.Science, 314(5799):638-641. doi: 10.1126/science.1131307 Pearce, C.I., Liu, J., Baer, D.R., et al., 2014.Characterization of Natural Titanomagnetites (Fe3-xTixO4) for Studying Heterogeneous Electron Transfer to Tc (Ⅶ) in the Hanford Subsurface.Geochimica et Cosmochimica Acta, 128(3):114-127. Penn, R.L., Banfield, J.F., 1998.Imperfect Oriented Attachment:Dislocation Generation in Defect-Free Nanocrystals.Science, 281(5379):969-971. doi: 10.1126/science.281.5379.969 Plathe, K.L., von der Kammer, F., Hassellövc, M., et al., 2013.The Role of Nanominerals and Mineral Nanoparticles in the Transport of Toxic Trace Metals:Field-Flow Fractionation and Analytical TEM Analyses; after Nanoparticle Isolation and Density Separation.Geochimica et Cosmochimica Acta, 102(2):213-225. https://www.deepdyve.com/lp/elsevier/the-role-of-nanominerals-and-mineral-nanoparticles-in-the-transport-of-vKPVp4XLxT Ren, G., Sun, M., Sun, Y., et al., 2017.A Cost-Effective Birnessite-Silicon Solar Cell Hybrid System with Enhanced Performance for Dye Decolorization.RSC Advances, 7(76):47975-47982. https://doi.org/10.1039/c7ra08468d Roden, E.E., 2003.Fe (Ⅲ) Oxide Reactivity toward Biological versus Chemical Reduction.Environmental Science & Technology, 37(7):1319-1324. doi: 10.1021/es026038o Rubasinghege, G., Lentz, R.W., Park, H., et al., 2010.Nanorod Dissolution Quenched in the Aggregated State.Langmuir the ACS Journal of Surfaces & Colloids, 26(3):1524-1527. Sahai, N., Kaddour, H., Dalai, P., 2016.The Transition from Geochemistry to Biogeochemistry.Elements, 12(6):389-394. doi: 10.2113/gselements.12.6.389 Schindler, M., Hochella, M.F.Jr., 2016.Nanomineralogy as a New Dimension in Understanding Elusive Geochemical Processes in Soils:The Case of Low-Solubility-Index Elements.Geology, 44 (7):515-518. doi: 10.1130/G37774.1 Sheng, A.X., Liu, F., Shi, L., et al., 2016a.Aggregation Kinetics of Hematite Particles in the Presence of Outer Membrane Cytochrome OmcA of Shewanella oneidenesis MR-1.Environmental Science & Technology, 50(20):11016-11024. doi: 10.1021/acs.est.6b02963?src=recsys Sheng, A.X., Liu, F., Xie, N., et al., 2016b.Impact of Proteins on Aggregation Kinetics and Adsorption Ability of Hematite Nanoparticles in Aqueous Dispersions.Environmental Science & Technology, 50(5):2228. https://www.researchgate.net/publication/292303408_Impact_of_Proteins_on_Aggregation_Kinetics_and_Adsorption_Ability_of_Hematite_Nanoparticles_in_Aqueous_Dispersions Shi, L., Dong, H.L., Reguera, G., et al., 2016.Extracellular Electron Transfer Mechanisms between Microorganisms and Minerals.Nature Reviews Microbiology, 14(10):651-662. doi: 10.1038/nrmicro.2016.93 Sonnefeld, J., 1993.An Analytic Expression for the Particle Size Dependence of the Surface Acidity of Colloidal Silica.Journal of Colloid & Interface Science, 155(1):191-199. https://www.researchgate.net/publication/263259216_An_Analytic_Expression_for_the_Dependence_of_the_Apparent_Acid_Constant_on_the_Degree_of_Dissociation_of_Surface_Silanol_Groups_of_Silica_with_Different_Sizes Sun, Y., Lu, X.C., Liu, D.L., et al., 2005.Discovery, Nomenclature of the Centimeter Scale Grinding Gravels and the Nanometer Scale Grinding Grains in Fault Shearing Zones and the Significance for Oil-Gas Geology.Geological Journal of China Universities, 11(4):521-526 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200504007.htm Tang, R.K., Nancollas, G.H., Orme, C.A., 2001.Mechanism of Dissolution of Sparingly Soluble Electrolytes.Journal of the American Chemical Society, 123(23):5437-5443. doi: 10.1021/ja010064p Tang, R.K., Wang, L.J., Orme, C.A., et al., 2004.Dissolution at the Nanoscale:Self-Preservation of Biominerals.Angewandte Chemie International Edition, 43(20):2697-2701. doi: 10.1002/(ISSN)1521-3773 Templeton, A., Benzerara, K., 2015.Emerging Frontiers in Geomicrobiology.Elements, 11(6):423-429. doi: 10.2113/gselements.11.6.423 Vikesland, P.J., Heathcock, A.M., Rebodos, R.L., et al., 2007.Particle Size and Aggregation Effects on Magnetite Reactivity toward Carbon Tetrachloride.Environmental Science & Technology, 41(15):5277-5283. Wang, L., Chang, L.X., Zhao, B., et al., 2008.Systematic Investigation on Morphologies, Forming Mechanism, Photocatalytic and Photoluminescent Properties of ZnO Nanostructures Constructed in Ionic Liquids.Inorganic Chemistry, 47(5):1443-1452. doi: 10.1021/ic701094a Wang, L.Z., Feng, X., 2003.Polyhedral Shapes of CeO2 Nanoparticles.Journal of Physical Chemistry B, 107(49):13563-13566. doi: 10.1021/jp036815m Wang, Y., Wang, C., Miller, C.J., et al., 2014.Locational Marginal Emissions:Analysis of Pollutant Emission Reduction through Spatial Management of Load Distribution.Applied Energy, 119(15):141-150. https://www.deepdyve.com/lp/elsevier/locational-marginal-emissions-analysis-of-pollutant-emission-reduction-VnSLtn7kiS Wang, Y.X., Tian, X.K., 2016.New Opportunities for the Study of Geology:Nano Geology.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):79-86 (in Chinese with English abstract). https://www.researchgate.net/publication/318861937_New_Opportunities_for_the_Study_of_Geology_Nano_Geology Wigginton, N.S., Haus, K.L., Hochella, M.F.Jr., 2007.Aquatic Environmental Nanoparticles.Journal of Environmental Monitoring, 9(12):1306-1316. doi: 10.1039/b712709j Yu, M., Wang, Y.X., Kong, S.Q., et al., 2016.Adsorption Kinetic Properties of As (Ⅲ) on Synthetic Nano Fe-Mn Binary Oxides.Journal of Earth Science, 27(4):699-706. https://doi.org/10.1007/s12583-016-0714-4 Zeng, H., Singh, A., Basak, S., et al., 2009.Nanoscale Size Effects on Uranium (Ⅵ) Adsorption to Hematite.Environmental Science & Technology, 43(5):1373-1378. http://adsabs.harvard.edu/abs/2009EnST...43.1373Z Zhang, H.C., Chen, W.R., Huang, C.H., 2008.Kinetic Modeling of Oxidation of Antibacterial Agents by Manganese Oxide.Environmental Science & Technology, 42(15):5548-5554. doi: 10.1021/es703143g Zhang, H.Z., Banfield, J.F., 1998.Thermodynamic Analysis of Phase Stability of Nanocrystalline titania.Journal of Materials Chemistry, 8(9):2073-2076. doi: 10.1039/a802619j Zhang, H.Z., Bayne, M., Fernando, S., et al., 2011.Size-Dependent Bandgap of Nanogoethite.Journal of Physical Chemistry C, 115(36):17704-17710. doi: 10.1021/jp205192a Zhao, L.D., Dong, H.L., Kukkadapu, R.K., et al., 2015.Biological Redox Cycling of Iron in Nontronite and Its Potential Application in Nitrate Removal.Environmental Science & Technology, 49(9):5493-5501. https://www.researchgate.net/publication/275047363_Biological_Redox_Cycling_of_Iron_in_Nontronite_and_Its_Potential_Application_in_Nitrate_Removal Zhu, G., Yang, Y., Liu, J., et al., 2017.Enhanced Photocurrent Production by the Synergy of Hematite Nanowire-Arrayed Photoanode and Bioengineered Shewanella Oneidensis MR-1.Biosensors & Bioelectronics, 94:227-234. https://doi.org/10.1016/j.bios.2017.03.006 陈天虎, 陈骏, 季峻峰, 等, 2005.洛川黄土纳米尺度观察:纳米棒状方解石.地质论评, 51(6):107-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200506014 成东, 廖鹏, 袁松虎, 2016.FeS胶体对三价铁吸附态As(Ⅴ)的解吸作用.地球科学, 41(2):325-330. http://www.earth-science.net/WebPage/Article.aspx?id=3249 高杰, 郑天亮, 邓娅敏, 2017.江汉平原高砷地下水原位微生物的铁还原及其对砷释放的影响.地球科学, 42(5):716-726. http://www.earth-science.net/WebPage/Article.aspx?id=3576 胡明安, 1997.地质热事件——有机质-金属成矿作用的联系.地质科技情报, 16(2):67-72. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ702.013.htm 琚宜文, 孙岩, 万泉, 等, 2016.纳米地质学:地学领域革命性挑战.矿物岩石地球化学通报, 35(1):1-20. http://www.cqvip.com/QK/84215X/201601/668146269.html 鲁安怀, 王长秋, 李艳, 2015.矿物学环境属性概论.北京:科学出版社. 孙岩, 陆现彩, 刘德良, 等, 2005.断裂剪切带厘米级磨砾和纳米级磨粒的发现、命名及其油气地质意义.高校地质学报, 11(4):521-526. http://www.cqvip.com/QK/90539X/200504/20835610.html 王焰新, 田熙科, 2016.地学研究的新机遇——纳米地质学.矿物岩石地球化学通报, 35(1):79-86. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601010 -