• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    红河断裂韧性剪切带内纳米颗粒的形态及其构造意义

    蔡周荣 向俊洋 黄强太 李建峰 卢丽娟

    蔡周荣, 向俊洋, 黄强太, 李建峰, 卢丽娟, 2018. 红河断裂韧性剪切带内纳米颗粒的形态及其构造意义. 地球科学, 43(5): 1524-1531. doi: 10.3799/dqkx.2018.411
    引用本文: 蔡周荣, 向俊洋, 黄强太, 李建峰, 卢丽娟, 2018. 红河断裂韧性剪切带内纳米颗粒的形态及其构造意义. 地球科学, 43(5): 1524-1531. doi: 10.3799/dqkx.2018.411
    Cai Zhourong, Xiang Junyang, Huang Qiangtai, Li Jianfeng, Lu Lijuan, 2018. The Morphology of Nanoparticles in the Ductile Shear Zone of Red River Fault and Its Tectonic Significance. Earth Science, 43(5): 1524-1531. doi: 10.3799/dqkx.2018.411
    Citation: Cai Zhourong, Xiang Junyang, Huang Qiangtai, Li Jianfeng, Lu Lijuan, 2018. The Morphology of Nanoparticles in the Ductile Shear Zone of Red River Fault and Its Tectonic Significance. Earth Science, 43(5): 1524-1531. doi: 10.3799/dqkx.2018.411

    红河断裂韧性剪切带内纳米颗粒的形态及其构造意义

    doi: 10.3799/dqkx.2018.411
    基金项目: 

    广东省自然基金项目 2015A030313157

    国家自然科学基金项目 41206035

    详细信息
      作者简介:

      蔡周荣(1979-), 男, 广东信宜人, 副教授, 主要从事构造地质研究

      通讯作者:

      黄强太

    • 中图分类号: P54

    The Morphology of Nanoparticles in the Ductile Shear Zone of Red River Fault and Its Tectonic Significance

    • 摘要: 纳米颗粒被发现广泛发育于韧性剪切带内,其发育特征与断层的剪切活动密切相关.为了解红河断裂韧性剪切带内纳米颗粒的发育特征,探讨其形成规律及与红河断裂活动性的关系,我们在不同的区段3次穿越红河韧性剪切带,采集了韧性剪切带内糜棱岩、片麻岩和片岩等近百块样品进行扫描电镜(SEM)的观察,通过对纳米颗粒的统计和分析,在样品中发现了具球粒状形貌特征的纳米单体,这些单体呈分散状分布于岩石表面,同时还发现了多达12种纳米颗粒聚集体,不同的聚集体在形貌特征以及发育阶段上都有着明显的差异,反映了红河断裂带剪切活动过程中不同位置经历不同的构造应力、温度和压力条件.

       

    • 图  1  研究区构造位置图

      Fig.  1.  Geological map of the study area

      图  2  糜棱岩样品在正交偏光镜下变形变质特征

      Qz.石英;Ms.白云母;Pl.斜长石.两图可见云母和长石受剪切作用被拉长弯曲变形,基质为重结晶石英

      Fig.  2.  The deformation and metamorphic characteristics of mylonite samples under orthogonal polarizer

      图  3  红河断裂带纳米颗粒的形态类型

      Fig.  3.  The morphotype of nanoparticles within the ductile shear zone of Red River Fault

      图  4  红河断裂带纳米颗粒的单体形态特征

      图 4a4b的采样点位置见图 6,其中b样中球粒状单体之间已经呈弱的粘连特征

      Fig.  4.  The morphological characteristics of nanoparticles within the ductile shear zone of Red River Fault

      图  5  红河断裂韧性剪切带纳米颗粒的聚集形态

      图 5a~5l的采样点位置见图 6

      Fig.  5.  The aggregation morphology of nanoparticles within the ductile shear zone of Red River Fault

      图  6  不同类型纳米颗粒在断裂带内的分布示意

      Fig.  6.  Distribution of different types of nanoparticles in the fault zone

      表  1  红河断裂韧性剪切带纳米颗粒的聚集形态

      Table  1.   The aggregation morphology of nanoparticles within the ductile shear zone of Red River Fault

      聚集形态 大小 发育阶段 能否观察到纳米单体 定向性
      球粒状聚集体 单体约20 nm 粒化阶段 几乎无定向
      珊瑚状聚集体 约200 nm 团聚阶段 几乎无定向
      草莓状聚集体 直径约200 nm 团聚阶段 几乎无定向
      花状聚集体 单体约30 nm,聚体约500 nm左右 团聚阶段 几乎无定向
      铜钱状聚集体 长约200 nm 团聚阶段 有一定定向性
      棒状聚集体 宽200 nm,厚约20 nm 团聚阶段 有一定定向性
      放射球状聚集体 直径可达几个微米 团聚阶段 几乎无定向呈放射状发散
      黏块状聚集体 单个聚集体约200 nm 再生阶段 不能 几乎无定向
      片状聚集体 长200~300 nm,厚约20 nm 再生阶段 不能 几乎无定向
      膜状聚集体(单体不可见) 厚约20 nm,宽可达几个微米 再生阶段 不能 几乎无定向
      膜状聚集体(单体可见) 厚约20 nm,宽可达几个微米 团聚阶段 几乎无定向
      聚集体共生 直径可达几个微米 再生阶段 几乎无定向
      下载: 导出CSV
    • Chao, H.T., Sun, Y., Wang, Z.C., et al., 2009.A Case of Nanoseismic Observations of Seismogenic Fractures.Progress in Natural Science, 19(10):1076-1081 (in Chinese). doi: 10.1029/2006JB004665/abstract
      Chao, H.T., Sun, Y., Wang, Z.C., et al., 2016.Observations and Analyses of Nano/Micro-Structures of Coseismic Stick Slipping and Aseismic Creep Slipping Faults.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):37-42 (in Chinese with English abstract). http://linkinghub.elsevier.com/retrieve/pii/S0191814110001653
      Chen, J.Z., 1994.Nanotechnology Development and Nanomineralogy Research.Geological Science and Technology Information, 13(2):32-38 (in Chinese with English abstract). http://europepmc.org/abstract/MED/15807631
      Chen, W.J., Li, Q., Wang, Y.P., 1996.Miocene Diachronic Uplift Ailao Mountains-Red River Left-Lateral Strike-Slip Shear Zone.Geology Review, 42(5):385-390 (in Chinese with English abstract). doi: 10.1111/1755-6724.12275/abstract
      Chester, F.M., Evans, J.P., Biegel, R.L., 1993.Internal Structure and Weakening Mechanisms of the San Andreas Fault.Journal of Geophysical Research, Solid Earth, 98(B1):771-786. https://doi.org/10.1029/92JB01866
      de Paola, N., Holdsworth, R.E., Viti, C., et al., 2015.Can Grain Size Sensitive Flow Lubricate Faults during the Initial Stages of Earthquake Propagation? Earth and Planetary Science Letters, 431:48-58. http://linkinghub.elsevier.com/retrieve/pii/S0012821X15005695
      Gong, W., Jiang, X.D., 2017.Thermal Evolution History and Its Genesis of the Ailao Shan-Red River Fault Zone in the Ailao Shan and Day Nui Con Voi Massif during Oligocene-Early Miocene.Earth Science, 42(2):223-239 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.017
      Han, R., Hirose, T., Shimamoto, T., 2010.Strong Velocity Weakening and Powder Lu-Brication of Simulated Carbonate Faults at Seismic Slip Rates.Journal of Geophys Research, 115:B03412. http://doi.org/10.1029/2008JB006136
      Han, R., Shimamoto, T., Hirose, T., et al., 2007.Ultra-Low Friction of Carbonate Faults Caused by Thermal Decomposition.Science, 316:878-881. https://doi.org/10.1126/science.1139763
      Ju, Y.W., Sun, Y., Wan, Q., et al., 2016.Nanogeology:A Revolutionary Challenge in Geosciences.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):1-20 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601001
      Leloup, H.P., Lacassin, R., Tapponnier, P., et al., 1995.The Ailao Shan-Red River Shear Zone (Yunnan, China), Tertiary Transform Boundary of Indochina.Tectonophysics, 251:3-84. doi: 10.1016/0040-1951(95)00070-4
      Liu, D.L., Yang, Q., Li, W.Y., et al., 2004.A Discovery of Nanometer-Grade Grain in the Mylonite of Ductile Fracture in the South of Tancheng-Lujian Fracture Zone.Science Technology and Engineering, 4(1):42-43 (in Chinese with English abstract). https://www.researchgate.net/publication/273059544_082012-923-140066
      Liu, H., Sun, Y., Shu, L.S., et al., 2009.Nano-Scaled Study on the Ductile Shear Zone in Wugongshan, South China.Acta Geologica Sinica, 83(5):609-616 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHLX200503017.htm
      Rangin, C., Klein, M., Roques, D., et al., 1995.The Red River Fault System in the Tonkin Gulf, Vietnam.Tectonophysics, 243(3-4):209-222. doi: 10.1016/0040-1951(94)00207-P
      Sammis, C.G., Ben-Zion, Y., 2008.Mechanics of Grain-Size Reduction in Fault Zones.Journal of Geophysic Research, 113:B02306. https://doi.org/10.1029/2006JB004892
      Scharer, U., Zhang, L.S., Tapponnier, P., 1994.Duration of Strike-Slip Movement in Large Shear Zones:The Red River Belt, China.Earth Planet Science Letters, 126:379-397. doi: 10.1016/0012-821X(94)90119-8
      Siman-Tov, S., Aharonov, E., Sagy, A., et al., 2013.Nanograins Form Carbonate Fault Mirrors.Geology, 41(6):703-706. doi: 10.1130/G34087.1
      Sun, Y., Ge, H.P., Lu, X.C., et al., 2003.Discovery and Analysis of Ultrafine Abrasive Grain Structure in Slip-Glide Shear Blades.Science China Earth Sciences, 33(7):619-625 (in Chinese). doi: 10.1088/0370-1301/64/9/303
      Sun, Y., Ju, Y.W., Lu, X.C., et al., 2016.To Re-Recognize Deformable Geological Bodies on the Nano-Level.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):52-55 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601006
      Sun, Y., Lu, X.C., Liu, D.L., et al., 2005.Discovery, Nomenclature of the Centimeter Scale Grinding Gravels and the Nanometer Scale Grinding Grains in Fault Shearing Zones and the Significance for Oil-Gas Geology.Geological Journal of China Universities, 11(4):521-526 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXJZ201103004.htm
      Wan, J.L., Li, Q., Chen, W.J., 1997.Fission Track Evidence of Diachronic Uplift alone the Ailao-Red River Left-Lateral Strike-Slip Shear Zone.Seismology and Geology, 19(1):87-90 (in Chinese with English abstract). doi: 10.1029/2000JB900322
      Wang, Y.X., Tian, X.K., 2016.New Opportunities for the Study of Geology:Nano Geology.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):79-86 (in Chinese with English abstract). https://www.uvm.edu/cas/geology
      Wibberley, C.A.J., Shimamoto, T., 2003, Internal Structure and Permeability of Major Strike-Slip Fault Zones:The Median Tectonic Line in Mie Prefecture, Southwest Japan.Journal of Structural Geology, 25:59-78. https://doi.org/10.1016/S0191-8141(02)00014-7
      Xiang, H.F., Han, Z.J., Guo, S.M., et al., 2004a.Large-Scale Dextral Strike-Slip Movement and Asociated Tectonic Deformation along the Red-River Fault Zone.Seismology and Geology, 26(4):598-610 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdzyj-e200502003
      Xiang, H.F., Han, Z.J., Guo, S.M., et al., 2004b.Processing About Quantitative Study of Large-Scale Strike-Slip Movement on Red River Fault Zone.Advance in Earth Sciences, 19(Suppl.):56-59 (in Chinese with English abstract). doi: 10.11648/j.earth.20170605.15
      Xu, Y., Liu, J.F., Liu, F.T., et al., 2003.The Crust-Upper Mantle Structure of Ailaoshan-Red River Fault Zone and Its Adjacent Area.Science China Earth Sciences, 33(12):1201-1208 (in Chinese). doi: 10.1002/cjg2.848
      Yuan, R.M., Zhang.B.L., Xu, X.W., et al., 2014.The Characteristics, Formation Mechanism and Seismic Significance of Micro-Nanometer Particles in the Shearing Surface of Wenchuan Earthquake.Science China Earth Sciences, 44(8):1821-1832 (in Chinese). http://earth.scichina.com:8080/sciDe/CN/Y2014/V57/I8/1961
      晁洪太, 孙岩, 王志才, 等, 2009.发震断裂的纳米级运动学观测一例.自然科学进展, 19(10):1076-1081. doi: 10.3321/j.issn:1002-008X.2009.10.008
      晁洪太, 孙岩, 王志才, 等, 2016.同震和无震剪切滑移作用的纳微米级构造观察与分析.矿物岩石地球化学通报, 35(1):37-42. http://www.cqvip.com/QK/84215X/201601/668146275.html
      陈敬中, 1994.纳米科技的发展与纳米矿物学研究.地质科技情报, 13(2):32-38. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ402.007.htm
      陈文寄, 李齐, 汪一鹏, 1996.哀牢山-红河左旋走滑剪切带中新世抬升的时间序列.地质论评, 42(5):385-390. http://www.oalib.com/paper/4887717
      宫伟, 姜效典, 2017.哀牢山-红河断裂带-大象山段渐新世-早中新世热史演化及成因.地球科学, 42(2):223-239. http://www.earth-science.net/WebPage/Article.aspx?id=3430
      琚宜文, 孙岩, 万泉, 等, 2016.纳米地质学:地学领域革命性挑战.矿物岩石地球化学通报, 35(1):1-20. http://www.cqvip.com/QK/84215X/201601/668146269.html
      刘德良, 杨强, 李王晔, 等, 2004.郯庐断裂南段韧性剪切带糜棱岩中纳米级颗粒的发现.科学技术与工程, 4(1):42-43. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200702001.htm
      刘浩, 孙岩, 舒良树, 等, 2009.华南武功山地区韧性剪切带的纳米尺度测量研究.地质学报, 83(5):609-616. http://www.oalib.com/paper/4875965
      孙岩, 葛和平, 陆现彩, 等, 2003.韧脆性剪切带滑移叶片中超微磨粒构造的发现和分析.中国科学:地球科学, 33(7):619-625. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zgkx-cd200307002
      孙岩, 琚宜文, 陆现彩, 等, 2016.从纳米层次重新认识变形的地质体.矿物岩石地球化学通报, 35(1):52-55. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601006
      孙岩, 陆现彩, 刘德良, 等, 2005.断裂剪切带厘米级磨砾和纳米级磨粒的发现、命名及其油气地质意义.高校地质学报, 11(4):521-526. http://www.cqvip.com/QK/90539X/200504/20835610.html
      万景林, 李齐, 陈文寄, 1997.哀牢山-红河左旋走滑剪切带构造抬升时间序列的裂变径迹证据.地震地质, 19(1):87-90. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW200710002528.htm
      王焰新, 田熙科, 2016.地学研究的新机遇——纳米地质学.矿物岩石地球化学通报, 35(1):79-86. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601010
      向宏发, 韩竹军, 虢顺民, 等, 2004a.红河断裂带大型右旋走滑运动与伴生构造地貌变形.地震地质, 26(4):598-610. doi: 10.3969/j.issn.0253-4967.2004.04.006
      向宏发, 韩竹军, 虢顺民, 等, 2004b.红河断裂带大型右旋走滑运动定量研究的若干问题.地球科学进展, 19(增刊):56-59. http://www.cqvip.com/QK/94287X/2004S1/1000335770.html
      胥颐, 刘建华, 刘福田, 等, 2003.哀牢山-红河断裂带及其邻区的地壳上地幔结构.中国科学:地球科学, 33(12):1201-1208. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200312001010.htm
      袁仁茂, 张秉良, 徐锡伟, 等, 2014.汶川地震剪切滑动面微-纳米级颗粒的特征、形成机制及地震意义.中国科学:地球科学, 44(8):1821-1832. http://www.oalib.com/paper/4152475
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  6296
    • HTML全文浏览量:  2184
    • PDF下载量:  39
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-10-01
    • 刊出日期:  2018-05-15

    目录

      /

      返回文章
      返回