Micro-Nano-Scale Studies on Occurrence and Gas Production and Storage Technology of Marine Gas Hydrates
-
摘要: 天然气水合物是一类潜在的储量巨大的清洁能源.近年来,水合物的研究已经逐渐拓展至纳米、介观层面.纳米科学贯穿了水合物研究的全过程,包括上游天然气水合物成藏、开采和下游的储运、分离等水合物应用技术,其核心在于研究水合物在纳米材料表面、内部、间隙中生长和分解的传质传热过程.将以第九届国际水合物大会(ICGH9)为切入点,从水合物成藏、开采和下游技术应用几个方面综述近年来水合物研究中的纳米研究进展.目前对水合物的研究尺度并未做到全覆盖,水合物在纳米材料间隙中的传质传热过程研究较少,纳米材料的累积放大效应研究也存在空白.这正是水合物成藏、开采研究中的瓶颈问题.未来的研究应该着眼于水合物在纳米材料中生成和分解的传质传热作用,以此为主线将水合物技术和水合物成藏、开采研究中的核心问题进行统一协同研究.Abstract: Natural gas hydrate is a kind of clean energy with potential huge reserves. Hydrate researches gradually extend to nano-and micro-scale recently. Nano science has been a part of hydrate researches, including occurrence, gas production and hydrate based technologies of downstream such as gas storage and separation. The common key is heat and mass transfer of hydrate formation and dissociation on the surface, inside and between nanomaterials. From 9th international conference on gas hydrates (ICGH9) as point of penetration in this paper, it reviews nano-scale studies on occurrence and gas production of marine gas hydrates, as well as downstream utilizations of gas hydrate technology.The results show that study of heat and mass transfer inside nanomaterial during hydrate formation and dissociation is needed to be developed. There is a blank area that accumulative effect of micro-nanomaterial during hydrate formation and dissociation. These questions have become bottleneck of gas hydrate occurrence and production. In the future, researches should focus on heat and mass transfer inside nanomaterial during hydrate formation and dissociation and use this as a link to systematively study occurrence and production of natural gas hydrates.
-
Key words:
- natural gas hydrate /
- nano /
- mass and heat transfer /
- occurrence /
- gas production /
- gas storage /
- carbon dioxide storage /
- petroleum geology
-
图 2 水合物在纳米材料ZIF-8内部生长示意
Fig. 2. Schematic of hydrate formation inside nanomaterial ZIF-8
图 3 应用纳米材料ZIF-67浆液的水合物技术示意
Fig. 3. Hydrate-based technology by using nanomaterial ZIF-67 slurry
表 1 测试SEM和ESEM的海底矿样信息
Table 1. Hydrate sample information of SEM and ESEM tests
样品名称 采样深度(m) 分析方法 S-10 124.65~125 SEM S-26 133.5 SEM S-31 135.1 SEM S-40 160.8~160.9 SEM S-1 148~148.8 ESEM S-36 158.55~158.75 ESEM -
Casco, M.E., Rey, F., Jordá, J.L., et al., 2016.Paving the Way for Methane Hydrate Formation on Metal-Organic Frameworks (MOFs).Chem.Sci., 7(6):3658-3666. https://doi.org/10.1039/C6SC00272B Casco, M.E., Silvestre-Albero, J., Ramirez-Cuesta, A.J., et al., 2015.Methane Hydrate Formation in Confined Nanospace can Surpass Nature.Nature Communications, 6:6432. https://doi.org/10.1038/ncomms7432 Chen, F., Lu, H.F., Liu, J., et al., 2016.Sedimentary Geochemical Response to Gas Hydrate Episodic Release on the Northeastern Slope of the South China Sea.Earth Science, 41(10):1619-1629 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.120 Heeschen, K. U., 2017. Swapping Guests: Laborary Large-Scale Experiments on CH4 Production by CO2-CH4 Exchange in a CH4 Hydrate Reservoir. 9th International Conference on Gas Hydrate, Denver. Kakuwa, Y., 2017. Occurrence of Shallow Gas Hydrate in the Eastern Margin of Japan Sea with a Discussion of a Supply System for Methane Gas. 9th International Conference on Gas Hydrate, Denver. Knappitsch, F., 2017. Enhaned Methane Storage Capacity in Hierarchically Ordered Porous Media by Gas Hydrate Formation. 9th International Conference on Gas Hydrate, Denver. Li, G., Wu, D.M., Li, X.S., et al., 2017.Experimental Investigation into the Production Behavior of Methane Hydrate under Methanol Injection in Quartz Sand.Energy Fuels, 31(5):5411-5418. https://doi.org/10.1021/acs.energyfuels.7b00464 Liu, H., Liu, B., Lin, L.C., et al., 2014.A Hybrid Absorption-Adsorption Method to Efficiently Capture Carbon.Nature Communications, 5:5147. https://doi.org/10.1038/ncomms6147 Matsumoto, R., 2017. Occurrence and Origin of Thick Deposits of Massive Gas Hydrate, Eastern Margin of the Sea of Japan. 9th International Conference on Gas Hydrate, Denver. Pan, Y., Li, H., Zhang, X.X., et al., 2015.Large-Scale Synthesis of ZIF-67 and Highly Efficient Carbon Capture Using a ZIF-67/Glycol-2-Methylimidazole Slurry.Chemical Engineering Science, 137:504-514. doi: 10.1016/j.ces.2015.06.069 Pasieka, J., Jorge, L., Coulombe, S., et al., 2015.Effects of As-Produced and Amine-Functionalized Multi-Wall Carbon Nanotubes on Carbon Dioxide Hydrate Formation.Energy Fuels, 29(8):5259-5266. https://doi.org/10.1021/acs.energyfuels.5b01036 Schicks, J. M., 2017a. From Lab to Field, from Micro to Macro-Test of Technologies for the Production of Hydrate Bonded CH4 via CO2 Sequestration in Hydrates. 9th International Conference on Gas Hydrate, Denver. Schicks, J. M., 2017b. From Micro to Macro: Experimental Investigations of the CO2/N2-CH4 Exchange Process in Gas Hydrates under Conditions Similar to the Ignik Sikumi Field Trial in Different Scales. 9th International Conference on Gas Hydrate, Denver. Sloan, E.D., Koh, C.A., 2008.Clathrate Hydrate of Natural Gases.Taylor & Fancis-CRC Press, London. Su, M., 2017. Two Different Types of Fine-Grained Turbidities Associated with Gas Hydrates in the Shenhu Area, Nothern Continental Slope of the South China Sea. 9th International Conference on Gas Hydrate, Denver. Su, Z., Cao, Y., Yang, R., et al., 2014.Research on the Formation Model of Gas Hydrate Deposits in the Shenhu Area, Northern South China Sea.Chinese Journal of Geophysics, 57(5):1664-1674. https://doi.org/10.6038/cjg20140529 Yu, H. Q., 2017. Ministry of Land and Resources, People's Government of Guangdong Province and China National Petroleum Corporation Signed "The Strategic Contract of Advancing Construction of Natural Gas Hydrates Test Exploration Area at Shenhu South China Sea". http://www.mlr.gov.cn/xwdt/jrxw/201708/t20170826_1578386.htm (in Chinese). Zhang, X.X., Liu, H., Sun, C.Y., et al., 2014.Effect of Water Content on Separation of CO2/CH4 with Active Carbon by Adsorption-Hydration Hybrid Method.Separation and Purification Technology, 130:132-140. doi: 10.1016/j.seppur.2014.04.028 Zhang, X.X., Xiao, P., Zhan, C.H., et al., 2015.Separation of Methane/Ethylene Gas Mixtures Using Wet ZIF-8.Industrial & Engineering Chemistry Research, 54(32):7890-7898. https://doi.org/10.1021/acs.iecr.5b00941 Zhang, Y., Li, X.S., Wang, Y., et al., 2017.Methane Hydrate Formation in Marine Sediment from South China Sea with Different Water Saturations.Energies, 10(4):13. https://doi.org/10.3390/en10040561 Zhao, J.Z., Zhou, S.W., Zhang, L.H., et al., 2017.The First Global Physical Simulation Experimental Systems for the Exploitation of Marine Natural Gas Hydrates through Solid Fluidization.Natural Gas Industry, 37(9):15-22 (in Chinese with English abstract). https://doi.org/10.3787/j.issn.1000-0976.2017.09.002 Zheng, M.M., Jiang, G.S., Liu, T.L., et al., 2017.Physical Properties Response of Hydrate Bearing Sediments near Wellbore during Drilling Fluid Invasion.Earth Science, 42(3):453-461 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.035 Zhou, S.W., Zhao, J.Z., Li, Q.P., et al., 2017.Optimal Design of the Engineering Parameters for the First Global Trial Production of Marine Natural Gas Hydrates through Solid Fluidization.Natural Gas Industry, 37(9):1-14 (in Chinese with English abstract). https://doi.org/10.3787/j.issn.1000-0976.2017.09.001 陈芳, 陆红锋, 刘坚, 等, 2016.南海东北部陆坡天然气水合物多期次分解的沉积地球化学响应.地球科学, 41(10):1619-1629. http://www.earth-science.net/WebPage/Article.aspx?id=3367 于洪奇, 2017. 国土资源部、广东省人民政府、中国石油天然气集团公司签署《推进南海神狐海域天然气水合物勘查开采先导试验区建设战略合作协议》. http://www.mlr.gov.cn/xwdt/jrxw/201708/t20170826_1578386.htm 赵金洲, 周守为, 张烈辉, 等, 2017.世界首个海洋天然气水合物固态流化开采大型物理模拟实验系统.天然气工业, 37(9):15-22. doi: 10.3787/j.issn.1000-0976.2017.09.002 郑明明, 蒋国胜, 刘天乐, 等, 2017.钻井液侵入时水合物近井壁地层物性响应特征.地球科学, 42(3):453-461. https://www.researchgate.net/publication/269538254_haiditianranqishuihewudecengzuantanjiasuanyanzuanjingyeshiyan 周守为, 赵金洲, 李清平, 等, 2017.全球首次海洋天然气水合物固态流化试采工程参数优化设计.天然气工业, 37(9):1-14. doi: 10.3787/j.issn.1000-0976.2017.09.001