• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    纳米材料在土壤重金属污染修复中的应用

    崔岩山 王鹏飞 琚宜文

    崔岩山, 王鹏飞, 琚宜文, 2018. 纳米材料在土壤重金属污染修复中的应用. 地球科学, 43(5): 1737-1745. doi: 10.3799/dqkx.2018.425
    引用本文: 崔岩山, 王鹏飞, 琚宜文, 2018. 纳米材料在土壤重金属污染修复中的应用. 地球科学, 43(5): 1737-1745. doi: 10.3799/dqkx.2018.425
    Cui Yanshan, Wang Pengfei, Ju Yiwen, 2018. Progress of Applications of Nanomaterials in Soil Heavy Metal Remediation. Earth Science, 43(5): 1737-1745. doi: 10.3799/dqkx.2018.425
    Citation: Cui Yanshan, Wang Pengfei, Ju Yiwen, 2018. Progress of Applications of Nanomaterials in Soil Heavy Metal Remediation. Earth Science, 43(5): 1737-1745. doi: 10.3799/dqkx.2018.425

    纳米材料在土壤重金属污染修复中的应用

    doi: 10.3799/dqkx.2018.425
    基金项目: 

    项目 编号

    详细信息
      作者简介:

      崔岩山(1972-), 男, 教授, 主要从事土壤污染修复技术及土壤、食物中污染物的人体健康风险

      通讯作者:

      琚宜文

      琚宜文

    • 中图分类号: P69

    Progress of Applications of Nanomaterials in Soil Heavy Metal Remediation

    • 摘要: 重金属污染土壤的修复一直是国内外环境研究者关注的重点环境问题之一.近年来,纳米材料在土壤重金属污染修复中的应用也受到了越来越多的关注.综述了主要纳米材料及其改性材料修复土壤重金属的应用、纳米材料的组合技术应用以及影响纳米材料修复土壤重金属效果的主要因素,提出了今后该领域应重点加强研发新的纳米材料,同时提高其在土壤中的扩散能力,研究从室内实验到田间实验的应用;进一步深入探讨了纳米材料在土壤中的环境行为及相关机理等,以期充分理解并进一步推动纳米材料在土壤重金属污染修复中的应用.

       

    • 表  1  应用于土壤重金属污染修复的典型纳米材料

      Table  1.   Typical nanomaterials for soil heavy metal remediation

      纳米材料 目标金属 效果 文献
      纳米型矿物
      纳米羟基磷灰石 Pb、Cu、Cd等 CaCl2提取态金属含量显著降低,黑麦草中重金属显著降低. Wei et al., 2016
      纳米沸石 Cd 对Cd的吸附与对照相比,提高12倍. Ghrair et al., 2010
      生物炭负载纳米羟基磷灰石 Pb 生物炭负载纳米羟基磷灰石效果好;芥蓝中Pb的含量显著降低,最高降低87%. Yang et al., 2016a, 2016b
      介孔硅纳米材料 Cd 有效态Cd含量下降63%~93%;水稻籽粒中Cd含量从0.363 mg/kg降到0.020 7 mg/kg. 吴迎奔等,2016
      纳米金属氧化物
      纳米针铁矿 U(Ⅵ) 纳米针铁矿对U(Ⅵ)的吸附显著高于粘土矿物. Jung et al., 2016
      纳米磁铁矿 As 对砷的吸附效果较好. Michalkova et al., 2016
      纳米赤铁矿 As等 适合沙质土壤中As的去除. Shipley et al., 2011
      纳米TiO2 Cr、Pb等 促进残渣态和可氧化态Cr以及可氧化态和酸可交换态Pb释放. 张金洋等,2016
      纳米TiO2 Cd 抑制了土壤镉毒性,增加大豆对镉的累积,有利于植物修复. Singh and Lee, 2016
      纳米金属Ca/CaO As、Cd、Cr和Pb 95%~99%的重金属被固定. Mallampati et al., 2014
      零价金属材料
      纳米零价铁 As 砷的分级提取,降低土壤砷的生物有效性,减少大麦砷的吸收. Gil-Díaz et al., 2016
      纳米零价铁 As、Hg 砷、汞的生物有效性显著降低,植物毒性显著降低. Gil-Díaz et al., 2017a
      表面改性纳米铁 Cu 毒性淋溶提取试验TCLP判定,淋溶出的Cu减少. 陈喆等,2017
      纳米硒 Hg 室内实验发现,39%~57%的HgO转化为HgSe,降低了Hg的移动性. Wang et al., 2017b
      纳米零价Fe/Cu Cr(Ⅵ) Cr(Ⅵ)的还原,还原效果较好. Zhu et al., 2016
      纳米金属硫化物
      FeS As 砂质土壤中砷的生物有效性显著降低. 张美一和潘纲,2009
      羧甲基纤维素包覆FeS Cd、Cr、Cu等 重金属的淋洗效果增加. van Koetsem et al., 2016
      纳米炭
      纳米炭黑 Pb 促进了黑麦草吸收Pb. Liang et al., 2017
      改性纳米炭黑 Cu和Zn 重金属生物有效性降低;Cu和Zn在黑麦草地上部积累量降低. Cheng et al., 2014
      下载: 导出CSV
    • Banerjee, S.S., Chen, D.H., 2007.Fast Removal of Copper Ions by Gum Arabic Modified Magnetic Nano-Adsorbent.Journal of Hazardous Materials, 147(3):792-799. https://doi.org/10.1016/j.jhazmat.2007.01.079
      Bolan, N., Kunhikrishnan, A., Thangarajan, R., et al., 2014.Remediation of Heavy Metal(Loid)s Contaminated Soils-To Mobilize or to Immobilize? Journal of Hazardous Materials, 266:141-166. https://doi.org/10.1016/j.jhazmat.2013.12.018
      Braunschweig, J., Bosch, J., Meckenstock, R.U., 2013.Iron Oxide Nanoparticles in Geomicrobiology:From Biogeochemistry to Bioremediation.New Biotechnology, 30(6):793-802. https://doi.org/10.1016/j.nbt.2013.03.008
      Chen, Z., Fang, L.S., Tan, Y.Y., et al., 2017.Immobilization of Cu in High Sulfate Mine Soil Using Stabilized Nonoscale Zero-Valent Iron.Acta Scientiae Circumstantiae, 37(11):4336-4343 (in Chinese with English abstract).
      Cheng, J.M., Liu, Y.Z., Wang, H.W., 2014.Effects of Surface-Modified Nano-Scale Carbon Black on Cu and Zn Fractionations in Contaminated Soil.International Journal of Phytoremediation, 16(1):86-94. https://doi.org/10.1080/15226514.2012.759530
      Chowdhury, I., Cwiertny, D.M., Walker, S.L., 2012.Combined Factors Influencing the Aggregation and Deposition of Nano-TiO2 in the Presence of Humic Acid and Bacteria.Environmental Science & Technology, 46:6968-6976. https://doi.org/10.1021/es2034747
      Crane, R.A., Scott, T.B., 2012.Nanoscale Zero-Valent Iron:Future Prospects for an Emerging Water Treatment Technology.Journal of Hazardous Materials, 211:112-125. https://doi.org/10.1016/j.jhazmat.2011.11.073
      Dai, Y., Hu, Y.C., Jiang, B.J., et al., 2016.Carbothermal Synthesis of Ordered Mesoporous Carbon-Supported Nano Zero-Valent Iron with Enhanced Stability and Activity for Hexavalent Chromium Reduction.Journal of Hazardous Materials, 309:249-258. https://doi.org/10.1016/j.jhazmat.2015.04.013
      Eggleton, J., Thomas, K.V., 2004.A Review of Factors Affecting the Release and Bioavailability of Contaminants during Sediment Disturbance Events.Environment International, 30(7):973-980. https://doi.org/10.1016/j.envint.2004.03.001
      Fajardo, C., Gil-Díaz, M., Costa, G., et al., 2015.Residual Impact of Aged nZⅥ on Heavy Metal-Polluted Soils.The Science of the Total Environment, 535:79-84. https://doi.org/10.1016/j.scitotenv.2015.03.067
      Fan, L.R., Song, J.Q., Bai, W.B., et al., 2016.Chelating Capture and Magnetic Removal of Non-Magnetic Heavy Metal Substances from Soil.Scientific Reports, 6:1-9. https://doi.org/10.1038/srep21027
      Fu, Y., Zhao, N., Fu, J., et al., 2012.Removal of Lead from Soil Leachate Leached with HCl by Nanoscale Zero-Valent Iron Particles.Chinese Journal of Environmental Engineering, 6(4):1393-1397 (in Chinese with English abstract). http://www.oalib.com/paper/1607285
      Ghrair, A.M., Ingwersen, J., Streck, T., 2010.Immobilization of Heavy Metals in Soils Amended by Nanoparticulate Zeolitic Tuff:Sorption-Desorption of Cadmium.Journal of Plant Nutrition and Soil Science, 173(6):852-860. https://doi.org/10.1002/jpln.200900053
      Gil-Díaz, M., Alonso, J., Rodriguez-Valdes, E., et al., 2017a.Comparing Different Commercial Zero Valent Iron Nanoparticles to Immobilize as and Hg in Brownfield Soil.The Science of the Total Environment, 584:1324-1332. https://doi.org/10.1016/j.scitotenv.2017.02.011
      Gil-Díaz, M., Pinilla, P., Alonso, J., 2017b.Viability of a Nanoremediation Process in Single or Multi-Metal (Loid) Contaminated Soils.Journal of Hazardous Materials, 321:812-819. https://doi.org/10.1016/j.jhazmat.2016.09.071
      Gil-Díaz, M., Diez-Pascual, S., Gonzalez, A., et al., 2016.A Nanoremediation Strategy for the Recovery of an As-Polluted Soil.Chemosphere, 149:137-145. https://doi.org/10.1016/j.chemosphere.2016.01.106
      Gomes, H.I., Dias-Ferreira, C., Ribeiro, A.B., 2013.Enhanced Transport and Transformation of Zerovalent Nanoiron in Clay Using Direct Electric Current.Water, Air, & Soil Pollution, 224(12):1-12. https://doi.org/10.1007/s11270-013-1710-2
      Han, S.S., Liu, J., Zhao, Y., et al., 2014.Simulation Study on Sorption and Fixation of Composite Nanomaterial to Heavy Metal Ions in Soil.Chinese Journal of Environmental Engineering, 8(5):2104-2109 (in Chinese with English abstract). http://agris.fao.org/agris-search/export!exportTopEndNoteXML.action?agrovocString=Podzols&onlyFullText=false
      Hua, M., Zhang, S.J., Pan, B.C., et al., 2012.Heavy Metal Removal from Water/Wastewater by Nanosized Metal Oxides:A Review.Journal of Hazardous Materials, 211:317-331. https://doi.org/10.1016/j.jhazmat.2011.10.016
      Jin, Y., Liu, W., Li, X.L., et al., 2016.Nano-Hydroxyapatite Immobilized Lead and Enhanced Plant Growth of Ryegrass in a Contaminated Soil.Ecological Engineering, 95:25-29. https://doi.org/10.1016/j.ecoleng.2016.06.071
      Johnson, R.L., Nurmi, J.T., Johnson, G.S.O., et al., 2013.Field-Scale Transport and Transformation of Carboxymethylcellulose-Stabilized Nano Zero-Valent Iron.Environmental Science & Technology, 47(3):1573-1580. https://doi.org/10.1021/es304564q
      Ju, Y., Huang, C., Sun, Y., et al., 2017.Nanogeosciences:Research History, Current Status, and Development Trends.Journal of Nanoscience & Nanotechnology, 17:5930-5965. https://doi.org/10.1166/jnn.2017.14436
      Jung, H.B., Xu, H.F., Konishi, H., et al., 2016. Role of Nano-Goethite in Controlling U(Ⅵ) Sorption-Desorption in Subsurface Soil.Journal of Geochemical Exploration, 169(2016):80-88. https://doi.org/10.1016/j.gexplo.2016.07.014
      Karn, B., Kuiken, T., Otto, M., et al., 2009.Nanotechnology and In Situ Remediation:A Review of the Benefits and Potential Risks.Environmental Health Perspectives, 117(12):1823-1831. https://doi.org/10.1289/ehp.0900793
      Kim, R.Y., Yoon, J.K., Kim, T.S., et al., 2015.Bioavailability of Heavy Metals in Soils:Definitions and Practical Implementation-A Critical Review.Environmental Geochemistry and Health, 37(6):1041-1061. https://doi.org/10.1007/s10653-015-9695-y
      Lessen, D., Luo, C.L., Li, X.D., 2008.The Use of Chelating Agents in the Remediation of Metal-Contaminated Soils:A Review.Environmental Pollution, 153:3-13.doi: 10.1016/j.envpol.2007.11.015
      Li, Y.C., Jin, Z.H., Li, T.L., et al., 2011.Removal of Hexavalent Chromium in Soil and Groundwater by Supported Nano Zero-Valent Iron on Silica Fume.Water Science and Technology, 63(12):2781-2787. https://doi.org/10.2166/wst.2011.454
      Li, Y.C., Jin, Z.H., Li, T.L., et al., 2012.One-Step Synthesis and Characterization of Core-Shell Fe@SiO2 Nanocomposite for Cr (Ⅵ) Reduction.The Science of the Total Environment, 421:260-266. https://doi.org/10.1016/j.scitotenv.2012.01.010
      Liang, S.X., Jin, Y., Liu, W., et al., 2017.Feasibility of Pb Phytoextraction Using Nano-Materials Assisted Ryegrass:Results of a One-Year Field-Scale Experiment.Journal of Environmental Management, 190:170-175. https://doi.org/10.1016/j.jenvman.2016.12.064
      Lima, A.T., Hofmann, A., Reynolds, D., 2017.Environmental Electrokinetics for a Sustainable Subsurface.Chemosphere, 181:122-133. https://doi.org/10.1016/j.chemosphere.2017.03.143
      Lin, Y.H., Tseng, H.H., Wey, M.Y., et al., 2010.Characteristics of Two Types of Stabilized Nano Zero-Valent Iron and Transport in Porous Media.Science of the Total Environment, 408(10):2260-2267. https://doi.org/10.1016/j.scitotenv.2010.01.039
      Liu, S., Li, H., Han, C., et al., 2017.Cd Inhibition and pH Improvement via a Nano-Submicron Mineral-Based Soil Conditioner.Environmental Science and Pollution Research, 24(5):4942-4949. https://doi.org/10.1007/s11356-016-8249-x
      Luo, C., Tian, Z., Yang, B., et al., 2013.Manganese Dioxide/Iron Oxide/Acid Oxidized Multi-Walled Carbon Nanotube Magnetic Nanocomposite for Enhanced Hexavalent Chromium Removal.Chemical Engineering Journal, 234:256-265. https://doi.org/10.1016/j.cej.2013.08.084
      Mallampati, S.R., Mitoma, Y., Okuda, T., et al., 2013.Total Immobilization of Soil Heavy Metals with Nano-Fe/Ca/CaO Dispersion Mixtures.Environmental Chemistry Letters, 11(2):119-125. https://doi.org/10.1007/s10311-012-0384-0
      Mallampati, S.R., Mitoma, Y., Okuda, T., et al., 2014.Simultaneous Decontamination of Cross-Polluted Soils with Heavy Metals and PCBs Using a Nano-Metallic Ca/CaO Dispersion Mixture.Environmental Science and Pollution Research, 21(15):9270-9277. https://doi.org/10.1007/s11356-014-2830-y
      Michalkova, Z., Komarek, M., Veselska, V., 2016.Selected Fe and Mn (Nano) Oxides as Perspective Amendments for the Stabilization of As in Contaminated Soils.Environmental Science and Pollution Research, 23(11):10841-10854. https://doi.org/10.1007/s11356-016-6200-9
      Mu, Y., Jia, F.L., Ai, Z.H., et al., 2017.Iron Oxide Shell Mediated Environmental Remediation Properties of Nano Zero-Valent Iron.Environmental Science Nano, 4(1):27-45. https://doi.org/10.1039/c6en00398b
      Mukherjee, R., Kumar, R., Sinha, A., et al., 2016.A Review on Synthesis, Characterization, and Applications of Nano Zero Valent Iron (nZⅥ) for Environmental Remediation.Critical Reviews in Environmental Science and Technology, 46:443-466. https://doi.org/10.1080/10643389.2015.1103832
      Qiu, H., Zhang, S.J., Pan, B.C., et al., 2012.Effect of Sulfate on Cu(Ⅱ) Sorption to Polymer-Supported Nano-Iron Oxides:Behavior and XPS Study.Journal of Colloid and Interface Science, 366(1):37-43. https://doi.org/10.1016/j.jcis.2011.09.070
      Shaheen, S.M., Rinklebe, J., Selim, M.H., et al., 2015.Impact of Various Amendments on Immobilization and Phytoavailability of Nickel and Zinc in a Contaminated Floodplain Soil.International Journal of Environmental Science and Technology, 12:2765-2776. https://doi.org/10.1007/s13762-014-0713-x
      Shariatmadari, N., Weng, C.H., Daryaee, H., 2009. Enhancement of Hexavalent Chromium[Cr(Ⅵ)] Remediation from Clayey Soils by Electrokinetics Coupled with a Nano-Sized Zero-Valent Iron Barrier.Environmental Engineering Science, 26(6):1071-1079. https://doi.org/10.1089/ees.2008.0257
      Shipley, H.J., Engates, K.E., Guettner, A.M., 2011.Study of Iron Oxide Nanoparticles in Soil for Remediation of Arsenic.Journal of Nanoparticle Research, 13(6):2387-2397. https://doi.org/10.1007/s11051-010-9999-x
      Singh, J., Lee, B.K., 2016.Influence of Nano-TiO2 Particles on the Bioaccumulation of Cd in Soybean Plants (Glycine Max):A Possible Mechanism for the Removal of Cd from the Contaminated Soil.Journal of Environmental Management, 170:88-96. https://doi.org/10.1016/j.jenvman.2016.01.015
      Su, C.M., 2017.Environmental Implications and Applications of Engineered Nanoscale Magnetite and Its Hybrid Nanocomposites:A Review of Recent Literature.Journal of Hazardous Materials, 322:48-84. https://doi.org/10.1016/j.jhazmat.2016.06.060
      Su, H.J., Fang, Z.Q., Tsang, P.E., et al., 2016a.Remediation of Hexavalent Chromium Contaminated Soil by Biochar-Supported Zero-Valent Iron Nanoparticles.Journal of Hazardous Materials, 318:533-540. https://doi.org/10.1016/j.jhazmat.2016.07.039
      Su, H.J., Fang, Z.Q., Tsang, P.E., et al., 2016b.Stabilisation of Nanoscale Zero-Valent Iron with Biochar for Enhanced Transport and In-Situ Remediation of Hexavalent Chromium in Soil.Environmental Pollution, 214:94-100. https://doi.org/10.1016/j.envpol.2016.03.072
      Tesh, S.J., Scott.T.B., 2014.Nano-Composites for Water Remediation:A Review.Advanced Materials, 26:6056-6068. https://doi.org/10.1002/adma.201401376
      Tomasevic, D.D., Kozma, G., Kerkez, D.V., et al., 2014.Toxic Metal Immobilization in Contaminated Sediment Using Bentonite-and Kaolinite-Supported Nano Zero-Valent Iron.Journal of Nanoparticle Research, 16:2548. https://doi.org/10.1007/s11051-014-2548-2
      van Koetsem, F., van Havere, L., du Laing, G., 2016.Impact of Carboxymethyl Cellulose Coating on Iron Sulphide Nanoparticles Stability, Transport, and Mobilization Potential of Trace Metals Present in Soils and Sediment.Journal of Environmental Management, 168:210-218. https://doi.org/10.1016/j.jenvman.2015.10.047
      Vitkova, M., Komarek, M., Tejnecky, V., et al., 2015.Interactions of Nano-Oxides with Low-Molecular-Weight Organic Acids in a Contaminated Soil.Journal of Hazardous Materials, 293:7-14. https://doi.org/10.1016/j.jhazmat.2015.03.033
      Vitkova, M., Rakosova, S., Michalkova, Z., et al., 2017.Metal(Loid)s Behaviour in Soils Amended with Nano Zero-Valent Iron as a Function of pH and Time.Journal of Environmental Management, 186:268-276. https://doi.org/10.1016/j.jenvman.2016.06.003
      Wang, D.F., Guo, W., Zhang, G.L., et al., 2017a.Remediation of Cr(Ⅵ)-Contaminated Acid Soil Using a Nanocomposite.ACS Sustainable Chemistry & Engineering, 5(3):2246-2254. https://doi.org/10.1021/acssuschemeng.6b02569
      Wang, X., Zhang, D., Pan, X., et al., 2017b.Aerobic and Anaerobic Biosynthesis of Nano-Selenium for Remediation of Mercury Contaminated Soil.Chemosphere, 170:266-273. https://doi.org/10.1016/j.chemosphere.2016.12.020
      Wang, F.Y., Wang, L., Wang, X.G., et al., 2014.Role of Immobilization Amendments in Phytoremediation of Pb-Cd-Contaminated Soil Using Tobacco Plants.Chinese Journal of Environmental Engineering, 8(2):789-794.(in Chinese with English abstract). https://www.hindawi.com/journals/jchem/2013/509520/ref/
      Wang, G.Y., Zhang, S.R., Xu, X.X., et al., 2014.Efficiency of Nanoscale Zero-Valent Iron on the Enhanced Low Molecular Weight Organic Acid Removal Pb from Contaminated Soil.Chemosphere, 117:617-624. https://doi.org/10.1016/j.chemosphere.2014.09.081
      Wang, H.W., Wang, Y.J., Chen, J.H., et al., 2009.Application of Modified Nano-Particle Black Carbon for the Remediation of Soil Heavy Metal Pollution.China Environmental Science, 29(4):431-436.(in Chinese with English abstract). https://www.researchgate.net/publication/292118381_Application_of_modified_nano-particle_black_carbon_for_the_remediation_of_soil_heavy_metal_pollution
      Wei, L., Wang, S.T., Zuo, Q.Q., et al., 2016.Nano-Hydroxyapatite Alleviates the Detrimental Effects of Heavy Metals on Plant Growth and Soil Microbes in E-Waste-Contaminated Soil.Environmental Science Processes & Impacts, 18(6):760-767. https://doi.org/10.1039/c6em00121a
      White, B.R., Stackhouse, B.T., Holcombe, J.A., 2009.Magnetic Gamma-Fe2O3 Nanoparticles Coated with Poly-L-Cysteine for Chelation of As(Ⅲ), Cu(Ⅱ), Cd(Ⅱ), Ni(Ⅱ), Pb(Ⅱ) and Zn(Ⅱ).Journal of Hazardous Materials, 161(2-3):848-853. https://doi.org/10.1016/j.jhazmat.2008.04.105
      Wu, G., Kang, H.B., Zhang, X.Y., et al., 2010.A Critical Review on the Bio-Removal of Hazardous Heavy Metals from Contaminated Soils:Issues, Progress, Eco-Environmental Concerns and Opportunities.Journal of Hazardous Materials, 174:1-8. https://doi.org/10.1016/j.jhazmat.2009.09.113
      Wu, Y.B., Liu, J.B., He, Y.L., et al., 2016.Effect of Mesoporous Silica Nanoparticles on Cd Accumulation in Rice.Soil and Fertilizer Sciences in China, (2):145-148 (in Chinese with English abstract). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3295203/
      Yang, Z.M., Fang, Z.Q., Tsang, P.E., et al., 2016a.In Situ Remediation and Phytotoxicity Assessment of Lead-Contaminated Soil by Biochar-Supported nHAP.Journal of Environmental Management, 182:247-251. https://doi.org/10.1016/j.jenvman.2016.07.079
      Yang, Z.M., Fang, Z.Q., Zheng, L.C., et al., 2016b.Remediation of Lead Contaminated Soil by Biochar-Supported Nano-Hydroxyapatite.Ecotoxicology and Environmental Safety, 132:224-230. https://doi.org/10.1016/j.ecoenv.2016.06.008
      Yu, M., Wang, Y., Kong, S., et al., 2016.Adsorption Kinetic Properties of As(Ⅲ) on Synthetic Nano Fe-Mn Binary Oxides.Journal of Earth Science, 27(4):699-706. https://doi.org/10.1007/s12583-016-0714-4
      Zhang, J.Y., Wang, D.Y., Liang, L., et al., 2016.Effect of Nano-TiO2 on Release and Speciation Changes of Heavy Metals in Soil.Environmental Science, 37(5):1946-1952 (in Chinese with English abstract).
      Zhang, M.Y., Pan, G., 2009.Immobilization of Arsenic in Soils by Stabilized Nanoscale Zero-Valent Iron, Iron Sulfide (FeS), and Magnetite (Fe3O4) Particles.Chinese Science Bulletin, 54(23):3637-3644 (in Chinese).
      Zhang, Y.X., Li, H., Gong, L.B., et al., 2017.Nano-Sized Fe2O3/Fe3O4 Facilitate Anaerobic Transformation of Hexavalent Chromium in Soil-Water Systems.Journal of Environmental Sciences, 57:329-337. doi: 10.1016/j.jes.2017.01.007
      Zhao, X., Liu, W., Cai, Z.Q., et al., 2016.An Overview of Preparation and Applications of Stabilized Zero-Valent Iron Nanoparticles for Soil and Groundwater Remediation.Water Research, 100:245-266. https://doi.org/10.1016/j.watres.2016.05.019
      Zhu, F., Li, L.W., Ma, S.Y., et al., 2016.Effect Factors, Kinetics and Thermodynamics of Remediation in the Chromium Contaminated Soils by Nanoscale Zero Valent Fe/Cu Bimetallic Particles.Chemical Engineering Journal, 302:663-669. https://doi.org/10.1016/j.cej.2016.05.072
      Zou, Y.D., Wang, X.X., Khan, A., et al., 2016.Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions:A Review.Environmental Science & Technology, 50(14):7290-7304. https://doi.org/10.1021/acs.est.6b01897
      陈喆, 房丽莎, 谭韵盈, 等, 2017.CMC-nZⅥ对高硫矿山土壤中铜的固定效果及机理.环境科学学报, 37(11):4336-4343. http://xueshu.baidu.com/s?wd=paperuri%3A%288c9ccce4fb23a3c693ed20a3c7a83207%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Dhjxx201711035%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=18246919338592220956
      付彧, 赵娜, 付瑾, 等, 2012.纳米零价铁颗粒去除污染土壤HCl浸提液中的Pb.环境工程学报, 6(4):1393-1397. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjwrzljsysb201204063
      韩莎莎, 柳婧, 赵烨, 等, 2014.复合纳米材料对土壤重金属离子吸持固化的模拟研究.环境工程学报, 8(5):2104-2109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjwrzljsysb201405068
      王发园, 王玲, 王旭刚, 等, 2014.钝化剂在烟草植物修复铅镉污染土壤中的作用.环境工程学报, 8(2):789-794. http://d.wanfangdata.com.cn/Periodical_hjwrzljsysb201402064.aspx
      王汉卫, 王玉军, 陈杰华, 等, 2009.改性纳米炭黑用于重金属污染土壤改良的研究.中国环境科学, 29(4):431-436. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjkx200904017
      吴迎奔, 刘剑波, 贺月林, 等, 2016.介孔硅纳米颗粒对水稻镉吸收的影响.中国土壤与肥料, (2):145-148. doi: 10.11838/sfsc.20160226
      张金洋, 王定勇, 梁丽, 等, 2016.纳米TiO2对土壤重金属释放及形态变化的影响.环境科学, 37(5):1946-1952. http://wuxizazhi.cnki.net/Sub/hjzy/a/HJJZ201505014.html
      张美一, 潘纲, 2009.稳定化的零价Fe, FeS, Fe3O4纳米颗粒在土壤中的固砷作用机理.科学通报, 54(23):3637-3644. http://www.oalib.com/paper/4676790
    • 加载中
    表(1)
    计量
    • 文章访问数:  6737
    • HTML全文浏览量:  2432
    • PDF下载量:  130
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-11-11
    • 刊出日期:  2018-05-15

    目录

      /

      返回文章
      返回