• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    云开地块印支期变质-深熔作用:混合岩、片麻岩锆石U-Pb年代学和Hf同位素证据

    柯贤忠 周岱 龙文国 王晶 徐德明 田洋 金巍

    柯贤忠, 周岱, 龙文国, 王晶, 徐德明, 田洋, 金巍, 2018. 云开地块印支期变质-深熔作用:混合岩、片麻岩锆石U-Pb年代学和Hf同位素证据. 地球科学, 43(7): 2249-2275. doi: 10.3799/dqkx.2018.574
    引用本文: 柯贤忠, 周岱, 龙文国, 王晶, 徐德明, 田洋, 金巍, 2018. 云开地块印支期变质-深熔作用:混合岩、片麻岩锆石U-Pb年代学和Hf同位素证据. 地球科学, 43(7): 2249-2275. doi: 10.3799/dqkx.2018.574
    Ke Xianzhong, Zhou Dai, Long Wenguo, Wang Jing, Xu Deming, Tian Yang, Jin Wei, 2018. Indosinian Metamorphism and Anatexis in Yunkai Massif: Evidences from Zircon Geochronology and Hf Isotopes of Migmatites and Gneisses. Earth Science, 43(7): 2249-2275. doi: 10.3799/dqkx.2018.574
    Citation: Ke Xianzhong, Zhou Dai, Long Wenguo, Wang Jing, Xu Deming, Tian Yang, Jin Wei, 2018. Indosinian Metamorphism and Anatexis in Yunkai Massif: Evidences from Zircon Geochronology and Hf Isotopes of Migmatites and Gneisses. Earth Science, 43(7): 2249-2275. doi: 10.3799/dqkx.2018.574

    云开地块印支期变质-深熔作用:混合岩、片麻岩锆石U-Pb年代学和Hf同位素证据

    doi: 10.3799/dqkx.2018.574
    基金项目: 

    中国地质调查局项目 DD20160031

    中国地质调查局项目 12120114039201

    中国地质调查局项目 12120113066400

    中国地质调查局项目 DD20160035

    详细信息
      作者简介:

      柯贤忠(1984-), 男, 助理研究员, 博士, 主要从事区域地质调查及研究工作

    • 中图分类号: P597

    Indosinian Metamorphism and Anatexis in Yunkai Massif: Evidences from Zircon Geochronology and Hf Isotopes of Migmatites and Gneisses

    • 摘要: 云开地块中生代构造演化是华南地区的研究热点之一.通过对云开地块变质基底中的混合岩、片麻岩(5个样品)和花岗岩(1个样品)开展锆石LA-ICP-MS U-Pb定年,获得440.3±3.3 Ma、230.2±2.9 Ma、230.7±1.3 Ma、459.5±2.7 Ma、431.5±4.3 Ma、229.2±5.4 Ma、229.7±2.7 Ma 7组变质(深熔)或岩浆年龄和2组(样品1432-1和ID7-3)碎屑锆石年龄,碎屑锆石年龄范围均为太古代-新元古代,且具有~1.0 Ga年龄主峰,与天堂山岩群和云开群碎屑锆石年龄谱相似.区域资料表明云开地块天堂山岩群和云开群具有相似的物质组成,均形成于早古生代-新元古代,存在变质程度和物质面貌的差异;在加里东期构造-热事件的基础上,广泛叠加了印支期区域变质(深熔)-构造-流体作用影响.4个样品中(1431-1、1432-1、D116-3和ID7-3)锆石原位Lu-Hf同位素组成显示,加里东期变质和深熔锆石Lu/Hf同位素组成基本一致,应继承了原岩的同位素组成特征.印支期变质和深熔锆石Lu/Hf同位素组成不同,可能主要由变质作用和深熔作用的差异所致.以古-中元古代为主的地壳物质参与了加里东期和印支期变质-深熔作用,在加里东期和印支期深熔作用过程中,均有少量幔源物质的加入,印支期幔源物质的贡献相对显著.
    • 图 1  云开地区地质简图及采样位置

      Figure 1.  Simplified geological map of the Yunkai region and the sampling localities

      图a据Wang et al.(2013b);图b据邱元禧等(2006)Chen et al.(2017)

      图 2  变质岩宏观和微观照片

      Figure 2.  Macro- and micro-photographs of the metamorphic rocks in Yunkai massif

      a, f.眼球状混合片麻岩(1431-1);b, g.条带状混合片麻岩(1432-1);c, h.混合岩(D116-3);d.花岗质片麻岩(15BR04);e.条带状混合岩(ID7-3)、花岗岩脉(ID7-5);i.条带状混合岩(ID7-3);j.花岗岩脉(ID7-5);Qz.石英;Pl.斜长石;Kfs.钾长石;Mic.微斜长石;Bt.黑云母;Mus.白云母

      图 3  云开地块变质岩典型锆石阴极发光(CL)图像

      Figure 3.  Cathodoluminescence (CL) images of representative zircons from the metamorphic rocks in Yunkai massif

      图 4  云开地块变质岩锆石U-Pb谐和图

      Figure 4.  Concordia diagrams of zircon U-Pb data for the metamorphic rocks in Yunkai massif

      图 5  样品D116-3变质锆石与深熔锆石Th/U值(a)和稀土配分曲线(b)

      Figure 5.  Th/U ratios and REE distribution pattern of the metamorphic and anatectic zircons from sample D116-3

      图 6  云开地区变质岩锆石Hf同位素图解

      Figure 6.  Hf isotopic diagrams of zircon from metamorphic rocks in Yunkai region

      a.t-εHf图解;b. 176Lu/177Hf-176Hf/177Hf图解;c.εHfTDM2分布直方图

      图 7  云开地区印支期不同类型变质年龄分布直方图

      Figure 7.  Histograms of differetnt types of Indosinian metamorphic age in Yunkai region

      表 1  云开地块变质岩LA-ICP-MS锆石U-Th-Pb同位素分析结果

      Table 1.  Zircon U-Th-Pb isotopic compositions of metamorphic rocks in Yunkai massif

      点号位置Th
      (10-6)
      U
      (10-6)
      Th/
      U
      同位素比值表面年龄(Ma)谐和度
      (%)
      207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ
      1431-1(眼球状混合片麻岩),核-边结构为主,少量核-幔-边结构
      1m802860.280.055 70.002 40.554 50.024 60.071 90.000 944312944816.14485.399
      2c1522710.560.057 70.002 50.556 10.023 30.069 60.000 751794.444915.24344.296
      3c893470.260.057 40.002 20.569 80.021 50.071 50.000 750683.345813.94454.397
      4c1723350.510.058 10.002 50.582 90.024 50.072 30.000 953299.146615.74505.396
      5c593130.190.057 20.002 20.565 20.021 80.070 90.000 750285.245514.14424.597
      6c493050.160.056 20.002 40.534 10.022 90.068 80.000 946196.343515.24295.498
      7c933680.250.058 30.002 10.553 40.020 00.068 50.000 754377.844713.14274.295
      8c1152180.530.056 20.002 50.551 30.024 70.071 30.000 9461100.044616.14445.599
      9c8826061.450.059 10.002 20.582 20.021 40.071 30.000 957281.546613.74445.395
      10c603040.200.056 40.002 90.541 10.027 70.069 30.001 047811943918.34325.898
      11c761810.420.060 80.003 40.584 50.032 90.070 70.001 263211946721.14407.394
      12c652000.330.052 90.002 90.494 70.026 40.068 00.000 832412440817.94245.096
      13c615730.110.057 10.002 20.553 30.021 30.069 90.000 849483.344713.94364.697
      14c613300.190.057 50.002 20.570 40.022 20.071 60.000 850978.745814.44464.997
      15c914280.210.057 30.001 80.559 60.017 70.070 50.000 750270.445111.54394.297
      16r202370.080.058 30.002 70.581 10.027 10.071 90.000 853910146517.44485.196
      17c1252370.530.071 50.003 60.679 60.035 00.068 40.000 897210352721.24264.979
      18c442200.200.058 80.003 00.573 50.029 80.070 20.000 956113946019.24385.694
      19c593740.160.060 00.002 50.595 30.025 40.071 40.000 861195.447416.24454.993
      20c542740.200.055 20.002 50.553 40.024 70.072 30.000 842010244716.14504.599
      21c844720.180.055 20.002 00.540 10.019 60.070 50.000 742081.543912.94394.299
      22r012.60.010.000 00.000 00.376 60.223 20.040 20.002 43251652541575
      23c542620.200.058 50.002 60.564 80.024 70.069 90.000 855096.345516.04364.695
      24c692550.270.055 20.002 50.553 40.025 50.072 50.000 842010244716.74515.099
      25c723440.210.055 70.002 30.550 60.022 70.071 70.000 843992.644514.94464.699
      26r59970.610.075 00.004 90.730 10.047 60.071 20.001 11 06913255727.94436.877
      1432-1(条带状混合片麻岩),核-幔-边结构为主
      1r66420.010.051 50.001 80.256 00.008 50.036 00.000 426579.62316.92282.598
      2c1823540.510.101 20.001 73.895 30.067 70.277 50.002 21 65631.81 61314.11 57910.997
      3c1422290.620.078 10.001 81.856 40.041 00.171 80.001 51 15044.41 06614.61 0228.195
      4m44210.010.051 70.002 10.265 10.011 00.037 00.000 427296.32398.82342.398
      5r1762900.610.147 10.002 78.255 90.146 30.404 60.003 02 31331.22 25916.12 19014.096
      6c5142 7840.180.093 40.001 71.865 40.040 40.143 30.001 71 49635.21 06914.38639.378
      7c5676290.900.074 30.001 61.779 90.038 40.172 40.001 51 05047.21 03814.01 0258.298
      8r626460.100.078 00.001 91.741 40.044 10.160 50.001 81 14748.11 02416.396010.093
      9r22720.010.058 10.003 20.287 20.015 40.035 90.000 453212225612.22272.788
      10c5578940.620.133 70.002 66.623 60.124 60.356 10.002 52 14733.32 06216.61 96412.195
      11c3281 2920.250.069 60.001 31.428 10.027 30.147 50.001 191738.990111.48876.398
      12r2.463220.010.045 70.002 50.227 20.012 20.036 30.000 420810.12302.789
      13c695630.120.140 10.002 57.334 80.131 90.375 90.003 02 22830.12 15316.12 05713.995
      14r33320.010.046 30.002 50.228 40.012 00.036 00.000 416.8125.9152099.92282.391
      15r153840.040.055 50.002 00.504 90.023 70.064 80.002 143281.541516.040512.997
      16c74701.060.200 10.004 714.352 10.332 20.516 80.005 22 82738.92 77322.12 68522.396
      17c3628000.450.060 00.001 50.830 10.020 80.099 30.000 960653.761411.66105.199
      18r702890.240.068 10.002 90.939 30.035 80.100 60.001 287291.767318.86187.191
      19c1452570.570.067 60.001 61.433 00.033 80.152 80.001485750.590314.19177.698
      20r1024010.250.067 30.001 51.231 60.027 90.132 00.001 485646.381512.77997.998
      21c763230.230.066 50.001 41.469 40.031 10.159 20.001 283344.491812.89536.996
      22c6294391.430.067 30.001 41.549 20.032 10.166 10.001 3856-156.595012.89917.395
      23r194550.040.053 10.002 00.371 40.013 60.050 70.000 533287.032110.13193.399
      24r53830.010.052 40.002 10.352 80.014 30.048 80.000 630290.730710.73073.899
      25c1762650.660.052 90.001 70.730 70.023 50.099 90.001 032474.155713.86146.090
      26c641120.570.068 80.002 31.608 60.053 40.169 40.001 789463.997420.81 0099.296
      27c475010.090.055 30.001 80.485 70.016 10.063 60.000 743372.240211.03974.298
      28c1252210.570.072 30.002 11.691 70.050 00.168 00.001 499425.01 00518.91 0018.099
      29c6666111.090.072 20.001 71.632 90.038 20.162 60.001 499147.198314.79717.598
      30r45680.010.052 60.002 10.267 10.010 90.036 60.000 4322125.02408.72322.496
      D116-3(混合岩),核-边或核-幔-边结构
      1r1522890.520.052 20.003 00.259 80.013 70.036 40.000 429512723511.02302.698
      2r3704540.810.071 00.001 41.681 30.033 90.170 50.001 696740.71 00112.81 0158.798
      3r1532500.610.050 10.002 50.255 20.012 80.036 60.000 521112123110.42322.899
      4c681030.660.060 40.005 30.308 60.027 30.038 00.000 661718927321.22403.787
      5c2134990.430.099 40.002 03.976 50.076 10.288 10.002 11 61337.01 62915.61 63210.499
      6r2002900.690.051 40.002 60.260 20.012 80.036 90.000 425711723510.32342.799
      7r1672390.700.054 80.003 30.293 90.017 00.039 10.000446713326213.32472.794
      8r1002350.420.054 00.002 90.269 20.014 00.036 80.000 537212924211.22333.096
      9r553340.160.050 40.002 50.250 10.012 20.035 90.000 421311422710.02272.499
      10r711990.360.193 90.007 01.430 00.057 20.052 90.000 72 77659.390223.93324.57
      11c1978620.230.050 80.001 50.257 20.007 50.036 60.000 323570.42326.12321.999
      12r78210.010.05060.001 70.254 70.008 30.036 60.000 423377.82306.72322.399
      13c1 4705832.520.070 50.001 51.518 50.032 30.155 20.001 294343.793813.09306.999
      14m4672.50.630.083 60.009 90.431 60.049 60.038 50.000 91 28323336435.22445.560
      15r69910.010.051 00.001 90.254 10.008 90.036 10.000 323983.32307.22281.899
      16r655870.110.051 90.002 30.260 10.011 00.036 70.0004280106.52358.82322.798
      17r69180.010.051 50.001 80.256 00.008 60.036 10.000 326175.02317.02282.298
      18c335740.060.069 50.001 71.282 50.030 10.133 00.001 192248.983813.48056.096
      19r299020.030.054 80.001 70.290 00.010 20.037 90.000 546770.42598.12403.292
      20c1332140.620.073 80.002 01.644 90.044 40.160 70.001 41 03559.798817.19617.897
      21c35346 0830.010.297 00.010 31.835 10.057 60.045 20.000 73 45554.71 05820.72854.2-16
      22c651630.400.052 20.004 70.255 60.021 60.036 90.000 630020723117.42343.698
      23r821250.660.130 00.003 16.633 20.159 30.367 30.003 32 09842.32 06421.22 01715.897
      24r1807800.230.056 50.003 50.266 10.016 50.034 00.000 447213724013.22152.789
      25c2202760.800.049 00.003 80.250 00.017 20.035 90.000 514617022714.02282.999
      26r195890.030.071 20.003 50.470 90.032 60.045 30.001496510039222.52868.568
      27r1943060.630.050 60.003 20.252 60.015 40.036 60.000 523314422912.52323.198
      28r721500.480.050 20.005 40.251 30.025 90.036 20.000 621122422821.02293.699
      29r101 0380.010.111 50.004 60.556 10.024 40.035 70.000 41 82475.244915.92262.333
      30c822280.360.160 90.003 110.185 50.199 10.456 70.003 62 46632.42 45218.22 42515.898
      31r1322650.500.052 70.003 30.262 80.016 00.037 10.000 532214323712.92353.199
      15BR04(花岗质片麻岩),核-边结构为主,少量核-幔-边结构
      01r2177 9300.030.051 80.001 20.276 90.006 60.038 50.000 327653.72485.32441.898
      02c5167920.650.055 70.002 00.581 10.021 00.075 20.000 744376.846513.54674.199
      03r1 58218 8960.080.083 20.001 60.420 30.008 20.036 40.000 31 27337.53565.92311.957
      04c7239070.800.055 80.001 90.571 10.019 60.073 80.000 744374.145912.74594.399
      05c5928800.670.054 70.002 20.560 30.022 80.074 10.000 839890.745214.84614.998
      06r1 09011 3590.100.060 30.001 40.360 30.008 10.043 10.000 361350.03126.12722.086
      07c6831 2610.540.055 80.001 70.575 50.018 20.074 30.000 945666.746211.74625.499
      08c5301 0070.530.055 80.001 90.579 80.020 10.075 10.000 845675.946412.94674.699
      09r1 65215 4140.110.061 70.001 80.311 10.009 40.036 40.000466563.02757.32302.282
      10c5231 1520.450.073 10.002 50.675 90.023 80.066 90.000 91 01768.552414.44175.577
      11c5121 0600.480.058 30.002 00.684 50.023 00.085 00.000 854374.152913.85264.799
      12c3568890.400.057 30.001 80.579 20.018 10.073 10.000 850266.746411.74554.797
      13c1 0921 5190.720.055 20.001 40.562 00.014 90.073 50.000 642057.44539.74573.599
      14c6619300.710.055 00.001 60.557 00.016 20.073 20.000 741364.845010.64554.098
      15c3445190.660.053 50.002 00.539 80.020 10.073 40.000935085.243813.24575.295
      16r1 06010 0990.100.060 70.001 50.304 00.006 70.036 30.000 362851.82695.32301.984
      17r3 41615 1230.230.075 00.002 10.381 70.010 10.036 80.000 31 13354.53287.52332.165
      18r975 3030.020.052 80.001 40.313 90.008 70.042 90.000 532065.72776.72713.497
      19r29616 7100.020.057 60.001 30.288 70.007 00.036 00.000 451750.02585.52282.387
      20r3819 8530.040.055 40.001 30.321 70.007 30.041 90.000 442851.82835.62642.293
      21r60219 1020.030.211 90.004 81.597 80.041 10.053 90.000 62 92041.896916.13393.43
      22r1 79726 5300.070.072 10.001 50.293 10.006 00.029 20.000 299141.82614.71861.566
      23c1 8192 3480.770.057 30.001 40.585 50.014 50.073 40.000 750658.34689.34574.397
      24r1 16226 6170.040.071 30.001 50.261 40.005 60.026 50.000 396642.62364.51692.266
      ID7-3(条带状混合岩),核-边或核-幔-边结构
      1r1152970.390.175 60.006 09.480 60.315 50.383 90.004 02 613902 386312 0951987
      2c2354910.480.177 90.005 19.188 30.265 60.367 60.003 82 635482 357272 0181884
      3r131 1020.010.053 30.002 00.274 70.009 90.037 10.000 4339922468235295
      4r1312 3730.060.051 50.001 50.494 60.014 70.068 60.000 72656940810427495
      5c301 6620.020.050 40.001 80.259 20.009 30.036 70.000 4217852348233399
      6r671 3750.050.059 30.001 70.856 50.030 10.102 30.002 058958628166281299
      7r1302220.590.066 70.002 61.046 60.042 00.112 00.001 68288072721684993
      8r2141 0450.210.054 80.001 70.526 20.015 40.068 70.000 64677342910428399
      9r1764610.380.050 40.002 00.489 50.019 70.069 40.000 82139140513433593
      10r451 0420.040.116 40.003 04.951 60.139 60.301 40.003 51 902471 811241 6981793
      11r2874630.620.053 90.002 30.512 10.021 10.068 50.000 73696442014427498
      12r1772060.860.059 70.003 40.566 30.031 90.068 80.000 959113145621429693
      13c932540.370.054 50.003 20.565 90.032 90.074 40.000 939413345521462598
      14r362 5190.010.052 20.001 70.254 50.008 00.034 80.000 3300742306221295
      15r1032180.470.053 70.003 40.53830.035 40.071 70.001 336714343723446897
      16c3811 1480.330.074 60.001 81.815 90.043 90.173 60.001 41 057491 051161 032898
      17c1182710.440.057 60.003 10.566 30.030 60.070 60.000 952212145620440696
      18r4496070.740.059 80.002 20.576 60.020 60.069 30.000 75947746213432493
      19c1564840.320.070 90.002 21.602 90.048 30.161 40.001 79556297119965999
      20r2766450.430.096 10.002 93.545 50.103 10.263 60.002 31 550571 537231 5081298
      21c106700.020.055 20.003 20.283 50.018 00.036 70.000 942013025314232591
      22r312 2480.010.052 30.001 70.263 00.008 50.036 00.000 3298692377228296
      23r915060.180.072 60.002 11.468 10.040 60.145 20.001 21 0115891717874795
      24c2172650.820.092 40.002 63.341 20.092 60.259 10.002 31 476531 491221 4851299
      25r232 0200.010.048 60.00140.251 00.007 30.037 00.000 3128672276234297
      26c1975210.380.074 00.002 01.675 00.044 40.162 60.001 71 0435499917971997
      27r4181 4650.290.052 50.001 40.550 60.015 60.075 30.000 83066344510468595
      28r1111160.960.057 40.003 50.976 40.059 00.124 30.001 8509137692307551091
      29r2155660.380.052 40.002 10.496 40.020 20.067 70.000 73068940914422496
      30c3264610.710.069 10.002 01.524 30.043 90.158 30.001 49035994018947899
      31r882 6920.030.053 50.001 40.507 90.012 80.068 20.000 6350534179425398
      32m235920.040.057 90.001 90.762 70.025 10.094 70.000 95287457614583598
      33r892 1380.040.055 90.001 40.520 00.013 40.066 80.000 6456564259417397
      34r76180.010.056 10.002 80.325 30.016 20.041 90.000 745410928612264492
      35c4435230.850.056 70.002 10.541 30.020 00.069 00.000 74808343913430497
      36r891 4640.060.058 10.001 90.558 20.018 60.069 00.000 65327545012430495
      37r1022120.480.062 60.002 91.005 90.047 50.116 10.001 569410070724708999
      38c1732030.850.070 20.002 81.595 80.061 80.165 20.001 81 00082969249861098
      39r1863280.570.061 90.002 70.600 10.026 90.069 90.000 87339447717436590
      40r101 2450.010.053 50.001 70.487 40.015 30.065 60.000 53507040310409398
      41c1902950.640.060 40.00280.588 30.026 60.071 10.000 862010047017443594
      42r54160.010.055 40.003 20.275 00.015 20.036 40.000 442812624712231393
      ID7-5(花岗岩脉),核-边结构
      1r921 1030.080.050 40.001 80.255 80.008 80.036 60.000 421386.12317232299
      2c781 3230.060.067 30.001 81.130 80.030 20.120 60.001 285655.676814734795
      3r416680.060.056 10.001 90.545 10.020 30.069 60.001 145469.444213434798
      4r23.59730.020.050 00.002 00.248 20.009 60.035 80.000 319592.62258227299
      5r1404360.320.064 30.002 50.624 40.027 90.069 20.001 875083.3493174311186
      6r1021 0680.100.050 20.00180.261 50.009 60.037 40.000 421185.22368237299
      7r2951 1570.260.050 00.001 80.244 00.008 60.035 10.000 319583.32227222299
      8r4158330.500.050 80.002 10.252 80.010 50.035 80.000 423298.12299227299
      9r3401 4560.230.050 30.001 80.248 10.008 40.035 60.000 420981.52257225299
      10r3051 4500.210.050 60.001 80.255 70.009 10.036 30.000 322050.92317230299
      11c4331 1400.380.056 00.002 00.273 80.009 60.035 40.000 345079.62468224290
      12r2126 3350.030.054 10.001 70.264 50.009 10.035 20.000 537676.82387223393
      13r2986530.460.056 20.002 70.289 80.013 90.037 40.000 446110625811237391
      14r2295240.440.052 80.003 00.263 50.015 00.036 30.000 432013423812230396
      15r2356110.380.052 00.002 70.262 60.014 00.036 60.000 428315023711232397
      16r9323 5300.260.053 20.002 20.271 30.011 70.036 90.000 433994.42449233295
      17r2565800.440.053 90.003 00.276 60.015 90.037 30.000 536913224813236395
      18r1088510.130.062 90.002 30.614 40.024 90.070 70.001 470675.048616440890
      19r2396060.390.049 10.002 40.255 00.012 50.037 50.000 415411523110237397
      20r1473080.480.051 00.003 80.257 50.018 90.036 50.000 523920323315231399
      注:c.锆石核部;m.锆石幔部;r.锆石边部.
      下载: 导出CSV

      表 2  云开地块变质岩锆石Lu-Hf同位素分析结果

      Table 2.  Zircon Lu-Hf isotopic compositions of metamorphic rocks in Yunkai massif

      点号年龄(Ma)176Hf/177Hf2σ176Lu/177Hf176Yb/177HfεHf(t)TDM1(Ma)TDM2(Ma)fLu/Hf
      1431-1(眼球状混合片麻岩)
      014480.282 4680.000 0150.001 7530.046 160-1.41 1321 520-0.95
      024340.282 2940.000 0180.001 0410.026 061-7.71 3551 905-0.97
      034450.282 4370.000 0200.001 4180.037 749-2.51 1671 585-0.96
      044500.282 6240.000 0160.002 2800.059 9294.09211 178-0.93
      054420.282 4280.000 0150.001 2350.031 850-2.81 1731 603-0.96
      064290.282 4370.000 0160.001 4950.038 807-2.81 1681 594-0.95
      074270.282 5910.000 0170.002 5630.068 9422.39771 268-0.92
      084440.282 3200.000 0150.000 8790.022 018-6.51 3131 837-0.97
      094440.282 6390.000 0320.002 7620.072 8824.29121 157-0.92
      104320.282 4990.000 0150.001 8870.048 346-0.71 0911 461-0.94
      114400.282 3420.000 0130.000 8600.021 631-5.81 2821 790-0.97
      124240.282 4780.000 0120.001 5270.039 823-1.51 1111 507-0.95
      134360.282 5630.000 0160.002 4700.062 2801.51 0161 326-0.93
      144460.282 5880.000 0170.002 4270.063 4462.69781 264-0.93
      154390.282 5660.000 0220.002 2090.057 8461.71 0031 312-0.93
      164480.282 4720.000 0140.001 3200.032 147-1.21 1131 502-0.96
      174260.282 3500.000 0160.001 3160.033 605-5.91 2861 789-0.96
      184380.282 4850.000 0150.001 8250.048 092-1.11 1101 488-0.95
      194450.282 4170.000 0170.001 2230.031 860-3.11 1881 625-0.96
      204500.282 4960.000 0150.002 0400.053 560-0.51 1011 461-0.94
      214390.282 4160.000 0210.001 7650.046 068-3.41 2071 641-0.95
      234360.282 4390.000 0150.001 3180.034 035-2.61 1601 583-0.96
      244510.282 4920.000 0140.001 5250.039 717-0.41 0911 460-0.95
      254460.282 5210.000 0150.001 8720.049 3390.41 0591 403-0.94
      264430.282 4480.000 0140.001 4090.037 540-2.11 1501 560-0.96
      1432-1(条带状混合片麻岩)
      012280.281 9360.000 0480.000 2620.006 999-24.61 8162 816-0.99
      021 6560.281 5580.000 0140.000 5640.014 335-6.82 3462 772-0.98
      031 1500.281 8360.000 0140.000 4070.009 754-8.01 9602 464-0.99
      042340.282 2570.000 0180.000 2240.006 124-13.11 3772 098-0.99
      052 3130.281 7230.000 0160.002 0100.049 76811.62 2032 143-0.94
      068630.281 6350.000 0120.001 3000.034 471-21.92 2853 117-0.96
      071 0500.282 2420.000 0220.001 9060.050 2513.11 4611 692-0.94
      089600.282 1540.000 0160.000 7040.018 665-1.11 5371 890-0.98
      092270.282 0110.000 0280.000 2680.006 986-22.01 7152 652-0.99
      122300.282 3120.000 0150.000 1430.003 990-11.31 2991 978-1.00
      132 2280.281 2220.000 0110.000 2960.008 632-5.52 7813 128-0.99
      142280.282 2980.000 0120.000 5140.013 413-11.81 3302 012-0.98
      154050.282 2600.000 0150.000 4050.009 098-9.31 3791 987-0.99
      162 8270.280 8830.000 0320.000 2680.007 300-3.83 2293 482-0.99
      176100.282 3820.000 0160.000 7970.021 576-0.71 2231 595-0.98
      199170.282 1450.000 0240.001 1890.031 299-2.71 5691 955-0.96
      219530.282 6190.000 0160.001 0400.025 76615.0898866-0.97
      229910.281 9880.000 0130.000 9020.023 044-6.51 7752 248-0.97
      256140.282 3900.000 0220.000 5940.014 459-0.21 2061 571-0.98
      261 0090.282 0230.000 0160.000 7790.020 820-4.71 7202 153-0.98
      273970.282 4090.000 0150.000 7780.021 401-4.31 1851 663-0.98
      281 0010.282 1780.000 0140.000 7460.019 8670.61 5051 812-0.98
      299710.282 6900.000 0200.003 4440.094 07316.4852793-0.90
      302320.282 2510.000 0170.000 1150.003 486-13.31 3812 111-1.00
      D116-3(混合岩)
      012300.282 8180.000 0170.001 0680.027 2946.5616847-0.97
      021 0150.282 2340.000 0130.001 0930.030 8142.71 4411 694-0.97
      032320.282 7530.000 0210.001 3740.035 7604.2715996-0.96
      051 6120.281 8770.000 0170.000 6710.017 8973.51 9172 103-0.98
      062340.282 9230.000 0160.001 6210.042 23010.2474612-0.95
      072470.282 6190.000 0110.000 4160.010 888-0.18841 281-0.99
      082330.282 5420.000 0120.000 2290.006 513-3.09851 459-0.99
      092270.282 5370.000 0170.000 7260.016 422-3.41 0051 480-0.98
      112320.282 5710.000 0300.001 1730.028 255-2.29691 404-0.96
      122320.282 4200.000 0140.000 9770.023 338-7.51 1771 743-0.97
      152280.282 4010.000 0350.001 6270.038 922-8.41 2241 793-0.95
      172280.282 3300.000 0270.001 0350.026 165-10.81 3041 946-0.97
      209610.282 2570.000 0150.000 6120.015 6392.61 3911 655-0.98
      222340.282 5160.000 0110.000 1280.003 789-4.01 0191 518-1.00
      272320.282 6830.000 0100.000 8060.022 6991.88031 150-0.98
      282290.282 4320.000 0200.000 1320.003 970-7.01 1351 710-1.00
      312350.282 6170.000 0180.000 5650.016 434-0.48901 295-0.98
      ID7-3(条带状混合岩)
      0126130.281 2830.000 0130.001 0970.024 8744.12 7552 839-0.97
      032350.282 1550.000 0110.000 0900.002 561-16.71 5112 324-1.00
      044270.282 3970.000 0140.001 3440.035 268-4.31 2211 684-0.96
      052330.282 2120.000 0100.000 0160.000 532-14.71 4312 198-1.00
      084280.282 5130.000 0090.002 1360.050 505-0.41 0791 437-0.94
      094330.282 3750.000 0080.000 9560.023 856-4.81 2391 723-0.97
      114270.282 3410.000 0120.000 7910.019 131-6.11 2801 798-0.98
      124290.282 3250.000 0110.000 9620.023 720-6.61 3081 836-0.97
      142210.282 1900.000 0240.000 2750.006 514-15.81 4712 257-0.99
      154460.282 3990.000 0100.001 0950.026 459-3.71 2101 664-0.97
      174400.282 3920.000 0100.001 2560.029 347-4.11 2241 685-0.96
      212320.281 6910.000 0300.000 4520.011 587-33.22 1583 356-0.99
      222280.282 1280.000 0080.000 1610.004 703-17.81 5512 389-1.00
      252340.282 2160.000 0210.000 1470.004 027-14.51 4302 189-1.00
      274680.282 3920.000 0110.001 2120.030 833-3.51 2231 668-0.96
      294220.282 3600.000 0130.001 0600.025729-5.61 2631 764-0.97
      334170.282 3100.000 0130.001 1620.027 958-7.51 3371 881-0.96
      354300.282 4900.000 0140.002 0360.049 664-1.11 1091 485-0.94
      364300.282 2010.000 0120.000 8220.020 732-11.01 4772 111-0.98
      394360.282 4020.000 0120.001 2270.029 842-3.91 2101 665-0.96
      404090.282 2710.000 0100.000 7350.019 771-8.91 3761 965-0.98
      414430.282 3610.000 0110.001 0500.025 305-5.11 2611 749-0.97
      422310.282 2380.000 0330.000 0220.000 762-13.81 3952 140-1.00
      下载: 导出CSV

      表 3  云开地区印支期变质年龄统计表

      Table 3.  Summary of Indosinian metamorphic ages in Yunkai region

      样号岩性采样位置数据来源定年方法年龄(Ma)成因分类
      1432-1混合片麻岩信宜230.2±2.9区域变质
      D116-3混合岩罗定229.6±2.1(或深熔)
      D116-3混合岩罗定本文LA-ICPMS锆石U-Pb231.3±1.6作用
      ID7-3条带状混合岩高州229.2±5.4流体活动
      15BR04花岗质片麻岩北流炳荣244.0±1.8
      GD-131基性麻粒岩钦州那蒙238.0±8.0
      GD-132基性麻粒岩钦州大寺SHRIMP锆石U-Pb244.0±7.0
      GD-4含石榴子石角闪岩高州谢鸡Wang et al., 2012230.0±6.0
      YK-13斜长角闪岩容县黎村248.0±6.0
      YK-9A混合岩化角闪岩信宜金垌221.0±4.0
      09YK-8B正片麻岩信宜Wang et al., 2011LA-ICPMS锆石U-Pb203.0±10.0
      09YK-12正片麻岩容县黎村239.0±6.0
      02YK-42正片麻岩电白Wang et al., 2007dSHRIMP锆石U-Pb236.0±3.0
      L114矽线石榴堇青片麻岩云开Wan et al., 2010242.0±8.0
      GZ-0307片麻状混合岩高州云炉Wang et al., 2013bLA-ICPMS锆石U-Pb241.0±3.0
      GZ-08正片麻岩高州云炉238.0±4.0
      GZ-03紫苏花岗岩高州云炉Chen et al., 2012电子探针独居石U-Th-Pb231.0±9.0
      23GX-11副片麻岩高州云炉237.0±13.0
      23GX04黑云母片麻岩高州Chen et al., 2017LA-ICPMS锆石U-Pb229.0±10.0区域变质
      11GD04黑云母片麻岩高州245.0±5.0(或深熔)
      11GD01片麻状花岗岩高州233.0±4.0作用
      11GDGZA1片麻状花岗岩高州233.0±5.0
      23GX04黑云母片麻岩高州237.0±3.0
      23GX05-2黑云母片麻岩高州234.0±5.0
      23GX15二云母片麻岩高州236.0±4.0
      11GD06二云母片麻岩高州Chen et al., 2017电子探针独居石U-Th-Pb240.0±4.0
      11GD07片麻状花岗岩高州233.0±11.0
      23GX13-2黑云母片麻岩高州~240.0
      23GX14石榴石电气石片岩高州236.0±8.0
      11GD03石榴石电气石片岩高州244.0±11.0
      11GD04黑云母片麻岩高州236.0±5.0
      11GD05黑云母片麻岩高州239.0±6.0
      --泥质麻粒岩钦州旧州赵亮等,2010LA-ICPMS锆石U-Pb253.0±3.0
      hdt-2基性麻粒岩钦州大龟山彭松柏等,2004SHRIMP锆石U-Pb248.0±6.0
      Datong 1糜棱岩合浦213.0±4.0
      Datong 2糜棱岩合浦Zhang and Cai, 2009白云母Ar-Ar212.0±3.0
      Hetai 1糜棱岩北流199.0±1.0
      Hetai 2糜棱岩北流195.0±1.0
      02YK-27糜棱状花岗岩信宜230.0±1.0
      02YK-30花岗质糜棱岩信宜白石225.0±1.0
      02YK-38糜棱状片麻岩高州222.0±1.0
      02YK-74糜棱状副片麻岩信宜228.0±1.0
      02YK-39糜棱状混合岩高州谢鸡225.0±1.0
      02YK-09糜棱状片麻岩阳春208.0±1.0
      02YK-12糜棱状片麻岩阳春Wang et al., 2007c黑云母Ar-Ar209.0±1.0
      02YK-15糜棱岩阳春永宁212.0±1.0构造变形
      02YK-56花岗质糜棱岩博白219.0±1.0
      02YK-64糜棱岩容县黎村211.0±1.0
      02YK-80糜棱状花岗岩罗定榃滨209.0±1.0
      02YK-26糜棱状片麻岩信宜钱排214.0±1.0
      02YK-31糜棱状花岗岩信宜白石217.0±1.0
      G13Y1片岩罗定泗纶彭少梅等,1996白云母Ar-Ar249.0±3.0
      G03Y1片理化片麻状花岗岩阳春229.0±2.0
      G13Y1混合岩罗定泗纶250.0±3.0
      G12Y2石英片岩质糜棱岩分界邵建国等,1995白云母Ar-Ar255.0±3.0
      G03Y1糜棱状花岗岩永宁229.0±3.0
      Jiangshan1绢云母千糜岩防城江山丁汝鑫等,2015绢云母Ar-Ar244.8±0.6
      Jiangshan2绢云母千糜岩203.9±1.7
      14HT060糜棱岩河台金矿焦骞骞等,2017LA-ICPMS锆石U-Pb240.1±4.1流体活动
      14HT111糜棱岩河台金矿204.1±4.3
      下载: 导出CSV
    • [1] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses that do not Report 204Pb.Chemical Geology, 192(1-2):59-79.doi: 10.1016/s0009-2541(02)00195-x
      [2] Cai, J.X., 2012.Hetai Dextral Ductile Shear Zone, Western Guangdong, and Its Controlling on Formation of Gold Deposit.Geological Review, 58(6):1069-1080 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201206009.htm
      [3] Chen, C.H., Hsieh, P.S., Lee, C.Y., et al., 2011.Two Episodes of the Indosinian Thermal Event on the South China Block:Constraints from LA-ICPMS U-Pb Zircon and Electron Microprobe Monazite Ages of the Darongshan S-Type Granitic Suite.Gondwana Research, 19(4):1008-1023.doi: 10.1016/j.gr.2010.10.009
      [4] Chen, C.H., Liu, Y.H., Lee, C.Y., et al., 2012.Geochronology of Granulite, Charnockite and Gneiss in the Poly-Metamorphosed Gaozhou Complex (Yunkai Massif), South China:Emphasis on the In-Situ EMP Monazite Dating.Lithos, 144-145:109-129.doi: 10.1016/j.lithos.2012.04.009
      [5] Chen, C.H., Liu, Y.H., Lee, C.Y., et al., 2017.The Triassic Reworking of the Yunkai Massif (South China):EMP Monazite and U-Pb Zircon Geochronologic Evidence.Tectonophysics, 694:1-22.doi: 10.13039/501100001868
      [6] Chen, D.G., Ni, T., Xie, L.W., 2007.Zircon Lu-Hf Isotopic Compositions of Ultra-High Pressure Metamorphic Rocks from Dabie Terrain, China.Acta Petrologica Sinica, 23(2):331-342 (in Chinese with English abstract).doi: 10.3969/j.issn.1000-0569.2007.02.013
      [7] Chen, H.D., Hou, M.C., Xu, X.S., et al., 2006.Tectonic Evolution and Sequence Stratigraphic Framework in South China during Caledonian.Journal of Chengdu University of Technology, 33(1):1-8 (in Chinese with English abstract).doi: 10.3969/j.issn.1671-9727.2006.01.001
      [8] Chen, W.F., Chen, P.R., Huang, H.Y., et al., 2007.Chronological and Geochemical Studies of Granite and Enclave in Baimashan Pluton, Hunan, South China.Science in China (Series D), 37(7):873-893.doi: 10.1007/s11430-007-0073-1
      [9] Chu, M.F., Chung, S.L., Song, B., et al., 2006.Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet.Geology, 34(9):745.doi: 10.1130/g22725.1
      [10] Deng, X.G., Chen, Z.G., Li, X.H., et al., 2004.SHRIMP U-Pb Zircon Dating of the Darongshan-Shiwandashan.Geological Review, 50(4):426-432.doi: 10.16509/j.georeview.2004.04.017 (in Chinese with English abstract).
      [11] Ding, R.X., Zou, H.P., Lao, M.J., et al., 2015.Indosinian Activity Records of Ductile Shear Zones in Southern segment of Qin-Hang Combined Belt:A case Study of Fangcheng-Lingshan Fault Zone.Earth Science Frontiers, 22(2):79-85.doi: 10.13745/j.esf.2015.02.007 (in Chinese with English abstract).
      [12] Ding, X., Zhou, X.M., Sun, T., 2005.The Episodic Growth of the Continental Crustal Basement in South China:Single Zircon LA-ICPMS U-Pb Dating of Guzhai Granodiorite in Guangdong.Geological Review, 51 (4):382-392.doi: 10.16509/j.georeview.2005.04.004 (in Chinese with English abstract).
      [13] Dong, C.Y., Liu, D.Y., Wan, Y.S., et al., 2009.Hf Isotope Composition and REE Pattern of Zircons from Early Precambrian Metamorphic Rocks in the Daqing Mountains, Inner Mongolia.Geological Review, 55 (4):509-520.doi: 10.16509/j.georeview.2009.04.007 (in Chinese with English abstract).
      [14] Dong, C.Y., Zhao, K.D., Jiang, S.Y., et al., 2010.Zircon Geochronology, Geochemistry and Petrogenesis of Granite from the Baimianshi Uranium Ore District in the Southern Jiangxi Province.Geological Journal of China Universities, 16 (2):149-160.doi: 10.3969/j.issn.1006-7493.2010.02.003 (in Chinese with English abstract).
      [15] Gong, G.L., Chen, G.H., Lin, G., et al., 2010.Tectonic Stress Field Evolution and Structural Ore Controlling Model of Hetai Gold Deposit, Guangdong.Mineral Deposits, 29(Suppl.2):16-26 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ199302005.htm
      [16] Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64(1):133-147.doi: 10.1016/s0016-7037(99)00343-9
      [17] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269.doi: 10.1016/s0024-4937(02)00082-8
      [18] Han, K.Y., Xu, K.J., Gao, L.Z., et al., 2017.U-Pb Age and Lu-Hf Isotope of Detrital Zircons from the Meta-Sedimentary Rocks in the Yunkai Region and Their Geological Significance.Acta Petrologica Sinica, 33 (9):2939-2956 (in Chinese with English abstract).
      [19] He, Z.Y., Xu, X.S., Niu, Y.L., 2010.Petrogenesis and Tectonic Significance of a Mesozoic Granite-Syenite-Gabbro Association from Inland South China.Lithos, 119(3-4):621-641.doi: 10.1016/j.lithos.2010.08.016
      [20] Jiao, Q.Q., Xu, D.R., Chen, G.W., et al., 2017.Zircon LA-ICP-MS U-Pb Age of Mylonite in the Hetai Gold Field, Guangdong Province of South China and the Geological Implication.Acta Petrologica Sinica, 33(6):1755-1774 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20170609
      [21] Jiao, S.J., Guo, J.H., Peng, S.B., 2013.Petrogenesis of Garnet in the Darongshan-Shiwandashan Granitic Suite of the South China Block and the Metamorphism of the Granulite Enclave.Acta Petrologica Sinica, 29(5):1740-1758 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20130520
      [22] Lei, W.Y., Shi, G.H., Liu, Y.X., 2013.Research Progress on Trace Element Characteristics of Zircons of Different Origins.Earth Science Frontiers, 20(4):273-284 (in Chinese with English abstract). https://www.researchgate.net/publication/279571372_Research_progress_on_trace_element_characteristics_of_zircons_of_different_origins
      [23] Li, W.W., Wang, G., Chen, W.F., et al., 2010.Geochemical Characteristic and Geological Implications of Xiangcaoping Granite Pluton in Miaoershan Area.Uranium Geology, 26(4):215-227.doi: 10.3969/j.issn.1000-0658.2010.04.004 (in Chinese with English abstract).
      [24] Li, X.H., Li, W.X., Li, Z.X., et al., 2008.850-790 Ma Bimodal Volcanic and Intrusive Rocks in Northern Zhejiang, South China:A Major Episode of Continental Rift Magmatism during the Breakup of Rodinia.Lithos, 102(1-2):341-357.doi: 10.1016/j.lithos.2007.04.007
      [25] Li, X.H., Li, Z.X., Li, W.X., 2014.Detrital Zircon U-Pb Age and Hf Isotope Constrains on the Generation and Reworking of Precambrian Continental Crust in the Cathaysia Block, South China:A Synthesis.Gondwana Research, 25(3):1202-1215.doi: 10.1016/j.gr.2014.01.003
      [26] Li, X.H., Li, Z.X., Li, W.X., et al., 2007.U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I-and A-Type Granites from Central Guangdong, SE China:A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?Lithos, 96(1-2):186-204.doi: 10.1016/j.lithos.2006.09.018
      [27] Li, Z.X., Li, X.H., Wartho, J.A., et al., 2010.Magmatic and Metamorphic Events during the Early Paleozoic Wuyi-Yunkai Orogeny, Southeastern South China:New Age Constraints and Pressure-Temperature Conditions.Geological Society of America Bulletin, 122(5-6):772-793.doi: 10.1130/b30021.1
      [28] Ling, H.F., Shen, W.Z., Deng, P., et al., 2005.Study of Geochemistry and Petrogenesis of the Maofeng Granite, Northern Guangdong Province.Acta Petrologica Sinica, 21(3):677-687.doi: 10.3969/j.issn.1000-0569.2005.03.009 (in Chinese with English abstract).
      [29] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010a.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571.doi: 10.1093/petrology/egp082
      [30] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43.doi: 10.1016/j.chemgeo.2008.08.004
      [31] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010b.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546.doi: 10.1007/s11434-010-3052-4
      [32] Long, W.G., Xu, D.M., Wang, L., et al., 2012.Formation Age of Hypometamorphic Rocks in Basement of Yunkai Area, South China.Geology and Mineral Resources of South China, 28(4):290-297 (in Chinese with English abstract).doi: 10.3969/j.issn.1007-3701.2012.04.002
      [33] Ludwig, K. R., 2008. User's Manual for ISOPLOT 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Centre, Berkeley, 1-76.
      [34] Luo, Z.G., Wang, Y.J., Zhang, F.F., et al., 2010.LA-ICPMS Zircon U-Pb Dating for Baimashan and Jintan Indosinian Granitic Plutons and Its Petrogenetic Implications.Geotectonica et Metallogenia, 34(2):282-290 (in Chinese with English abstract).doi: 10.16539/j.ddgzyckx.2010.02.009
      [35] Ma, T.Q., Bai, D.Y., Kuang, J., et al., 2005.Zircon SHRIMP Dating of the Xitian Granite Pluton, Chaling, Southeastern Hunan.Geological Bulletin of China, 24(5):415-419 (in Chinese with English abstract).doi: 10.3969/j.issn.1671-2552.2005.05.004
      [36] Mojzsis, S.J., Harrison, T.M., 2002.Establishment of a 3.83 Ga Magmatic Age for the Akilia Tonalite (southern West Greenland).Earth and Planetary Science Letters, 202(3-4):563-576.doi: 10.1016/s0012-821x(02)00825-7
      [37] Peng, B.X., Wang, Y.J., Fan, W.M., et al., 2006.LA-ICPMS Zircon U-Pb Dating for Three Indosinian Granitic Plutons from Central Hunan and Western Guangdong Provinces and its Petrogenetic Implications.Acta Geologica Sinica, 80(5):660-669.doi: 10.1111/j.1755-6724.2006.tb00290.x
      [38] Peng, S.M., Fu, L.F., Zhou, G.Q., 1996.Shearing Anatectic Mechanism of Gneissic granitic Rocks and Their Implications for Tectonic Evolution in Yunkai Massif.China University of Geosciences Press, Wuhan (in Chinese).
      [39] Qi, C.S., Deng, X.G., Li, W.X., et al., 2007.Origin of the Darongshan-Shiwandashan S-type Granitoid Belt from Southeastern Guangxi:Geochemical and Sr-Nd-Hf Isotopic Constraints.Acta Petrologica Sinica, 23(2):403-412 (in Chinese with English abstract). http://www.oalib.com/paper/1472011
      [40] Qian, J.H., Yang, X.Q., Liu, L., et al., 2013.Zircon U-Pb Dating, Mineral Inclusions, Lu-Hf Isotopic Data and Their Geological Significance of Garnet Amphibolite from Songshugou, North Qinling.Acta Petrologica Sinica, 29(9):3087-3098 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201309011.htm
      [41] Qiu, J.S., Mcinnes, B.I.A., Xu, X.S., et al., 2004.Zircon ELA-ICP-MS Dating for Wuliting Pluton Dajishan, Southern Jiangxi and New Recognition about Its Relation to Tungsten Mineralization.Geological Review, 50 (2):125-133 (in Chinese with English abstract).
      [42] Qiu, J.S., Wang, D.Z., McInnes, B.I.A., et al., 2004.Two Subgroups of A-Type Granites in the Coastal Area of Zhejiang and Fujian Provinces, SE China:Age and Geochemical Constraints on Their Petrogenesis.Transactions of the Royal Society of Edinburgh:Earth Sciences, 95(1-2):227-236.doi: 10.1017/s0263593300001036
      [43] Qiu, X.F., Yang, H.M., Zhao, X.M., et al., 2016.Early Triassic Gneissoid Granites in the Gaozhou Area (Yunkai Massif), South China:Implications for the Amalgamation of the Indochina and South China Blocks.The Journal of Geology, 124(3):395-409.doi: 10.1086/685765
      [44] Qiu, Y.X., Liang, X.Q., 2006.Evolution of Basin-Range Coupling in the Yunkai Dashan-Shiwan Dashan area, Guangdong and Guangxi:with A Discussion of Several Tectonic Problems of South China.Geological Bulletin of China, 25(3):340-347 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200603004.htm
      [45] Qiu, Z.L., Wu, F.Y., Yang, S.F., et al., 2008.Age and Genesis of the Myanmar Jadeite:Constraints from U-Pb Ages and Hf Isotopes of Zircon Inclusions.Chinese Science Bulletin, 53(24):3104-3114 (in Chinese).doi: 10.1007/s11434-008-0490-3
      [46] Rowley, D.B., Xue, F., Tucker, R.D., et al., 1997.Ages of Ultrahigh Pressure Metamorphism and Protolith Orthogneisses from the Eastern Dabie Shan:U/Pb Zircon Geochronology.Earth and Planetary Science Letters, 151(3-4):191-203.doi: 10.1016/s0012-821x(97)81848-1
      [47] Shao, J.G., Peng, S.M., Peng, S.B., 1995.40Ar/36Ar-39Ar/36Ar Isochron Dating for Peripheral Faults of Yunkai Massif.Guangdong Geology, 10(2):34-40 (in Chinese with English abstract). https://www.researchgate.net/publication/311175543_40Ar36Ar-39Ar36Ar_isochron_dating_for_peripheral_faults_of_Yunkai_massif
      [48] Sun, T., 2005.Strongly Peraluminous Granites of Mesozoic in Eastern Nanling Range, Southern China:Petrogenesis and Implications for Tectonics.Science in China (Series D), 48(2):165.doi: 10.1360/03yd0042
      [49] Tan, X.F., Pan, Y.M., Li, J., et al., 2006.Zircon SHRIMP U-Pb Geochrondogy of the Yunkai Metamorphic Complex in Southeastern Guangxi China.Geological Bulletin of China, 25(5):553-559.
      [50] Wan, Y.S., Liu, D.Y., Wilde, S.A., et al., 2010.Evolution of the Yunkai Terrane, South China:Evidence from SHRIMP Zircon U-Pb Dating, Geochemistry and Nd Isotope.Journal of Asian Earth Sciences, 37(2):140-153.doi: 10.1016/j.jseaes.2009.08.002
      [51] Wang, J., 2003.History of Neoproterozoic Rift Basins in South China:Implications for Rodinia Break-Up.Precambrian Research, 122(1-4):141-158.doi: 10.1016/s0301-9268(02)00209-7
      [52] Wang, L., Long, W.G., Xu, D.M., et al., 2015.Zircon U-Pb Geochronology of Metamorphic Basement in Yunkai Area and Its Implications on the Grenvillian Event in the Cathaysia Block.Earth Science Frontiers, 22 (2):25-40.doi: 10.13745/j.esf.2015.02.003 (in Chinese with English abstract).
      [53] Wang, L., Long, W.G., Zhou, D., et al., 2016.Late Triassic Zircon U-Pb Ages and Sr-Nd-Hf Isotopes of Darongshan Granites in Southeastern Guangxi and Their Geological Implications.Geological Bulletin of China, 35(8):1291-1303 (in Chinese with English abstract).doi: 10.3969/j.issn.1671-2552.2016.08.010
      [54] Wang, X.C., Li, X.H., Li, W.X., et al., 2007a.Ca.825 Ma Komatiitic Basalts in South China:First Evidence for >1 500℃ Mantle Melts by a Rodinian Mantle Plume.Geology, 35(12):1103.doi: 10.1130/g23878a.1
      [55] Wang, Y.J., Fan, W.M., Sun, M., et al., 2007b.Geochronological, Geochemical and Geothermal Constraints on Petrogenesis of the Indosinian Peraluminous Granites in the South China Block:A Case Study in the Hunan Province.Lithos, 96(3-4):475-502.doi: 10.1016/j.lithos.2006.11.010
      [56] Wang, Y.J., Fan, W.M., Cawood, P.A., et al., 2007c.Indosinian High-Strain Deformation for the Yunkaidashan Tectonic Belt, South China:Kinematics and 40Ar/39Ar Geochronological Constraints.Tectonics, 26(6):TC6008.doi: 10.1029/2007tc002099
      [57] Wang, Y.J., Fan, W.M., Zhao, G.C., et al., 2007d.Zircon U-Pb Geochronology of Gneissic Rocks in the Yunkai Massif and Its Implications on the Caledonian Event in the South China Block.Gondwana Research, 12(4):404-416.doi: 10.1016/j.gr.2006.10.003
      [58] Wang, Y.B., Wang, D.H., Han, J., et al., 2010.U-Pb Dating and Hf Isotopic Characteristics of Zircons and Re-Os Dating of Molybdenite from Gao'aobei Tungsten-Molybdenum Deposit, Southern Hunan Province.Geological Review, 56(6):820-830 (in Chinese with English abstract).doi: 10.16509/j.georeview.2010.06.016
      [59] Wang, Y.J., Fan, W.M., Zhang, G.W., et al., 2013a.Phanerozoic Tectonics of the South China Block:Key Observations and Controversies.Gondwana Research, 23(4):1273-1305.doi: 10.13039/501100002367
      [60] Wang, D., Zheng, J.P., Ma, Q., et al., 2013b.Early Paleozoic Crustal Anatexis in the Intraplate Wuyi-Yunkai Orogen, South China.Lithos, 175-176:124-145.doi: 10.13039/501100001809
      [61] Wang, Y.J., Zhang, A.M., Fan, W.M., et al., 2013c.Origin of Paleosubduction-Modified Mantle for Silurian Gabbro in the Cathaysia Block:Geochronological and Geochemical Evidence.Lithos, 160-161:37-54.doi: 10.1016/j.lithos.2012.11.004
      [62] Wang, Y.J., Wu, C.M., Zhang, A.M., et al., 2012.Kwangsian and Indosinian Reworking of the Eastern South China Block:Constraints on Zircon U-Pb Geochronology and Metamorphism of Amphibolites and Granulites.Lithos, 150:227-242.doi: 10.1016/j.lithos.2012.04.022
      [63] Wang, Y.J., Zhang, A.M., Fan, W.M., et al., 2011.Kwangsian Crustal Anatexis within the Eastern South China Block:Geochemical, Zircon U-Pb Geochronological and Hf Isotopic Fingerprints from the Gneissoid Granites of Wugong and Wuyi-Yunkai Domains.Lithos, 127(1-2):239-260.doi: 10.13039/501100001809
      [64] Wu, F.Y., Yang, J.H., Liu, X.M., et al., 2005.Hf Isotopes of the 3.8 Ga Zircons in Eastern Hebei Province, China:Implications for Early Crustal Evolution of the North China Craton.Chinese Science Bulletin, 50(18):1996-2003 (in Chinese).doi: 10.1360/982005-629
      [65] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract).doi: 10.3969/j.issn.1000-0569.2007.02.001
      [66] Wu, J., Liang, H.Y., Huang, W.T., et al., 2012.Indosinian Isotope Ages of Plutons and Deposits in Southwestern Miaoershan-Yuechengling, Northeastern Guangxi and Implications on Indosinian Mineralization in South China.Chinese Science Bulletin, 57(13):1126-1136 (in Chinese).doi: 10.1007/s11434-011-4968-z
      [67] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604 (in Chinese).doi: 10.1007/bf03184122
      [68] Wu, Y.B., Zheng, Y.F., Zhao, Z.F., et al., 2006.U-Pb, Hf and O Isotope Evidence for Two Episodes of Fluid-Assisted Zircon Growth in Marble-Hosted Eclogites from the Dabie Orogen.Geochimica et Cosmochimica Acta, 70(14):3743-3761.doi: 10.1016/j.gca.2006.05.011
      [69] Xie, X.H., Chen, W.F., Zhao, K.D., et al., 2008.Geochemical Characteristics and Geochronology of the Douzhashan Granite, Northeastern Guangxi Province, China.Acta Petrologica Sinica, 24 (6):1302-1312 (in Chinese with English abstract). http://www.oalib.com/paper/1472474
      [70] Xu, X.B., Zhang, Y.Q., Jia, D., et al., 2009.Early Mesozoic Geotectonic Processes in South China.Geology in China, 36(3):573-593 (in Chinese with English abstract).doi: 10.3969/j.issn.1000-3657.2009.03.007
      [71] Xu, X.S., Deng, P., O'Reilly, S.Y., et al., 2003.Single Zircon LAM-ICPMS U-Pb Dating of Guidong Complex (SE China) and Its Petrogenetic Significance.Chinese Science Bulletin, 48(17):1892-1899.doi: 10.1007/bf03184074
      [72] Yin, X.Y., Zhou, H.Y., Liu, D.Y., et al., 2015.Ancient Material Records in the North China Craton:SHRIMP U-Pb Dating and LA-MC-ICPMS Hf Anaysis of Zircons from Archean Metamorphic Rocks in the Jiaozuo Area, Henan.Geological Review, 61 (1):183-194 (in Chinese with English abstract).doi: 10.16509/j.georeview.2015.01.018
      [73] Yu, J.H., O'Reilly, S.Y., Wang, L.J., et al., 2010.Components and Episodic Growth of Precambrian Crust in the Cathaysia Block, South China:Evidence from U-Pb Ages and Hf Isotopes of Zircons in Neoproterozoic Sediments.Precambrian Research, 181(1-4):97-114.doi: 10.1016/j.precamres.2010.05.016
      [74] Yu, J.H., Wang, L, J., Wei, Z.Y., et al., 2007a.Phanerozoic Metamorphic Episodes and Charaeteristics of Cathaysia Block.Gedogical Journal of China Universities, 13(3):474-483 (in Chinese with English abstract).
      [75] Yu, J.H., Wang, L.J., Wang, X.L., et al., 2007b.Geochemistry and Geochronology of the Fucheng Complex in the Southeastern Jiangxi Province, China.Acta Petrologica Sinica, 23 (6):1441-1456 (in Chinese with English abstract).doi: 10.3969/j.issn.1000-0569.2007.06.020
      [76] Yu, J.H., Zhou, X.M., O'Reilly, Y.S., et al., 2005.Formation History and Protolith Characteristics of Granulite Facies Metamorphic Rock in Central Cathaysia Deduced from U-Pb and Lu-Hf Isotopic Studies of Single Zircon Grains.Chinese Science Bulletin, 50(16):1758-1767 (in Chinese with English abstract).doi: 10.1007/bf03322805
      [77] Yuan, H.L., Gao, S., Dai, M.N., et al., 2008.Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS.Chemical Geology, 247(1-2):100-118.doi: 10.1016/j.chemgeo.2007.10.003
      [78] Zhang, A.M., Wang, Y.J., Fan, W.M., et al., 2012.Earliest Neoproterozoic (ca.1.0 Ga) Arc-Back-Arc Basin Nature along the Northern Yunkai Domain of the Cathaysia Block:Geochronological and Geochemical Evidence from the Metabasite.Precambrian Research, 220-221:217-233.doi: 10.1016/j.precamres.2012.08.003
      [79] Zhang, K.J., Cai, J.X., 2009.NE-SW-Trending Hepu-Hetai Dextral Shear Zone in Southern China:Penetration of the Yunkai Promontory of South China into Indochina.Journal of Structural Geology, 31(7):737-748.doi: 10.1016/j.jsg.2009.04.012
      [80] Zhang, M., Chen, P.R., Huang, G.L., et al., 2006.Single Zircon LA-ICP-MS Ages of the Longyuanba Pluton in the Eastern Nanling Region and Geological Implication.Acta Geologica Sinica, 80 (7):984-994 (in Chinese with English abstract).doi: 10.3321/j.issn:0001-5717.2006.07.005
      [81] Zhang, W.L., Hua, R.M., Wang, R.C., et al., 2004.Single Zircon U-Pb Isotopic Age of the Wuliting Granite in Dajishan Area of Jiangxi, and Its Geological Implication.Acta Geologica Sinica, 78(3):352-358 (in Chinese with English abstract).doi: 10.3321/j.issn:0001-5717.2004.03.008
      [82] Zhao, G.Y., Qin, X.F., Wang, Z.Q., 2016.Geochronology, Geochemistry and Geological Significance of Gabbros from Xindi-Anping Area, Southeastern Guangxi.Acta Petrologica et Mineralogica, 35 (5):791-803 (in Chinese with English abstract).doi: 10.3969/j.issn.1000-6524.2016.05.004
      [83] Zhao, L., Guo, F., Fan, W.M., et al., 2010.Crustal Evolution of the Shiwandashan Area in South China:Zircon U-Pb-Hf Isotopic Records from Granulite Enclaves in Indo-Sinian Granites.Chinese Science Bulletin, 55(15):1489-1498.doi: 10.1007/s11434-010-3225-1
      [84] Zheng, Y.F., Wu, Y.B., Zhao, Z.F., et al., 2005.Metamorphic Effect on Zircon Lu-Hf and U-Pb Isotope Systems in Ultrahigh-Pressure Eclogite-Facies Metagranite and Metabasite.Earth and Planetary Science Letters, 240(2):378-400.doi: 10.1016/j.epsl.2005.09.025
      [85] Zheng, Y.F., Zhao, Z.F., Wu, Y.B., et al., 2006.Zircon U-Pb Age, Hf and O Isotope Constraints on Protolith Origin of Ultrahigh-Pressure Eclogite and Gneiss in the Dabie Orogen.Chemical Geology, 231(1-2):135-158.doi: 10.1016/j.chemgeo.2006.01.005
      [86] Zhou, D., Long, W.G., Ke, X.Z., et al., 2017a.Petrogenesis of the Tectonic Melange on the Northern Margin of the Yunkai Terrane, South China.Acta Petrologica Sinica, 33(3):810-830 (in Chinese with English abstract).
      [87] Zhou, D., Long, W.G., Wang, L., et al., 2017b.Geochronology and Lu-Hf Isotope of Early Paleozoic Zhuya-Shiban Gabbros in Yunkai Terrane, South China.Geological Bulletin of China, 36(5):726-737 (in Chinese with English abstract).doi: 10.3969/j.issn.1671-2552.2017.05.005
      [88] Zhou, X.Y., Yu, J.H., Wang, L.J., et al., 2015.Compositions and Formation of the Basement Metamorphic Rocks in Yunkai Terrane, Western Guangdong Province, South China.Acta Petrologica Sinica, 31(3):855-882 (in Chinese with English abstract). https://www.researchgate.net/publication/281729048_Compositions_and_formation_of_the_basement_metamorphic_rocks_in_Yunkai_terrane_western_Guangdong_Province_South_China
      [89] 蔡建新, 2012.广东河台右旋韧性剪切带及其对金矿的控制.地质论评, 58(6):1069-1080. http://www.cqvip.com/QK/91067X/201206/44159662.html
      [90] 陈道公, 倪涛, 谢烈文, 2007.大别地体超高压变质岩石锆石Lu-Hf同位素研究.岩石学报, 23(2):331-342. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200702014.htm
      [91] 陈洪德, 侯明才, 许效松, 等, 2006.加里东期华南的盆地演化与层序格架.成都理工大学学报(自然科学版), 33(1):1-8. http://www.cnki.com.cn/Article/CJFDTotal-TRQG201403004.htm
      [92] 陈卫锋, 陈培荣, 黄宏业, 等, 2007.湖南白马山岩体花岗岩及其包体的年代学和地球化学研究.中国科学(D辑), 37(7):873-893. http://www.cqvip.com/QK/98491X/200707/25024317.html
      [93] 邓希光, 陈志刚, 李献华, 等, 2004.桂东南地区大容山-十万大山花岗岩带SHRIMP锆石U-Pb定年.地质论评, 50(4):426-432. http://www.oalib.com/paper/4898375
      [94] 丁汝鑫, 邹和平, 劳妙姬, 等, 2015.钦-杭结合带南段韧性剪切带印支期活动记录:以防城-灵山断裂带为例.地学前缘, 22(2):79-85. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201502008.htm
      [95] 丁兴, 周新民, 孙涛, 2005.华南陆壳基底的幕式生长——来自广东古寨花岗闪长岩中锆石LA-ICPMS定年的信息.地质论评, 51(4):382-392. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD200504001131.htm
      [96] 董晨阳, 赵葵东, 蒋少涌, 等, 2010.赣南白面石铀矿区花岗岩的锆石年代学、地球化学及成因研究.高校地质学报, 16(2):149-160. http://edu.wanfangdata.com.cn/Periodical/Detail/qgsj201224100
      [97] 董春艳, 刘敦一, 万渝生, 等, 2009.内蒙古大青山地区早前寒武纪变质岩的锆石Hf同位素组成和稀土模式.地质论评, 55(4):509-520. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20130211&journal_id=ysxb&year_id=2013
      [98] 龚贵伦, 陈广浩, 林舸, 等, 2010.广东河台金矿构造应力场演化及构造控矿模式.矿床地质, 29(S2):16-26. http://www.oalib.com/paper/4573147
      [99] 韩坤英, 许可娟, 高林志, 等, 2017.云开地区变质沉积岩碎屑锆石U-Pb年龄、Lu-Hf同位素特征及其地质意义.岩石学报, 33(9):2939-2956. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201310005.htm
      [100] 焦骞骞, 许德如, 陈根文, 等, 2017.广东省河台金矿区糜棱岩锆石LA-ICP-MS U-Pb年龄及其地质意义.岩石学报, 33(6):1755-1774. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ199704000.htm
      [101] 焦淑娟, 郭敬辉, 彭松柏, 2013.华南大容山-十万大山花岗岩体中石榴石成因以及麻粒岩包体变质作用研究.岩石学报, 29(5):1740-1758. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201305020
      [102] 雷玮琰, 施光海, 刘迎新, 2013.不同成因锆石的微量元素特征研究进展.地学前缘, 20(4):273-284. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200503012.htm
      [103] 李妩巍, 王敢, 陈卫锋, 等, 2010.香草坪花岗岩体年代学和地球化学特征.铀矿地质, 26(4):215-221, 227. http://www.cqvip.com/qk/91728X/201004/34412901.html
      [104] 凌洪飞, 沈渭洲, 邓平, 等, 2005.粤北帽峰花岗岩体地球化学特征及成因研究.岩石学报, 21(3):677-687. https://www.cnki.com.cn/qikan-YSXB200503010.html
      [105] 龙文国, 徐德明, 王磊, 等, 2012.两广云开地区基底深变质岩的形成时代.华南地质与矿产, 28(4):290-297. http://mall.cnki.net/magazine/Article/SDDI198902002.htm
      [106] 罗志高, 王岳军, 张菲菲, 等, 2010.金滩和白马山印支期花岗岩体LA-ICPMS锆石U-Pb定年及其成岩启示.大地构造与成矿学, 34(2):282-290. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201002015
      [107] 马铁球, 柏道远, 邝军, 等, 2005.湘东南茶陵地区锡田岩体锆石SHRIMP定年及其地质意义.地质通报, 24(5):415-419. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416013.htm
      [108] 彭少梅, 符力奋, 周国强, 1996.云开地块构造演化及片麻状花岗质岩石的剪切深熔成因.武汉:中国地质大学出版社.
      [109] 彭松柏, 付建明, 刘云华, 2004.大容山-十万大山花岗岩带中A型紫苏花岗岩、麻粒岩包体的发现及意义.科学技术与工程, 4(10):832-834. doi:  10.3969/j.issn.1671-1815.2004.10.006
      [110] 祁昌实, 邓希光, 李武显, 等, 2007.桂东南大容山-十万大山S型花岗岩带的成因:地球化学及Sr-Nd-Hf同位素制约.岩石学报, 23(2):403-412. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702019
      [111] 钱加慧, 杨秀清, 刘良, 等, 2013.北秦岭松树沟榴闪岩锆石U-Pb定年、矿物包裹体和Lu-Hf同位素特征及其地质意义.岩石学报, 29(9):3087-3098. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB502.000.htm
      [112] 邱检生, McInnes, B. I. A., 徐夕生, 等, 2004.赣南大吉山五里亭岩体的锆石ELA-ICP-MS定年及其与钨成矿关系的新认识.地质论评, 50(2):125-133. http://d.old.wanfangdata.com.cn/Periodical/dzlp200402003
      [113] 丘元禧, 梁新权, 2006.两广云开大山-十万大山地区盆山耦合构造演化——兼论华南若干区域构造问题.地质通报, 25(3):340-347. http://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200511021.htm
      [114] 丘志力, 吴福元, 杨树锋, 等, 2008.缅甸翡翠形成时代和成因的锆石U-Pb年龄与Hf同位素制约.科学通报, 53(24):3104-3114. doi:  10.3321/j.issn:0023-074X.2008.24.019
      [115] 邵建国, 彭少梅, 彭松柏, 1995.云开地块周边断裂带40Ar/36Ar-39Ar/36Ar等时线定年.广东地质, 10(2):34-40.
      [116] 覃小锋, 潘元明, 李江, 等, 2006.桂东南云开地区变质杂岩锆石SHRIMP U-Pb年代学.地质通报, 25(5):553-559. http://mall.cnki.net/magazine/Article/ZQYD200605004.htm
      [117] 王磊, 龙文国, 徐德明, 等, 2015.云开地区变质基底锆石U-Pb年代学及对华夏地块Grenvillian事件的指示.地学前缘, 22(2):25-40. http://www.doc88.com/p-9147652412188.html
      [118] 王磊, 龙文国, 周岱, 等, 2016.桂东南大容山晚二叠世花岗岩锆石U-Pb年龄和Sr-Nd-Hf同位素特征及其地质意义.地质通报, 35(8):1291-1303. http://www.cqvip.com/QK/95894A/201608
      [119] 王彦斌, 王登红, 韩娟, 等, 2010.汝城高坳背钨-钼矿区花岗岩锆石U-Pb年龄、Hf同位素及矿石辉钼矿Re-Os年龄.地质论评, 56(6):820-830. https://www.wenkuxiazai.com/doc/ef838fe4284ac850ad02428c.html
      [120] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200702002.htm
      [121] 吴福元, 杨进辉, 柳小明, 等, 2005.冀东3.8 Ga锆石Hf同位素特征与华北克拉通早期地壳时代.科学通报, 50(18):1996-2003. doi:  10.3321/j.issn:0023-074X.2005.18.013
      [122] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi:  10.3321/j.issn:0023-074X.2004.16.002
      [123] 伍静, 梁华英, 黄文婷, 等, 2012.桂东北苗儿山-越城岭南西部岩体和矿床同位素年龄及华南印支期成矿分析.科学通报, 57(13):1126-1136. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201502003.htm
      [124] 谢晓华, 陈卫锋, 赵葵东, 等, 2008.桂东北豆乍山花岗岩年代学与地球化学特征.岩石学报, 24 (6):1302-1312. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806014.htm
      [125] 徐先兵, 张岳桥, 贾东, 等, 2009.华南早中生代大地构造过程.中国地质, 36(3):573-593. https://www.researchgate.net/profile/Xianbing_Xu2/publication/282543455_Early_Mesozoic_geotectonic_processes_in_South_China/links/56392ef808ae2da875c7a289/Early-Mesozoic-geotectonic-processes-in-South-China.pdf
      [126] 殷小艳, 周红英, 刘敦一, 等, 2015.华北克拉通古老物质记录——焦作地区太古宙变质岩的锆石SHRIMP U-Pb定年和LA-MC-ICPMS Hf同位素分析.地质论评, 61(1):183-194. http://www.cnki.com.cn/Article/CJFDTotal-DZLP201501021.htm
      [127] 于津海, 王丽娟, 魏震洋, 等, 2007a.华夏地块显生宙的变质作用期次和特征.高校地质学报, 13(3):474-483. http://www.cqvip.com/QK/90539X/200703/25509795.html
      [128] 于津海, 王丽娟, 王孝磊, 等, 2007b.赣东南富城杂岩体的地球化学和年代学研究.岩石学报, 23(6):1441-1456. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=200706137
      [129] 于津海, 周新民, O, Reilly, Y.S., 等, 2005.南岭东段基底麻粒岩相变质岩的形成时代和原岩性质:锆石的U-Pb-Hf同位素研究.科学通报, 50(16):1758-1767. doi:  10.3321/j.issn:0023-074X.2005.16.015
      [130] 张敏, 陈培荣, 黄国龙, 等, 2006.南岭东段龙源坝复式岩体LA-ICP-MS锆石U-Pb年龄及其地质意义.地质学报, 80(7):984-994. http://www.cnki.com.cn/Article/CJFDTotal-DQKX201401003.htm
      [131] 张文兰, 华仁民, 王汝成, 等, 2004.江西大吉山五里亭花岗岩单颗粒锆石U-Pb同位素年龄及其地质意义探讨.地质学报, 78(3):352-358. http://cdmd.cnki.com.cn/Article/CDMD-10405-1015990409.htm
      [132] 赵国英, 覃小锋, 王宗起, 等, 2016.桂东南新地-安平地区辉长岩的年代学、地球化学特征及其地质意义.岩石矿物学杂志, 35(5):791-803. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE197702002.htm
      [133] 赵亮, 郭锋, 范蔚茗, 等, 2010.广西十万大山地壳演化:来自印支期花岗岩中麻粒岩包体锆石U-Pb年代学及Hf同位素记录.科学通报, 55(15):1489-1498. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kxtb201015012&dbname=CJFD&dbcode=CJFQ
      [134] 周岱, 龙文国, 柯贤忠, 等, 2017a.云开地块北缘构造混杂岩的岩石成因探讨.岩石学报, 33(3):810-830. http://cdmd.cnki.com.cn/Article/CDMD-10697-2007129676.htm
      [135] 周岱, 龙文国, 王磊, 等, 2017b.云开地区早古生代竹雅-石板辉长岩锆石U-Pb定年与Lu-Hf同位素特征.地质通报, 36(5):726-737. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201705005
      [136] 周雪瑶, 于津海, 王丽娟, 等, 2015.粤西云开地区基底变质岩的组成和形成.岩石学报, 31(3):855-882. http://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201204017.htm
    • [1] 叶丽娜, 孙丰月, 王力, 刘金龙, 张宇婷.  吉东大栗子铁矿区石英二长斑岩U-Pb年龄、地球化学及Hf同位素组成 . 地球科学, 2020, 45(5): 1544-1555. doi: 10.3799/dqkx.2019.173
      [2] 杨健, 胡新露, 李春芳, 董子良, 曾国平, 姚书振.  黑龙江省翠中铁钨多金属矿床成岩成矿年代学、地球化学特征及地质意义 . 地球科学, 2020, 45(5): 1593-1608. doi: 10.3799/dqkx.2019.190
      [3] 李剑锋, 付建明, 马昌前, 卢友月, 程顺波, 马丽艳, 秦拯纬.  南岭九嶷山地区砂子岭岩体成因与构造属性:来自锆石U-Pb年代学、岩石地球化学及Sr、Nd、Hf同位素证据 . 地球科学, 2020, 45(2): 374-388. doi: 10.3799/dqkx.2019.013
      [4] 王祥东, 徐德明, 王磊, 周岱, 胡军, 柯贤忠.  云开地块印支期构造热事件叠加改造:来自片麻岩中多矿物U-Pb年代学的证据 . 地球科学, 2020, 45(5): 1653-1675. doi: 10.3799/dqkx.2019.151
      [5] 徐畅, 王岳军, 张玉芝, 徐文景, 甘成势.  云开池垌志留纪辉长岩体的年代学、地球化学特征及构造意义 . 地球科学, 2019, 44(4): 1202-1215. doi: 10.3799/dqkx.2018.592
      [6] 钱程, 汪岩, 陆露, 秦涛, 李林川, 崔天日, 陈会军, 杨柳.  大兴安岭北段扎兰屯地区斜长角闪岩年代学、地球化学和Hf同位素特征及其构造意义 . 地球科学, 2019, 44(10): 3193-3208. doi: 10.3799/dqkx.2019.027
      [7] 杨帆, 庞雪娇, 吴猛, 刘淼, 陈井胜, 李斌.  内蒙古赤峰金厂沟梁地区花岗岩类年代学、地球化学与Hf同位素特征 . 地球科学, 2019, 44(10): 3209-3222. doi: 10.3799/dqkx.2019.204
      [8] 王艳, 马昌前, 王连训, 刘园园.  扬子东南缘新元古代花岗岩的锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素:对地壳生长的约束 . 地球科学, 2018, 43(3): 635-654. doi: 10.3799/dqkx.2018.900
      [9] 程顺波, 付建明, 崔森, 卢友月, 马丽艳, 刘阿睢.  湘桂边界越城岭岩基北部印支期花岗岩锆石U-Pb年代学和地球化学特征 . 地球科学, 2018, 43(7): 2330-2349. doi: 10.3799/dqkx.2018.178
      [10] 商青青, 任云生, 陈聪, 段明新, 孙琦, 薛世远.  延边官地铁矿构造背景与和龙地块太古宙地壳增生:来自岩石地球化学、锆石U-Pb年代学及Hf同位素证据 . 地球科学, 2017, 42(12): 2208-2228. doi: 10.3799/dqkx.2017.611
      [11] 冷秋锋, 唐菊兴, 郑文宝, 王保宏, 唐攀, 王豪.  西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成 . 地球科学, 2016, 41(6): 999-1015. doi: 10.3799/dqkx.2016.083
      [12] 李鹏川, 刘正宏, 李世超, 徐仲元, 李刚, 关庆彬.  内蒙古巴林右旗胡都格绍荣岩体的年代学、地球化学、Hf同位素特征及构造背景 . 地球科学, 2016, 41(12): 1995-2007. doi: 10.3799/dqkx.2016.139
      [13] 刘清泉, 邵拥军, 陈昕梦, 刘忠法, 张喆.  豫南新县岩体地球化学、年代学和Hf同位素特征及地质意义 . 地球科学, 2016, 41(8): 1275-1294. doi: 10.3799/dqkx.2016.507
      [14] 王赛, 叶会寿, 杨永强, 张兴康, 苏慧敏, 杨晨英.  豫西火神庙岩体锆石U-Pb年代学、地球化学及Hf同位素组成 . 地球科学, 2016, 41(2): 293-316. doi: 10.3799/dqkx.2016.022
      [15] 董增产, 辜平阳, 陈锐明, 查显锋, 张海迪.  柴北缘西端盐场北山二长花岗岩年代学、 地球化学及其Hf同位素特征 . 地球科学, 2015, 24(1): 130-144. doi: 10.3799/dqkx.2015.009
      [16] 杨振, 刘锐, 王新宇, 周国发.  云开地区燕山晚期花岗岩的岩石成因及构造意义:锆石 U-Pb 年龄及 Hf 同位素证据 . 地球科学, 2014, 23(9): 1258-1276. doi: 10.3799/dqkx.2014.108
      [17] 钟玉芳, 马昌前, 佘振兵, 续海金, 王世明, 王连训.  赣西北蒙山岩体的锆石U Pb Hf-地球化学特征及成因(附表1) . 地球科学, 2011, 20(4): -.
      [18] 钟玉芳, 马昌前, 佘振兵, 续海金, 王世明, 王连训.  赣西北蒙山岩体的锆石U-Pb-Hf、地球化学特征及成因 . 地球科学, 2011, 20(4): -. doi: 10.3799/dqkx.2011.071
      [19] 杨德彬, 许文良, 裴福萍, 王清海.  蚌埠隆起区古元古代钾长花岗岩的成因:岩石地球化学-锆石U-Pb年代学与Hf同位素的制约(附表1) . 地球科学, 2009, 18(1): -.
      [20] 杨德彬, 许文良, 裴福萍, 王清海.  蚌埠隆起区古元古代钾长花岗岩的成因:岩石地球化学-锆石U-Pb年代学与Hf同位素的制约 . 地球科学, 2009, 18(1): -.
    • 加载中
    图(7) / 表 (3)
    计量
    • 文章访问数:  2561
    • HTML全文浏览量:  1271
    • PDF下载量:  16
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-10-16
    • 刊出日期:  2018-07-01

    云开地块印支期变质-深熔作用:混合岩、片麻岩锆石U-Pb年代学和Hf同位素证据

      作者简介: 柯贤忠(1984-), 男, 助理研究员, 博士, 主要从事区域地质调查及研究工作
    • 中国地质调查局武汉地质调查中心, 湖北武汉 430205
    基金项目:  中国地质调查局项目 DD20160031中国地质调查局项目 12120114039201中国地质调查局项目 12120113066400中国地质调查局项目 DD20160035

    摘要: 云开地块中生代构造演化是华南地区的研究热点之一.通过对云开地块变质基底中的混合岩、片麻岩(5个样品)和花岗岩(1个样品)开展锆石LA-ICP-MS U-Pb定年,获得440.3±3.3 Ma、230.2±2.9 Ma、230.7±1.3 Ma、459.5±2.7 Ma、431.5±4.3 Ma、229.2±5.4 Ma、229.7±2.7 Ma 7组变质(深熔)或岩浆年龄和2组(样品1432-1和ID7-3)碎屑锆石年龄,碎屑锆石年龄范围均为太古代-新元古代,且具有~1.0 Ga年龄主峰,与天堂山岩群和云开群碎屑锆石年龄谱相似.区域资料表明云开地块天堂山岩群和云开群具有相似的物质组成,均形成于早古生代-新元古代,存在变质程度和物质面貌的差异;在加里东期构造-热事件的基础上,广泛叠加了印支期区域变质(深熔)-构造-流体作用影响.4个样品中(1431-1、1432-1、D116-3和ID7-3)锆石原位Lu-Hf同位素组成显示,加里东期变质和深熔锆石Lu/Hf同位素组成基本一致,应继承了原岩的同位素组成特征.印支期变质和深熔锆石Lu/Hf同位素组成不同,可能主要由变质作用和深熔作用的差异所致.以古-中元古代为主的地壳物质参与了加里东期和印支期变质-深熔作用,在加里东期和印支期深熔作用过程中,均有少量幔源物质的加入,印支期幔源物质的贡献相对显著.

    English Abstract

    • 云开地块前寒武纪基底物质组成与演化、古生代和中生代构造演化是华南地区的研究热点.显生宙以来,华南东南部地区经历了加里东、海西、印支和燕山4期构造-岩浆作用(于津海等, 2007a; Wang et al., 2013a).扬子地块与华北地块、Sibumasu地块与印支-华南地块碰撞造山作用使华南东南部地区普遍受到印支期构造-热事件的影响(于津海等, 2007a),该期岩浆活动非常发育,花岗岩广泛分布于桂东-粤西、粤北、湘中南、赣南和闽西等地区,成岩年龄为260~200 Ma(Wang, 2003; Xu et al., 2003; 邓希光等, 2004; 邱检生等, 2004, Qiu et al., 2004; 张文兰等, 2004; 丁兴等, 2005; 凌洪飞等, 2005; 马铁球等, 2005; Sun, 2005; 陈洪德等, 2006; Peng et al., 2006; 张敏等, 2006; 陈卫锋等, 2007; Li et al., 2007, 2008; Wang et al., 2007a, 2007b; 于津海等, 2007b; 谢晓华等, 2008; 董晨阳等, 2010; He et al., 2010; 李妩巍等, 2010; 罗志高等, 2010; 王彦斌等, 2010; 赵亮等, 2010; Chen et al., 2011; 伍静等, 2012; Wang et al., 2013a; 王磊等, 2016).云开地块印支期花岗岩无大规模出露,有少量成岩年龄报道(Qiu et al., 2016; Chen et al., 2017),其周缘有大面积出露(如大容山-十万大山、六万大山、那蓬等岩体),成岩年龄为256~205 Ma(邓希光等, 2004; Peng et al., 2006; 赵亮等, 2010; Chen et al., 2011; Wang et al., 2013a; 王磊等, 2016).华南东南部地区印支期中高级变质作用的物质记录主要分布于华夏地块,江南造山带有少量分布;在华夏地块,其主要集中分布于浙东龙泉、粤东龙川、粤中增城和桂东-粤西云开等地区(于津海等, 2007a);在云开地块及周缘地区,印支期变质作用的物质记录主要分布于吴川-四会、罗定-广宁、岑溪-博白及信宜-廉江韧性剪切带内及边缘,获得云母Ar-Ar年龄值为255~195 Ma(邵建国等, 1995; 彭少梅等, 1996; Wang et al., 2007c; Zhang and Cai, 2009; 焦骞骞等, 2017),记录了区域性断裂带(韧性剪切带)的活动时限;少量中高级变质岩(麻粒岩)中获得的锆石U-Pb年龄值为253~203 Ma(彭松柏等, 2004; Wang et al., 2007d, 2011, 2012, 2013b; Wan et al., 2010; 赵亮等, 2010; Chen et al., 2012; Chen et al., 2017),代表该期变质-深熔作用的时限.云开地块片麻状花岗岩、混合岩及中高级变质岩中加里东期锆石大多具有一层窄增生边(Wang et al., 2007c; 于津海等, 2007a; Wan et al., 2010; Chen et al., 2017),大部分呈明亮的阴极发光特征,少数较暗.常规的锆石U-Pb定年手段难以获得其年龄值,但通过其中独居石等副矿物U-Pb定年可获得印支期年龄(Chen et al., 2017),于津海等(2007a)Wang et al.(2012)认为云开地块在加里东期变质-深熔作用基础上叠加印支期变质-深熔作用.

      锆石是富Hf矿物,利用锆石的Lu-Hf同位素和U-Pb年龄能够为寄主岩石的形成时代和原岩成因等提供重要信息(吴福元等, 2007).长期以来,国内外锆石Hf同位素研究主要集中于岩浆岩成因和壳幔演化(Griffin et al., 2000, 2002; 于津海等, 2005; 吴福元等, 2005),对变质岩和变质过程中锆石Hf同位素变化方面的研究相对较少.Zheng et al.(2005, 2006)和Wu et al.(2006)开始对大别-苏鲁造山带超高压变质岩开展Hf同位素研究.随后国内学者对超高压变质带或高级变质地体中变质锆石开展Hf同位素研究(陈道公等, 2007; 丘志力等, 2008; 董春艳等, 2009; 钱加慧等, 2013; 殷小艳等, 2015),获得许多高级变质条件下锆石Lu-Hf地球化学行为方面的新认识.云开地块变质岩中印支期变质-深熔锆石和十万大山-大容山地区印支期麻粒岩的发现,表明该地区在印支期经历了角闪岩相(局部达麻粒岩相)变质作用.云开地块周缘印支期侵入岩以S型花岗岩为主,Hf同位素研究显示地壳演化过程中地幔物质贡献较少(祁昌实等, 2007; Wang et al., 2013a; 王磊等, 2016).近年印支期小规模酸性(Qiu et al., 2016; Chen et al., 2017)和基性侵入岩(赵国英等, 2016)的发现,暗示云开地块存在印支期地壳改造和小规模地壳生长.本文通过对云开地块出露的变质岩开展锆石U-Pb同位素年代学及锆石Lu-Hf同位素研究,探讨在中高级变质条件下,云开地块印支期变质-深熔锆石Hf同位素组成的差异及其与变质-深熔作用的内在联系、印支期壳幔物质相互作用等,结合前人研究成果,为深化云开地块加里东期和印支期变质-深熔作用研究提供新证据.

      • 云开地块位于桂东南-粤西交界地区,呈北东-南西向展布,传统上指被东部的吴川-四会断裂带、西部的岑溪-博白断裂带与北部的罗定-广宁断裂带所围限的部分,大地构造上属于华夏地块(图 1a中灰色阴影区域)武夷-云开加里东褶皱带或武夷-云开造山带的西南部分(Li et al., 2010)(图 1a).长期以来,云开地块被认为是华夏地块西南部一个重要的前寒武纪变质基底出露区,基底岩石包括高级改造的古元古代到中元古代深层次变质岩、中等变质的晚新元古代到早古生代浅层次变质岩;盖层岩石由弱变质到未变质的寒武纪-泥盆纪地层组成(龙文国等, 2012).此外,研究区还出露晚古生代-新生代沉积岩及古生代-早中生代花岗质岩石(彭少梅等, 1996; Wang et al., 2011).

        图  1  云开地区地质简图及采样位置

        Figure 1.  Simplified geological map of the Yunkai region and the sampling localities

        云开地区深层变质基底岩石主要出露在广东高州地区、信宜北部地区、广西陆川-容县之间的天堂山地区,浅层次基底岩石则广泛分布于云开地块及周缘地区.依据变质程度的差异,将云开地块现存出露最老的地壳物质分为中-深变质的高州表壳岩(高州杂岩)/天堂山岩群和中-浅变质的云开岩群(覃小锋等, 2006; 龙文国等, 2012).天堂山岩群主要由角闪岩相岩石(局部为麻粒岩相)岩石和混合岩等组成.岩石类型主要为副片麻岩、片岩、石英岩和大理岩等.麻粒岩相的变质岩含矽线石+石榴石+堇青石等矿物,显示低压变质特征.它们的原岩为泥砂质岩石(含少量碳酸盐岩)、基性-酸性的火山-沉积岩(Wan et al., 2010),且岩石多已发生一定程度的混合岩化(覃小锋等, 2006).云开岩群围绕高州杂岩分布,为一套中-浅变质的陆缘碎屑岩,主要由片岩、板岩、千枚岩,及一些副片麻岩、斜长角闪岩和大理岩组成,夹少量碳酸盐岩和基性-酸性火山岩(覃小锋等, 2006; Wan et al., 2010).岩石变质程度相对较低,以绿片岩相为主,局部达到低角闪岩相;原岩为泥砂质岩石、基性-酸性火山-沉积岩(Wan et al., 2010)或一套类复理石-复理石建造(覃小锋等, 2006).最新研究表明,云开地块前寒武纪变质地层、不同程度的混合岩与片麻状花岗岩呈大致过渡关系产出,可能为同一构造-热事件中相同物质在不同地壳层次的产物(周岱等, 2017a; 韩坤英等, 2017).

      • 在云开地区共采集样品6件,分别为1431-1、1432-1、D116-3(混合岩浅色体)、15BR04、ID7-3和ID7-5,用于锆石U-Pb定年,其中4件用于锆石Hf同位素测试,采样位置见图 1b.

        1431-1采集于信宜市西郊S370旁采石场,区域上划归天堂山岩群,岩性为条带状-眼球状混合片麻岩,呈鳞片粒状变晶结构,眼球状-片麻状-条带状构造(图 2a).岩石宏观上由暗色体和浅色体相间分布而成,暗色体宽0.2~2.0 cm,主体0.2~0.5 cm,主要矿物组成为石英、斜长石、黑云母等;浅色体宽0.3~3.0 cm,其中含大量(40%~60%)眼球状、团块状、不规则状"斑晶",其矿物组成为石英(20%)、斜长石(45%)、条纹长石及微斜条纹长石(30%)、黑云母(5%)和少量变余锆石砂、变余电气石砂、蚀变矿物等(图 2f),矿物粒径为0.2~2.5 mm,主体1~2 mm.

        图  2  变质岩宏观和微观照片

        Figure 2.  Macro- and micro-photographs of the metamorphic rocks in Yunkai massif

        1432-1采集于信宜市北郊枝子岭,区域上划归天堂山岩群,岩性为条带状混合片麻岩,岩石呈灰黑色,细粒鳞片状变晶结构,条带状-片麻状-眼球状构造.岩石主要由灰黑色的暗色体(60%~70%)和灰白色的浅色体(30%~40%)组成(图 2b).暗色体和浅色体总体分布均匀,二者相间形成条带状-条纹状,宽度较一致,且均已变形,形成褶曲.暗色体矿物组成主要为石英(55%)、斜长石(35%)、黑云母(10%)和少量白云母、磁铁矿等,为黑云母斜长片麻岩;浅色体矿物组成主要为石英、斜长石、钾长石和白云母等,属二长花岗质成分(图 2g),矿物粒径为0.5~1.0 mm,主体0.3~0.5 mm.

        D116-3采集于罗定市龙湾东约1 km废弃采石场,主体出露一套混合岩化二云母片岩及石英岩,区域上划归云开(岩)群,样品岩性为混合岩,呈灰白色-灰黑色,鳞片粒状变晶结构,条带状-块状构造.岩石主要由灰黑色暗色体和白色-灰白色浅色体组成(图 2c).浅色体平面上分布不均匀,呈不规则团块状、条带状或透镜状,受构造应力影响,条带状浅色体多形成褶曲,宽度不一.暗色体矿物组成主要为黑云母、长石和石英等.浅色体为二长花岗质成分,矿物组成为斜长石(35%)、石英(25%)、钾长石(30%)、白云母(10%)等(图 2h),矿物粒径为0.5~1.0 mm.

        15BR04采集于北流市炳荣村北约400 m乡村公路旁,区域上划归天堂山岩群,岩石风化较强烈(图 2d),未采集到薄片标本,据风化面推测岩性为花岗质片麻岩.

        ID7-3和ID7-5采集于高州云炉X615县道旁新开挖宅基地,区域上大面积出露混合岩,划归为天堂山岩群.ID7-3岩性为条带状混合岩,由黑白相间的富云暗色体和酸性浅色体组成(暗色体:浅色体比例≈4:1,图 2e),暗色体宽约0.5~2.0 cm,主要由石英(20%)、斜长石(60%)、黑云母(10%)、碱性长石(少量)、磷灰石、锆石(微量),矿物粒径为0.5~1.0 mm;浅色体呈长条状,主体宽0.5~5.0 cm,局部可达50 cm,主要矿物成分为石英(20%)、斜长石(50%)、碱性长石(25%)、黑云母(5%),矿物粒度较粗,斜长石最粗达1.6 mm×2.2 mm,碱性长石达2.4 mm×4.5 mm(图 2i).ID7-5岩性为花岗岩,呈脉状,宽30~50 cm,未变形,斜切混合岩条带.颜色与混合岩浅色体相近,但二者界线截然,发育平直的细粒边结构.主要矿物组成为石英(20%)、碱性长石(50%)、斜长石(28%)、黑云母(2%)、磁铁矿(少量)(图 2j),矿物粒径为1~5 mm.

      • 锆石分选工作在河北廊坊市宇能岩石矿物分选技术服务有限公司完成.选取新鲜样品,去除风化面和表面污物,剔除非同期包裹体,而后进行机械破碎,锆石经手工淘洗、强磁选、电磁选、重液分选和双目镜下手工挑选程序.

        挑出的锆石经粘贴注胶制成环氧树脂样品靶,经过打磨抛光使锆石露出中心,在南京宏创地质勘查技术服务有限公司进行制靶和透射、反射光拍照,阴极发光(CL)采用TESCAN MIRA3场发射扫描电镜和TESCAN公司阴极发光探头进行锆石内部结构分析研究,扫描电镜加速电压为7 kV.锆石LA-ICP-MS U-Pb同位素分析在中国地质大学(武汉)地质过程与矿产资源国家重点实验室内完成.激光剥蚀系统为GeoLas 2005,ICM-MS为Agilent 7500a.激光束斑直径32 μm,He为载气、Ar气为补偿气,工作电压为27.1 kV,激光能量为29 J/cm2.详细的仪器操作过程和数据处理方法见Liu et al.(2008, 2010a, 2010b).实验过程中采用91500标准锆石作为标样,每隔8个数据点采用两个91500标准锆石点作为元素分馏校正.采用ICPMSDataCal 9.9对获得数据进行离线处理(Liu et al., 2008, 2010a).普通铅校正采用Andersen(2002)的方法.锆石U-Pb谐和图的绘制及相关计算均采用Isoplot/Ex_ver3(Ludwig, 2008),206Pb/238U年龄的加权平均值误差为95%置信度.锆石年龄大于1 000 Ma的数值,采用207Pb/206Pb年龄,小于1 000 Ma的数据,采用206Pb/238U年龄.

        锆石原位Lu-Hf同位素测定在中国地质大学(武汉)地质过程与矿产资源国家重点实验室的激光剥蚀电感耦合等离子质谱仪上(LA-MC-ICPMS)完成,分析采用的激光斑束直径为44 μm,剥蚀频率为10 Hz,具体分析方法及仪器参数见文献(Yuan et al., 2008).176Hf的两个同质异位数176Lu和176Yb干扰采用如下校正值:176Lu/175Lu=0.266 9和176Yb/172Yb=0.588 6.εHf计算采用的176Lu衰变常数为1.865×10-11 a-1,球粒陨石现今值176Hf/177Hf=0.282 772和176Lu/177Hf=0.033 2;亏损地幔Hf模式年龄(TDM1)计算采用现今亏损地幔值176Hf/177Hf=0.283 25和176Lu/177Hf=0.038 4(Chu et al., 2006),分析数据离线处理采用ICPMSDataCal 9.9完成.

      • 样品1431-1中锆石形态多为短柱状(半)自形晶体,锆石粒径为80~150 μm,长宽比约为1:1~3:1,以1:1~1.5:1居多.CL图像显示大多数锆石发育厚薄不一、相对核部颜色较浅的增生边,厚度一般小于5 μm,可能记录了后期构造热事件的叠加改造.根据韵律环带发育特征,增生边包裹的锆石颗粒可分为两类:一类呈自形-半自形,发育典型的韵律环带结构(图 3a),不含残留核,大多数锆石属于此类,属深熔作用形成的熔体结晶产物;少量锆石也呈自形-半自形,但环带较宽或呈面状.此外,还有少量锆石发育核-幔-边结构,核部磨圆较好,无环带或环带不清晰,表明其经历了复杂的地质过程;幔部发育韵律环带,属熔体结晶成因,边部则为变质成因.

        图  3  云开地块变质岩典型锆石阴极发光(CL)图像

        Figure 3.  Cathodoluminescence (CL) images of representative zircons from the metamorphic rocks in Yunkai massif

        选择26颗锆石进行了26个点的U-Pb同位素年龄测定,结果见表 1图 4a.这些锆石具有较高Th、U含量(Th:44×10-6~882×10-6和U:181×10-6~606×10-6)和较大的Th/U值变化范围(0.08~1.45).26个分析点位于锆石韵律环带清晰的区域,获得23个比较一致的谐和年龄(424~451 Ma),加权平均年龄为440.3±3.3 Ma(MSWD=2.4,n=23),代表熔体结晶年龄;其他3个分析点谐和度均低于80%,年龄值不采用.

        图  4  云开地块变质岩锆石U-Pb谐和图

        Figure 4.  Concordia diagrams of zircon U-Pb data for the metamorphic rocks in Yunkai massif

        点号位置Th
        (10-6)
        U
        (10-6)
        Th/
        U
        同位素比值表面年龄(Ma)谐和度
        (%)
        207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ
        1431-1(眼球状混合片麻岩),核-边结构为主,少量核-幔-边结构
        1m802860.280.055 70.002 40.554 50.024 60.071 90.000 944312944816.14485.399
        2c1522710.560.057 70.002 50.556 10.023 30.069 60.000 751794.444915.24344.296
        3c893470.260.057 40.002 20.569 80.021 50.071 50.000 750683.345813.94454.397
        4c1723350.510.058 10.002 50.582 90.024 50.072 30.000 953299.146615.74505.396
        5c593130.190.057 20.002 20.565 20.021 80.070 90.000 750285.245514.14424.597
        6c493050.160.056 20.002 40.534 10.022 90.068 80.000 946196.343515.24295.498
        7c933680.250.058 30.002 10.553 40.020 00.068 50.000 754377.844713.14274.295
        8c1152180.530.056 20.002 50.551 30.024 70.071 30.000 9461100.044616.14445.599
        9c8826061.450.059 10.002 20.582 20.021 40.071 30.000 957281.546613.74445.395
        10c603040.200.056 40.002 90.541 10.027 70.069 30.001 047811943918.34325.898
        11c761810.420.060 80.003 40.584 50.032 90.070 70.001 263211946721.14407.394
        12c652000.330.052 90.002 90.494 70.026 40.068 00.000 832412440817.94245.096
        13c615730.110.057 10.002 20.553 30.021 30.069 90.000 849483.344713.94364.697
        14c613300.190.057 50.002 20.570 40.022 20.071 60.000 850978.745814.44464.997
        15c914280.210.057 30.001 80.559 60.017 70.070 50.000 750270.445111.54394.297
        16r202370.080.058 30.002 70.581 10.027 10.071 90.000 853910146517.44485.196
        17c1252370.530.071 50.003 60.679 60.035 00.068 40.000 897210352721.24264.979
        18c442200.200.058 80.003 00.573 50.029 80.070 20.000 956113946019.24385.694
        19c593740.160.060 00.002 50.595 30.025 40.071 40.000 861195.447416.24454.993
        20c542740.200.055 20.002 50.553 40.024 70.072 30.000 842010244716.14504.599
        21c844720.180.055 20.002 00.540 10.019 60.070 50.000 742081.543912.94394.299
        22r012.60.010.000 00.000 00.376 60.223 20.040 20.002 43251652541575
        23c542620.200.058 50.002 60.564 80.024 70.069 90.000 855096.345516.04364.695
        24c692550.270.055 20.002 50.553 40.025 50.072 50.000 842010244716.74515.099
        25c723440.210.055 70.002 30.550 60.022 70.071 70.000 843992.644514.94464.699
        26r59970.610.075 00.004 90.730 10.047 60.071 20.001 11 06913255727.94436.877
        1432-1(条带状混合片麻岩),核-幔-边结构为主
        1r66420.010.051 50.001 80.256 00.008 50.036 00.000 426579.62316.92282.598
        2c1823540.510.101 20.001 73.895 30.067 70.277 50.002 21 65631.81 61314.11 57910.997
        3c1422290.620.078 10.001 81.856 40.041 00.171 80.001 51 15044.41 06614.61 0228.195
        4m44210.010.051 70.002 10.265 10.011 00.037 00.000 427296.32398.82342.398
        5r1762900.610.147 10.002 78.255 90.146 30.404 60.003 02 31331.22 25916.12 19014.096
        6c5142 7840.180.093 40.001 71.865 40.040 40.143 30.001 71 49635.21 06914.38639.378
        7c5676290.900.074 30.001 61.779 90.038 40.172 40.001 51 05047.21 03814.01 0258.298
        8r626460.100.078 00.001 91.741 40.044 10.160 50.001 81 14748.11 02416.396010.093
        9r22720.010.058 10.003 20.287 20.015 40.035 90.000 453212225612.22272.788
        10c5578940.620.133 70.002 66.623 60.124 60.356 10.002 52 14733.32 06216.61 96412.195
        11c3281 2920.250.069 60.001 31.428 10.027 30.147 50.001 191738.990111.48876.398
        12r2.463220.010.045 70.002 50.227 20.012 20.036 30.000 420810.12302.789
        13c695630.120.140 10.002 57.334 80.131 90.375 90.003 02 22830.12 15316.12 05713.995
        14r33320.010.046 30.002 50.228 40.012 00.036 00.000 416.8125.9152099.92282.391
        15r153840.040.055 50.002 00.504 90.023 70.064 80.002 143281.541516.040512.997
        16c74701.060.200 10.004 714.352 10.332 20.516 80.005 22 82738.92 77322.12 68522.396
        17c3628000.450.060 00.001 50.830 10.020 80.099 30.000 960653.761411.66105.199
        18r702890.240.068 10.002 90.939 30.035 80.100 60.001 287291.767318.86187.191
        19c1452570.570.067 60.001 61.433 00.033 80.152 80.001485750.590314.19177.698
        20r1024010.250.067 30.001 51.231 60.027 90.132 00.001 485646.381512.77997.998
        21c763230.230.066 50.001 41.469 40.031 10.159 20.001 283344.491812.89536.996
        22c6294391.430.067 30.001 41.549 20.032 10.166 10.001 3856-156.595012.89917.395
        23r194550.040.053 10.002 00.371 40.013 60.050 70.000 533287.032110.13193.399
        24r53830.010.052 40.002 10.352 80.014 30.048 80.000 630290.730710.73073.899
        25c1762650.660.052 90.001 70.730 70.023 50.099 90.001 032474.155713.86146.090
        26c641120.570.068 80.002 31.608 60.053 40.169 40.001 789463.997420.81 0099.296
        27c475010.090.055 30.001 80.485 70.016 10.063 60.000 743372.240211.03974.298
        28c1252210.570.072 30.002 11.691 70.050 00.168 00.001 499425.01 00518.91 0018.099
        29c6666111.090.072 20.001 71.632 90.038 20.162 60.001 499147.198314.79717.598
        30r45680.010.052 60.002 10.267 10.010 90.036 60.000 4322125.02408.72322.496
        D116-3(混合岩),核-边或核-幔-边结构
        1r1522890.520.052 20.003 00.259 80.013 70.036 40.000 429512723511.02302.698
        2r3704540.810.071 00.001 41.681 30.033 90.170 50.001 696740.71 00112.81 0158.798
        3r1532500.610.050 10.002 50.255 20.012 80.036 60.000 521112123110.42322.899
        4c681030.660.060 40.005 30.308 60.027 30.038 00.000 661718927321.22403.787
        5c2134990.430.099 40.002 03.976 50.076 10.288 10.002 11 61337.01 62915.61 63210.499
        6r2002900.690.051 40.002 60.260 20.012 80.036 90.000 425711723510.32342.799
        7r1672390.700.054 80.003 30.293 90.017 00.039 10.000446713326213.32472.794
        8r1002350.420.054 00.002 90.269 20.014 00.036 80.000 537212924211.22333.096
        9r553340.160.050 40.002 50.250 10.012 20.035 90.000 421311422710.02272.499
        10r711990.360.193 90.007 01.430 00.057 20.052 90.000 72 77659.390223.93324.57
        11c1978620.230.050 80.001 50.257 20.007 50.036 60.000 323570.42326.12321.999
        12r78210.010.05060.001 70.254 70.008 30.036 60.000 423377.82306.72322.399
        13c1 4705832.520.070 50.001 51.518 50.032 30.155 20.001 294343.793813.09306.999
        14m4672.50.630.083 60.009 90.431 60.049 60.038 50.000 91 28323336435.22445.560
        15r69910.010.051 00.001 90.254 10.008 90.036 10.000 323983.32307.22281.899
        16r655870.110.051 90.002 30.260 10.011 00.036 70.0004280106.52358.82322.798
        17r69180.010.051 50.001 80.256 00.008 60.036 10.000 326175.02317.02282.298
        18c335740.060.069 50.001 71.282 50.030 10.133 00.001 192248.983813.48056.096
        19r299020.030.054 80.001 70.290 00.010 20.037 90.000 546770.42598.12403.292
        20c1332140.620.073 80.002 01.644 90.044 40.160 70.001 41 03559.798817.19617.897
        21c35346 0830.010.297 00.010 31.835 10.057 60.045 20.000 73 45554.71 05820.72854.2-16
        22c651630.400.052 20.004 70.255 60.021 60.036 90.000 630020723117.42343.698
        23r821250.660.130 00.003 16.633 20.159 30.367 30.003 32 09842.32 06421.22 01715.897
        24r1807800.230.056 50.003 50.266 10.016 50.034 00.000 447213724013.22152.789
        25c2202760.800.049 00.003 80.250 00.017 20.035 90.000 514617022714.02282.999
        26r195890.030.071 20.003 50.470 90.032 60.045 30.001496510039222.52868.568
        27r1943060.630.050 60.003 20.252 60.015 40.036 60.000 523314422912.52323.198
        28r721500.480.050 20.005 40.251 30.025 90.036 20.000 621122422821.02293.699
        29r101 0380.010.111 50.004 60.556 10.024 40.035 70.000 41 82475.244915.92262.333
        30c822280.360.160 90.003 110.185 50.199 10.456 70.003 62 46632.42 45218.22 42515.898
        31r1322650.500.052 70.003 30.262 80.016 00.037 10.000 532214323712.92353.199
        15BR04(花岗质片麻岩),核-边结构为主,少量核-幔-边结构
        01r2177 9300.030.051 80.001 20.276 90.006 60.038 50.000 327653.72485.32441.898
        02c5167920.650.055 70.002 00.581 10.021 00.075 20.000 744376.846513.54674.199
        03r1 58218 8960.080.083 20.001 60.420 30.008 20.036 40.000 31 27337.53565.92311.957
        04c7239070.800.055 80.001 90.571 10.019 60.073 80.000 744374.145912.74594.399
        05c5928800.670.054 70.002 20.560 30.022 80.074 10.000 839890.745214.84614.998
        06r1 09011 3590.100.060 30.001 40.360 30.008 10.043 10.000 361350.03126.12722.086
        07c6831 2610.540.055 80.001 70.575 50.018 20.074 30.000 945666.746211.74625.499
        08c5301 0070.530.055 80.001 90.579 80.020 10.075 10.000 845675.946412.94674.699
        09r1 65215 4140.110.061 70.001 80.311 10.009 40.036 40.000466563.02757.32302.282
        10c5231 1520.450.073 10.002 50.675 90.023 80.066 90.000 91 01768.552414.44175.577
        11c5121 0600.480.058 30.002 00.684 50.023 00.085 00.000 854374.152913.85264.799
        12c3568890.400.057 30.001 80.579 20.018 10.073 10.000 850266.746411.74554.797
        13c1 0921 5190.720.055 20.001 40.562 00.014 90.073 50.000 642057.44539.74573.599
        14c6619300.710.055 00.001 60.557 00.016 20.073 20.000 741364.845010.64554.098
        15c3445190.660.053 50.002 00.539 80.020 10.073 40.000935085.243813.24575.295
        16r1 06010 0990.100.060 70.001 50.304 00.006 70.036 30.000 362851.82695.32301.984
        17r3 41615 1230.230.075 00.002 10.381 70.010 10.036 80.000 31 13354.53287.52332.165
        18r975 3030.020.052 80.001 40.313 90.008 70.042 90.000 532065.72776.72713.497
        19r29616 7100.020.057 60.001 30.288 70.007 00.036 00.000 451750.02585.52282.387
        20r3819 8530.040.055 40.001 30.321 70.007 30.041 90.000 442851.82835.62642.293
        21r60219 1020.030.211 90.004 81.597 80.041 10.053 90.000 62 92041.896916.13393.43
        22r1 79726 5300.070.072 10.001 50.293 10.006 00.029 20.000 299141.82614.71861.566
        23c1 8192 3480.770.057 30.001 40.585 50.014 50.073 40.000 750658.34689.34574.397
        24r1 16226 6170.040.071 30.001 50.261 40.005 60.026 50.000 396642.62364.51692.266
        ID7-3(条带状混合岩),核-边或核-幔-边结构
        1r1152970.390.175 60.006 09.480 60.315 50.383 90.004 02 613902 386312 0951987
        2c2354910.480.177 90.005 19.188 30.265 60.367 60.003 82 635482 357272 0181884
        3r131 1020.010.053 30.002 00.274 70.009 90.037 10.000 4339922468235295
        4r1312 3730.060.051 50.001 50.494 60.014 70.068 60.000 72656940810427495
        5c301 6620.020.050 40.001 80.259 20.009 30.036 70.000 4217852348233399
        6r671 3750.050.059 30.001 70.856 50.030 10.102 30.002 058958628166281299
        7r1302220.590.066 70.002 61.046 60.042 00.112 00.001 68288072721684993
        8r2141 0450.210.054 80.001 70.526 20.015 40.068 70.000 64677342910428399
        9r1764610.380.050 40.002 00.489 50.019 70.069 40.000 82139140513433593
        10r451 0420.040.116 40.003 04.951 60.139 60.301 40.003 51 902471 811241 6981793
        11r2874630.620.053 90.002 30.512 10.021 10.068 50.000 73696442014427498
        12r1772060.860.059 70.003 40.566 30.031 90.068 80.000 959113145621429693
        13c932540.370.054 50.003 20.565 90.032 90.074 40.000 939413345521462598
        14r362 5190.010.052 20.001 70.254 50.008 00.034 80.000 3300742306221295
        15r1032180.470.053 70.003 40.53830.035 40.071 70.001 336714343723446897
        16c3811 1480.330.074 60.001 81.815 90.043 90.173 60.001 41 057491 051161 032898
        17c1182710.440.057 60.003 10.566 30.030 60.070 60.000 952212145620440696
        18r4496070.740.059 80.002 20.576 60.020 60.069 30.000 75947746213432493
        19c1564840.320.070 90.002 21.602 90.048 30.161 40.001 79556297119965999
        20r2766450.430.096 10.002 93.545 50.103 10.263 60.002 31 550571 537231 5081298
        21c106700.020.055 20.003 20.283 50.018 00.036 70.000 942013025314232591
        22r312 2480.010.052 30.001 70.263 00.008 50.036 00.000 3298692377228296
        23r915060.180.072 60.002 11.468 10.040 60.145 20.001 21 0115891717874795
        24c2172650.820.092 40.002 63.341 20.092 60.259 10.002 31 476531 491221 4851299
        25r232 0200.010.048 60.00140.251 00.007 30.037 00.000 3128672276234297
        26c1975210.380.074 00.002 01.675 00.044 40.162 60.001 71 0435499917971997
        27r4181 4650.290.052 50.001 40.550 60.015 60.075 30.000 83066344510468595
        28r1111160.960.057 40.003 50.976 40.059 00.124 30.001 8509137692307551091
        29r2155660.380.052 40.002 10.496 40.020 20.067 70.000 73068940914422496
        30c3264610.710.069 10.002 01.524 30.043 90.158 30.001 49035994018947899
        31r882 6920.030.053 50.001 40.507 90.012 80.068 20.000 6350534179425398
        32m235920.040.057 90.001 90.762 70.025 10.094 70.000 95287457614583598
        33r892 1380.040.055 90.001 40.520 00.013 40.066 80.000 6456564259417397
        34r76180.010.056 10.002 80.325 30.016 20.041 90.000 745410928612264492
        35c4435230.850.056 70.002 10.541 30.020 00.069 00.000 74808343913430497
        36r891 4640.060.058 10.001 90.558 20.018 60.069 00.000 65327545012430495
        37r1022120.480.062 60.002 91.005 90.047 50.116 10.001 569410070724708999
        38c1732030.850.070 20.002 81.595 80.061 80.165 20.001 81 00082969249861098
        39r1863280.570.061 90.002 70.600 10.026 90.069 90.000 87339447717436590
        40r101 2450.010.053 50.001 70.487 40.015 30.065 60.000 53507040310409398
        41c1902950.640.060 40.00280.588 30.026 60.071 10.000 862010047017443594
        42r54160.010.055 40.003 20.275 00.015 20.036 40.000 442812624712231393
        ID7-5(花岗岩脉),核-边结构
        1r921 1030.080.050 40.001 80.255 80.008 80.036 60.000 421386.12317232299
        2c781 3230.060.067 30.001 81.130 80.030 20.120 60.001 285655.676814734795
        3r416680.060.056 10.001 90.545 10.020 30.069 60.001 145469.444213434798
        4r23.59730.020.050 00.002 00.248 20.009 60.035 80.000 319592.62258227299
        5r1404360.320.064 30.002 50.624 40.027 90.069 20.001 875083.3493174311186
        6r1021 0680.100.050 20.00180.261 50.009 60.037 40.000 421185.22368237299
        7r2951 1570.260.050 00.001 80.244 00.008 60.035 10.000 319583.32227222299
        8r4158330.500.050 80.002 10.252 80.010 50.035 80.000 423298.12299227299
        9r3401 4560.230.050 30.001 80.248 10.008 40.035 60.000 420981.52257225299
        10r3051 4500.210.050 60.001 80.255 70.009 10.036 30.000 322050.92317230299
        11c4331 1400.380.056 00.002 00.273 80.009 60.035 40.000 345079.62468224290
        12r2126 3350.030.054 10.001 70.264 50.009 10.035 20.000 537676.82387223393
        13r2986530.460.056 20.002 70.289 80.013 90.037 40.000 446110625811237391
        14r2295240.440.052 80.003 00.263 50.015 00.036 30.000 432013423812230396
        15r2356110.380.052 00.002 70.262 60.014 00.036 60.000 428315023711232397
        16r9323 5300.260.053 20.002 20.271 30.011 70.036 90.000 433994.42449233295
        17r2565800.440.053 90.003 00.276 60.015 90.037 30.000 536913224813236395
        18r1088510.130.062 90.002 30.614 40.024 90.070 70.001 470675.048616440890
        19r2396060.390.049 10.002 40.255 00.012 50.037 50.000 415411523110237397
        20r1473080.480.051 00.003 80.257 50.018 90.036 50.000 523920323315231399
        注:c.锆石核部;m.锆石幔部;r.锆石边部.

        表 1  云开地块变质岩LA-ICP-MS锆石U-Th-Pb同位素分析结果

        Table 1.  Zircon U-Th-Pb isotopic compositions of metamorphic rocks in Yunkai massif

        样品1432-1中锆石形态多为短柱状自形-半自形晶体,少量呈浑圆状,锆石粒径为50~150 μm,长宽比约为1:1~3:1,以1:1~2:1居多.CL图像显示锆石发光性不强,绝大多数内部结构复杂,普遍含继承核,发育核-幔-边结构,少量锆石结构更复杂,在核-幔-边结构外发育新的增生边(图 3b).核部锆石发光性有差异,多呈半自形-不规则状,少量呈浑圆状,大多发育韵律环带,少量环带呈不规则或面状,为原岩中变质或深熔(岩浆)成因的继承锆石;绝大多数锆石幔部为一层窄而亮的增生边,属变质成因;相对幔部,边部发光性相对较弱,宽度较幔部稍厚,环带多呈宽板状或面状,可能为另一期变质作用产物(吴元保和郑永飞, 2004).

        选择26颗锆石进行了30个点的U-Pb同位素年龄测定,结果见表 1图 4b.这些锆石具有较高的Th、U含量及较大的Th/U值变化范围(Th:1.7×10-6~666×10-6和U:70×10-6~2 784×10-6,0.01~1.43).分析点大多位于核部发育韵律环带的岩浆锆石,少量位于环带较宽,发光性不强的边部区域,获得29个比较谐和的年龄值.其中,6个分析点位于锆石最外层暗色增生边,Th/U值均为0.01,206Pb/238U年龄为227~234 Ma,加权平均年龄为230.2±2.9 Ma(MSWD=1.3);19个继承锆石分析点U-Pb年龄为610~2 827 Ma,Th/U值为0.10~1.43,大多属岩浆锆石,900~1 100 Ma的分析点约占40%(即~1.0 Ga年龄谱峰).另有4个分析点206Pb/238U年龄为307~405 Ma,推测这组年龄可能为加里东期锆石受后期事件扰动所致.

        样品D116-3浅色体中锆石形态多为柱状自形晶体,少量呈浑圆状,锆石粒径为50~150 μm,长宽比约为1:1~4:1,以2:1者居多.锆石内部结构复杂,普遍含继承核(图 3c),阴极发光图像中可见两类发光强度不同的锆石,一类发光性强,整体呈灰白色,发育核-边结构,核部锆石发育韵律环带,自形程度较好,为深熔作用产物;边部发光性相对弱,整体暗灰色,可能为变质作用产物.另一类锆石发光较弱,呈灰黑色,发育核-幔-边结构,核部发光性差异较大,多呈浑圆状,发育板状环带,反映其经历了复杂的演化过程;幔部为一层窄而亮的增生边,属变质成因;边部呈灰黑色或黑色,发育宽板状环带或无环带,可能为变质作用产物.

        选择27颗锆石进行了31个点的U-Pb同位素年龄测定,结果见表 1图 4c.这些锆石具有较大的Th、U含量及Th/U值变化范围(Th:5.7×10-6~1 470×10-6和U:103×10-6~991×10-6,Th/U值为0.01~2.52).分析点多位于清晰的韵律环带,少量位于发育宽板状环带的残留核部,获得22个谐和的年龄值(227~2 425 Ma).其中7个分析点的年龄为805~2 425 Ma,位于锆石核部,为原岩残留锆石结晶或变质年龄.剩余15个点206Pb/238U年龄为227~235 Ma(Th/U值为0.01~0.8),加权平均年龄为230.7±1.3 Ma(MSWD=0.79),代表变质-深熔作用年龄.

        15个印支期锆石年龄值中,4颗锆石(点号12、15、16、17)Th/U值明显较小,为0.01~0.11(表 1图 5a),对应分析点位均位于具有核-幔-边结构的暗色边区域,加权平均年龄为229.6±2.1 Ma(MSWD=1.07).其他11颗锆石Th/U值均大于0.1(表 1图 5a),对应分析点位于韵律环带边部,稀土元素配分曲线特征一致,具岩浆锆石特征(雷玮琰等, 2013),加权平均年龄为231.3±1.6 Ma(MSWD=0.87).两类锆石稀土配分曲线具明显差别,前者轻稀土变化无明显规律,后者变化趋势一致,且前者重稀土配分曲线相对后者陡倾(图 5b),暗示二者存在成因上的差别,前者可能属混合岩化早期(半深熔或高级区域变质阶段)产物,后者则为深熔阶段产物.高级区域变质和地壳深熔作用是连续、长期的过程,锆石U-Pb年龄区间通常反映了高级区域变质(混合岩化)作用的持续时间.半深熔(高级区域变质)阶段生成的锆石206Pb/238U表面年龄为228~232 Ma,而高度深熔阶段为227~235 Ma,表明二者应为同一期次不同程度变质作用的产物.

        图  5  样品D116-3变质锆石与深熔锆石Th/U值(a)和稀土配分曲线(b)

        Figure 5.  Th/U ratios and REE distribution pattern of the metamorphic and anatectic zircons from sample D116-3

        样品15BR04中锆石形态多为短柱状自形晶体,少量呈浑圆状,锆石颗粒粒径为80~200 μm,长宽比约为1:1~4:1,以2:1者居多.阴极发光图像中绝大多数锆石发育核-边结构,少量发育核-幔-边结构(图 3d).发育核-边结构的锆石核部自形程度较好,发光性强,为早期深熔作用产物.围绕早期锆石的增生边,呈暗黑色,为后期构造-热事件或流体叠加作用的产物(Rowley et al., 1997; Mojzsis et al., 2002).

        选择19颗锆石进行了24个点的U-Pb同位素年龄测定,结果见表 1图 4d.这些锆石具有较高的Th、U含量及较大的Th/U值变化范围(Th:97.4×10-6~3 416×10-6和U:519×10-6~26 617×10-6,Th/U值为0.02~0.8).分析点位于发光性较强的环带边部或暗色增生边,获得13个谐和的年龄值(244~526 Ma).其中10个谐和点206Pb/238U年龄为455~467 Ma(Th/U值为0.4~0.8),加权平均年龄为459.5±2.7 Ma(MSWD=1.10),代表花岗质片麻岩原岩的结晶年龄.1号分析点年龄值为244±1.8 Ma(Th/U值为0.03),位于暗色增生边,应为流体作用的产物.11号分析点年龄值为536±4.7 Ma(Th/U值为0.48),位于发光性较强的环带边部,可能为原岩残留岩浆锆石结晶年龄.18号分析点年龄值为271±3.4 Ma(Th/U值为0.02),跨越明暗程度稍有差异的两条暗色增生边,应为混合年龄.表 1图 4d显示,样品15BR04中含较多海西-印支期谐和度较差的年龄数据,这些分析点位于暗色增生边,U含量极高,低Th/U值,结合1号和18号分析点年龄笔者认为,该样品记录了印支期热液活动对加里东期锆石的改造,暗色边不谐和的年龄可能因流体改造不彻底所致(焦骞骞等, 2017).

        样品ID7-3中锆石特征复杂,有自形粒柱状和浑圆状两类.粒径为80~250 μm,长宽比约为1:1~5:1,以2:1~3:1者居多.部分自形锆石具有核-边结构,核部为暗色弱环带或韵律环带,边部为窄而密的韵律环带,类似岩浆锆石特征;另一部分半自形-自形锆石具核-幔-边结构,核部为暗色弱环带,幔部为窄而密的韵律环带,边部为极暗色弱环带(图 3e),边部可能是后期遭受热液作用的结果;浑圆状锆石发育复杂的环带,且多被锆石边缘切割,显示曾遭受搬运磨蚀过程.对不同类型锆石完成了42个分析点,结果见表 1图 4e.42个年龄值可分为3组:(1)2 635~583 Ma,这组锆石均为继承锆石核或显示碎屑锆石特征,可代表混合岩原岩碎屑锆石特征,16个测点年龄主峰为~969 Ma;(2)468~409 Ma,加权平均年龄为428.8±3.9 Ma(MSWD=2.6),结合锆石CL图像可知,这组锆石Th/U比值可截然分为0.01~0.29和0.21~0.86两类,分别为变质成因和深熔成因;(3)235~221 Ma,加权平均年龄为229.2±5.4 Ma(MSWD=6.7),这些分析点均位于弱环带增生边,属变质成因.

        样品ID7-5中锆石多呈自形-半自形,长轴100~200 μm,长宽比1.5~3.0,发育核-边结构,继承核环带特征复杂,而边部主要为浅色窄密的韵律环带,具岩浆锆石特征(图 3f).该样品完成20个分析点,结果见表 1图 4f.20个分析点年龄中有16个集中在237~222 Ma,加权平均年龄为229.7±2.7 Ma(MSWD=4.2);其余4个分析点年龄为440~431 Ma和734 Ma.

      • 云开地块变质岩样品1431-1、1432-1、D116-3和ID7-3锆石原位Hf同位素分析结果见表 2.样品1431-1中25颗加里东期锆石176Hf/177Hf值为0.282 294~0.282 639、176Lu/177Hf值为0.000 86~0.002 76,εHf(t)大多为负值,少量为正值(-7.7~+4.2,平均值为-1.4),两阶段Hf模式年龄(TDM2)为1.16~1.91 Ga.

        点号年龄(Ma)176Hf/177Hf2σ176Lu/177Hf176Yb/177HfεHf(t)TDM1(Ma)TDM2(Ma)fLu/Hf
        1431-1(眼球状混合片麻岩)
        014480.282 4680.000 0150.001 7530.046 160-1.41 1321 520-0.95
        024340.282 2940.000 0180.001 0410.026 061-7.71 3551 905-0.97
        034450.282 4370.000 0200.001 4180.037 749-2.51 1671 585-0.96
        044500.282 6240.000 0160.002 2800.059 9294.09211 178-0.93
        054420.282 4280.000 0150.001 2350.031 850-2.81 1731 603-0.96
        064290.282 4370.000 0160.001 4950.038 807-2.81 1681 594-0.95
        074270.282 5910.000 0170.002 5630.068 9422.39771 268-0.92
        084440.282 3200.000 0150.000 8790.022 018-6.51 3131 837-0.97
        094440.282 6390.000 0320.002 7620.072 8824.29121 157-0.92
        104320.282 4990.000 0150.001 8870.048 346-0.71 0911 461-0.94
        114400.282 3420.000 0130.000 8600.021 631-5.81 2821 790-0.97
        124240.282 4780.000 0120.001 5270.039 823-1.51 1111 507-0.95
        134360.282 5630.000 0160.002 4700.062 2801.51 0161 326-0.93
        144460.282 5880.000 0170.002 4270.063 4462.69781 264-0.93
        154390.282 5660.000 0220.002 2090.057 8461.71 0031 312-0.93
        164480.282 4720.000 0140.001 3200.032 147-1.21 1131 502-0.96
        174260.282 3500.000 0160.001 3160.033 605-5.91 2861 789-0.96
        184380.282 4850.000 0150.001 8250.048 092-1.11 1101 488-0.95
        194450.282 4170.000 0170.001 2230.031 860-3.11 1881 625-0.96
        204500.282 4960.000 0150.002 0400.053 560-0.51 1011 461-0.94
        214390.282 4160.000 0210.001 7650.046 068-3.41 2071 641-0.95
        234360.282 4390.000 0150.001 3180.034 035-2.61 1601 583-0.96
        244510.282 4920.000 0140.001 5250.039 717-0.41 0911 460-0.95
        254460.282 5210.000 0150.001 8720.049 3390.41 0591 403-0.94
        264430.282 4480.000 0140.001 4090.037 540-2.11 1501 560-0.96
        1432-1(条带状混合片麻岩)
        012280.281 9360.000 0480.000 2620.006 999-24.61 8162 816-0.99
        021 6560.281 5580.000 0140.000 5640.014 335-6.82 3462 772-0.98
        031 1500.281 8360.000 0140.000 4070.009 754-8.01 9602 464-0.99
        042340.282 2570.000 0180.000 2240.006 124-13.11 3772 098-0.99
        052 3130.281 7230.000 0160.002 0100.049 76811.62 2032 143-0.94
        068630.281 6350.000 0120.001 3000.034 471-21.92 2853 117-0.96
        071 0500.282 2420.000 0220.001 9060.050 2513.11 4611 692-0.94
        089600.282 1540.000 0160.000 7040.018 665-1.11 5371 890-0.98
        092270.282 0110.000 0280.000 2680.006 986-22.01 7152 652-0.99
        122300.282 3120.000 0150.000 1430.003 990-11.31 2991 978-1.00
        132 2280.281 2220.000 0110.000 2960.008 632-5.52 7813 128-0.99
        142280.282 2980.000 0120.000 5140.013 413-11.81 3302 012-0.98
        154050.282 2600.000 0150.000 4050.009 098-9.31 3791 987-0.99
        162 8270.280 8830.000 0320.000 2680.007 300-3.83 2293 482-0.99
        176100.282 3820.000 0160.000 7970.021 576-0.71 2231 595-0.98
        199170.282 1450.000 0240.001 1890.031 299-2.71 5691 955-0.96
        219530.282 6190.000 0160.001 0400.025 76615.0898866-0.97
        229910.281 9880.000 0130.000 9020.023 044-6.51 7752 248-0.97
        256140.282 3900.000 0220.000 5940.014 459-0.21 2061 571-0.98
        261 0090.282 0230.000 0160.000 7790.020 820-4.71 7202 153-0.98
        273970.282 4090.000 0150.000 7780.021 401-4.31 1851 663-0.98
        281 0010.282 1780.000 0140.000 7460.019 8670.61 5051 812-0.98
        299710.282 6900.000 0200.003 4440.094 07316.4852793-0.90
        302320.282 2510.000 0170.000 1150.003 486-13.31 3812 111-1.00
        D116-3(混合岩)
        012300.282 8180.000 0170.001 0680.027 2946.5616847-0.97
        021 0150.282 2340.000 0130.001 0930.030 8142.71 4411 694-0.97
        032320.282 7530.000 0210.001 3740.035 7604.2715996-0.96
        051 6120.281 8770.000 0170.000 6710.017 8973.51 9172 103-0.98
        062340.282 9230.000 0160.001 6210.042 23010.2474612-0.95
        072470.282 6190.000 0110.000 4160.010 888-0.18841 281-0.99
        082330.282 5420.000 0120.000 2290.006 513-3.09851 459-0.99
        092270.282 5370.000 0170.000 7260.016 422-3.41 0051 480-0.98
        112320.282 5710.000 0300.001 1730.028 255-2.29691 404-0.96
        122320.282 4200.000 0140.000 9770.023 338-7.51 1771 743-0.97
        152280.282 4010.000 0350.001 6270.038 922-8.41 2241 793-0.95
        172280.282 3300.000 0270.001 0350.026 165-10.81 3041 946-0.97
        209610.282 2570.000 0150.000 6120.015 6392.61 3911 655-0.98
        222340.282 5160.000 0110.000 1280.003 789-4.01 0191 518-1.00
        272320.282 6830.000 0100.000 8060.022 6991.88031 150-0.98
        282290.282 4320.000 0200.000 1320.003 970-7.01 1351 710-1.00
        312350.282 6170.000 0180.000 5650.016 434-0.48901 295-0.98
        ID7-3(条带状混合岩)
        0126130.281 2830.000 0130.001 0970.024 8744.12 7552 839-0.97
        032350.282 1550.000 0110.000 0900.002 561-16.71 5112 324-1.00
        044270.282 3970.000 0140.001 3440.035 268-4.31 2211 684-0.96
        052330.282 2120.000 0100.000 0160.000 532-14.71 4312 198-1.00
        084280.282 5130.000 0090.002 1360.050 505-0.41 0791 437-0.94
        094330.282 3750.000 0080.000 9560.023 856-4.81 2391 723-0.97
        114270.282 3410.000 0120.000 7910.019 131-6.11 2801 798-0.98
        124290.282 3250.000 0110.000 9620.023 720-6.61 3081 836-0.97
        142210.282 1900.000 0240.000 2750.006 514-15.81 4712 257-0.99
        154460.282 3990.000 0100.001 0950.026 459-3.71 2101 664-0.97
        174400.282 3920.000 0100.001 2560.029 347-4.11 2241 685-0.96
        212320.281 6910.000 0300.000 4520.011 587-33.22 1583 356-0.99
        222280.282 1280.000 0080.000 1610.004 703-17.81 5512 389-1.00
        252340.282 2160.000 0210.000 1470.004 027-14.51 4302 189-1.00
        274680.282 3920.000 0110.001 2120.030 833-3.51 2231 668-0.96
        294220.282 3600.000 0130.001 0600.025729-5.61 2631 764-0.97
        334170.282 3100.000 0130.001 1620.027 958-7.51 3371 881-0.96
        354300.282 4900.000 0140.002 0360.049 664-1.11 1091 485-0.94
        364300.282 2010.000 0120.000 8220.020 732-11.01 4772 111-0.98
        394360.282 4020.000 0120.001 2270.029 842-3.91 2101 665-0.96
        404090.282 2710.000 0100.000 7350.019 771-8.91 3761 965-0.98
        414430.282 3610.000 0110.001 0500.025 305-5.11 2611 749-0.97
        422310.282 2380.000 0330.000 0220.000 762-13.81 3952 140-1.00

        表 2  云开地块变质岩锆石Lu-Hf同位素分析结果

        Table 2.  Zircon Lu-Hf isotopic compositions of metamorphic rocks in Yunkai massif

        样品1432-1中锆石的Hf同位素组成比较复杂,24个分析点176Hf/177Hf值为0.280 883~0.282 690、176Lu/177Hf值为0.000 115~0.000 514,εHf(t)大多为负值,少量为正值(-24.6~+16.4,平均值为-5.2),单阶段Hf模式年龄(TDM1)为0.85~3.23 Ga,两阶段Hf模式年龄(TDM2)为0.79~3.48 Ga.其中2颗格林威尔期锆石残留核的εHf(t)分别为+15和+16.4,单阶段Hf模式年龄(TDM1)分别为898 Ma和852 Ma.6颗印支期变质锆石的176Hf/177Hf值为0.281 936~0.282 312、176Lu/177Hf值为0.000 115~0.002 76,εHf(t)均为负值(-24.6~-11.3,平均值为-16.0),两阶段Hf模式年龄(TDM2)为1.98~2.82 Ga.

        样品D116-3中1颗中元古代锆石176Hf/177Hf值为0.281 877,εHf(t)值为+3.5,两阶段Hf模式年龄(TDM2)为2.10 Ga.2颗新元古代锆石176Hf/177Hf值分别为0.282 234和0.282 257,εHf(t)值分别为2.7和2.6,两阶段Hf模式年龄(TDM2)分别为1.69和1.66 Ga.3颗印支期变质锆石176Hf/177Hf值为0.282 330~0.282 420、176Lu/177Hf值为0.000 977~0.001 627,εHf(t)为负值(-10.8~-7.5,平均值为-8.9),两阶段Hf模式年龄(TDM2)为1.74~1.95 Ga.10颗印支期深熔锆石176Hf/177Hf值为0.282 432~0.282 923、176Lu/177Hf值为0.000 128~0.001 621,εHf(t)值有正有负(-7~+10.2,平均值为0.27),两阶段Hf模式年龄(TDM2)为0.61~1.71 Ga.

        样品ID7-3锆石176Hf/177Hf值变化范围大,表明其原岩物源复杂.最老的1颗新太古代锆石具有最低的176Hf/177Hf值(0.281 283),εHf(t)值为+4.1,单阶段Hf模式年龄(TDM1)为2.76 Ga,两阶段Hf模式年龄(TDM2)为2.84 Ga.最主体的加里东期锆石,15个分析点176Hf/177Hf值为0.282 201~0.282 513、176Lu/177Hf值为0.000 735~0.002 136,εHf(t)值为-11~-0.4,平均值为-5.11.两阶段Hf模式年龄(TDM2)为1.44~2.11 Ga.印支期锆石176Hf/177Hf值为0.281 691~0.282 238、176Lu/177Hf值为0.000 016~0.000 452,εHf(t)值为-33.2~-13.8,平均值为-18.1.两阶段Hf模式年龄(TDM2)为2.14~3.36 Ga.

      • 显生宙多期构造运动、变质变形及混合岩化作用的综合影响,使云开地块变质基底岩系天堂山岩群/高州表壳岩(高州杂岩)和云开岩群在变质程度和岩性方面存在较大差异.天堂山岩群以混合岩、副片麻岩(局部麻粒岩)等岩性为主,变质程度相对较高;云开(岩)群以片岩、板岩、千枚岩等岩性为主,夹少量碳酸盐岩和基性-酸性火山岩,变质程度相对较低(覃小锋等, 2006; Wan et al., 2010).长期以来,天堂山岩群和云开(岩)群的原岩属性及其相互关系存在争议,其根源在于二者形成时代不明,包括新太古代、古元古代-新元古代及早古生代等(覃小锋等, 2006; Wan et al., 2010; Yu et al., 2010; Wang et al., 2011; 龙文国等, 2012; Zhang et al., 2012; 王磊等, 2015; 周雪瑶等, 2015; 韩坤英等, 2017).据广东和广西两省最新的研究成果,前者将云开地区前寒武纪变质地层统一为云开(岩)群,时代划归中-新元古代;后者则将云开地区变质地层划分为古元古界天堂山岩群和中元古界云开群,地层层序上云开(岩)群位于天堂山岩群上部.

        样品1432-1和ID7-3分别采集于天堂山和高州地区,岩性为混合片麻岩或混合岩,属天堂山岩群物质.两个样品中除了获得加里东期或印支期变质或深熔年龄外,还各获得一组碎屑锆石年龄,样品1432-1中19个年龄值区间为2 827~610 Ma,900~1 100 Ma的分析点约占40%(即~1.0 Ga年龄主峰);样品ID7-3中16个年龄区间为2 635~583 Ma,年龄主峰为~969 Ma.阴极发光特征和Th/U值显示,两组锆石均为继承锆石核或显示碎屑锆石特征,可代表混合岩原岩碎屑锆石特征.Wan et al.(2010)在云开群(G0104-1:二云母片麻岩和G0103-1:石英云母片岩)中各获得一组碎屑锆石年龄,分别为2.77~0.80 Ga、2.2~0.7 Ga,年龄值集中分布于1 200~800 Ma和1 100~800 Ma;Yu et al.(2010)在罗定地区云开群(片麻岩:YK-27)中获得碎屑锆石年龄为2.65~0.70 Ga,其主峰为~1.0 Ga;周雪瑶等(2015)在云开(岩)群(YK-10-1:变质长石石英砂岩)和天堂山岩群(YK-16-1:条纹状黑云母片麻岩)分别获得碎屑锆石年龄3.59~0.63 Ga、2.85~0.52 Ga,主峰分别为~980 Ma和~981 Ma;周岱等(2017a)在云开群两个石英岩中(GZ1407-3和,GZ1410-1)分别获得碎屑锆石年龄2.91~0.77 Ga、2.71~0.57 Ga,主峰分别为~981 Ma和~974 Ma;龙文国等(2012)在云开(岩)群黑云斜长片麻岩中(1017-1)获得碎屑锆石年龄2.54~0.65 Ga,其主峰为~1.0 Ga;王磊等(2015)分别在天堂山岩群片麻状斑状变粒岩(YK1016)、混合岩(YK1014)和云开(岩)群黑云斜长片麻岩(YK1017-1)中均获得~1.0 Ga碎屑锆石年龄主峰;韩坤英等(2017)分别在天堂山岩群二云母石英岩(5-1)、黑云斜长片麻岩(13330-4-1)、石榴夕线黑云斜长片麻岩(3-1)和云开群绿帘白云母片岩(D6-1)中均获得早古生代-太古代碎屑锆石年龄,年龄主峰分别为~933 Ma、~935 Ma、~972 Ma和~964 Ma.可以看出,样品1432-1和ID7-3与云开(岩)群变质岩继承锆石年龄谱可对比,二者原岩应具有与云开(岩)群类似的物质组成,形成时代为早古生代-新元古代;也暗示天堂山岩群与云开(岩)群的原岩具有相同或类似的物质组成和形成时代(Wang et al., 2007c; Wan et al., 2010; Yu et al., 2010; 韩坤英等, 2017).显生宙以来的构造运动,特别是加里东期和印支期造山作用,使具有相同或类似物质组成的天堂山岩群和云开(岩)群处于不同深度地壳层次,接受不同的温压条件改造,从而造成二者现今变质程度和物质面貌的差异.

      • 锆石形成时的εHf值可以代表源区的Hf同位素组成.岩浆锆石代表岩浆源区Hf同位素组成,可为壳幔演化作用提供重要信息;碎屑锆石代表沉积岩源区物质的Hf同位素组成(陈道公等, 2007);变质增生锆石由于成因复杂,其Hf同位素组成的意义取决于锆石形成的具体机制(Zheng et al., 2005; 丘志力等, 2008),一般代表了变质环境的Hf同位素组成(陈道公等, 2007).变质锆石Lu-Hf同位素组成主要受原岩性质、变质作用、流体活动、同期形成矿物及体系开放程度等因素控制(吴元保和郑永飞, 2004; 陈道公等, 2007; 董春艳等, 2009; 钱加慧等, 2013; 殷小艳等, 2015).

        锆石Hf同位素相关图表见图 6.锆石CL图像显示,加里东期和印支期变质年龄点均位于锆石最外层的暗色边,应属变质增生成因.4个样品中,加里东期和印支期锆石εHf值差异较大,前者分布相对集中,后者则相对分散(图 6a),暗示加里东期和印支期变质-深熔作用过程存在一定差异.加里东期变质和深熔锆石176Lu/177Hf和176Hf/177Hf之间存在正相关关系,176Lu/177Hf值变化较大,176Hf/177Hf值变化较小(图 6b),暗示这些样品原岩应为变沉积岩(陈道公等, 2007),与样品1432-1和ID7-3锆石特征和年龄谱得出的结论一致.两类锆石Lu/Hf变化范围和趋势基本一致且对应样品中基本未见石榴子石等矿物,表明变质和深熔过程中体系均保持相对封闭,二者同位素组成未明显受同期副矿物的影响,应继承了原岩的同位素组成特征.

        图  6  云开地区变质岩锆石Hf同位素图解

        Figure 6.  Hf isotopic diagrams of zircon from metamorphic rocks in Yunkai region

        与加里东期锆石相似,印支期锆石176Lu/177Hf和176Hf/177Hf之间存在正相关,176Lu/177Hf值变化较大,176Hf/177Hf值变化较小,但其176Lu/177Hf值整体稍偏小(图 6b),可能反映了Lu-Hf同位素衰变体系的影响.从加里东期到印支期,岩石中放射性元素Lu的衰变导致其含量降低,从而造成体系中176Lu/177Hf值整体变小.印支期锆石Hf同位素组成也存在一定差异(图 6b),深熔锆石176Hf/177Hf值较变质锆石稍高;但相对加里东期锆石,印支期变质锆石Hf同位素水平未发生显著变化,表明这种现象可能主要由变质作用和深熔作用的差异所致.根据锆石Hf同位素示踪原理,如果体系在锆石形成前后未发生明显的成分变化,所测定的176Hf/177Hf值基本代表了锆石形成时体系的Hf同位素组成(吴福元等, 2007).在局部相对封闭的体系中,变质增生(或重结晶)作用形成的锆石基本继承了原岩的Hf同位素组成,而深熔锆石结晶于熔体中,深熔(部分熔融)过程中,同期新生地壳物质的加入或早期源于亏损地幔的基性岩类的重熔都可能会造成深熔锆石Hf同位素组成升高.云开地块及周边少量分布印支期基性侵入岩(赵国英等, 2016)、加里东期基性岩(Wang et al., 2013c; 周岱等, 2017b)及基底变质岩系中广泛存在的新元古代新生地壳物质(Li et al., 2014)为较好地解释这种现象提供了佐证.

        图 6c显示,加里东期变质锆石εHf值均小于0,对应TDM2区间为1.4~2.2 Ga;深熔锆石εHf值大多小于0,少量大于0,对应TDM2区间为1.1~2.0 Ga.印支期变质锆石εHf值均小于-5,对应TDM2区间主体为1.7~2.4 Ga,少量大于2.5 Ga;深熔锆石εHf值大多小于0,少量大于0,对应TDM2区间为1.0~1.8 Ga.说明云开地块地壳在加里东期改造的基础上进行了再次改造,以古-中元古代为主的地壳物质参与了加里东期和印支期变质-深熔作用.在加里东期和印支期深熔作用过程中,均有少量幔源物质的加入,印支期幔源物质的贡献相对更显著.

      • 通过对云开地区前寒武纪变质基底岩系和花岗岩脉中锆石进行U-Pb定年,在4个副变质岩、1个正变质岩和1个花岗岩样品共获得7组谐和年龄,其加权平均年龄分别为440.3±3.3 Ma(1431-1)、230.2±2.9 Ma(1432-1)、230.7±1.3 Ma(D116-3)、459.5±2.7 Ma(15BR04)、431.5±4.3 Ma和229.2±5.4 Ma(ID7-3)、229.7±2.7 Ma(ID7-5)(图 4),属加里东期和印支期;样品1431-1中锆石普遍发育浅色薄层变质增生边;样品15BR04中锆石普遍发育暗色增生边及其中获得后加里东期变质年龄;以上锆石年龄及其微观特征表明云开地块在加里东期构造运动基础上,受到印支期变质-深熔作用叠加改造,且发育小规模岩浆活动.

        利用本研究和已公开发表的数据,统计云开地块周缘断裂带和中高级变质岩区印支期变质-深熔事件年龄,综合样品岩性、定年方法、定年矿物及其成因矿物学特征,将这些年龄划分为3大类,分别代表区域变质(或深熔)作用、构造变形及流体活动3种成因指示意义(表 3).

        样号岩性采样位置数据来源定年方法年龄(Ma)成因分类
        1432-1混合片麻岩信宜230.2±2.9区域变质
        D116-3混合岩罗定229.6±2.1(或深熔)
        D116-3混合岩罗定本文LA-ICPMS锆石U-Pb231.3±1.6作用
        ID7-3条带状混合岩高州229.2±5.4流体活动
        15BR04花岗质片麻岩北流炳荣244.0±1.8
        GD-131基性麻粒岩钦州那蒙238.0±8.0
        GD-132基性麻粒岩钦州大寺SHRIMP锆石U-Pb244.0±7.0
        GD-4含石榴子石角闪岩高州谢鸡Wang et al., 2012230.0±6.0
        YK-13斜长角闪岩容县黎村248.0±6.0
        YK-9A混合岩化角闪岩信宜金垌221.0±4.0
        09YK-8B正片麻岩信宜Wang et al., 2011LA-ICPMS锆石U-Pb203.0±10.0
        09YK-12正片麻岩容县黎村239.0±6.0
        02YK-42正片麻岩电白Wang et al., 2007dSHRIMP锆石U-Pb236.0±3.0
        L114矽线石榴堇青片麻岩云开Wan et al., 2010242.0±8.0
        GZ-0307片麻状混合岩高州云炉Wang et al., 2013bLA-ICPMS锆石U-Pb241.0±3.0
        GZ-08正片麻岩高州云炉238.0±4.0
        GZ-03紫苏花岗岩高州云炉Chen et al., 2012电子探针独居石U-Th-Pb231.0±9.0
        23GX-11副片麻岩高州云炉237.0±13.0
        23GX04黑云母片麻岩高州Chen et al., 2017LA-ICPMS锆石U-Pb229.0±10.0区域变质
        11GD04黑云母片麻岩高州245.0±5.0(或深熔)
        11GD01片麻状花岗岩高州233.0±4.0作用
        11GDGZA1片麻状花岗岩高州233.0±5.0
        23GX04黑云母片麻岩高州237.0±3.0
        23GX05-2黑云母片麻岩高州234.0±5.0
        23GX15二云母片麻岩高州236.0±4.0
        11GD06二云母片麻岩高州Chen et al., 2017电子探针独居石U-Th-Pb240.0±4.0
        11GD07片麻状花岗岩高州233.0±11.0
        23GX13-2黑云母片麻岩高州~240.0
        23GX14石榴石电气石片岩高州236.0±8.0
        11GD03石榴石电气石片岩高州244.0±11.0
        11GD04黑云母片麻岩高州236.0±5.0
        11GD05黑云母片麻岩高州239.0±6.0
        --泥质麻粒岩钦州旧州赵亮等,2010LA-ICPMS锆石U-Pb253.0±3.0
        hdt-2基性麻粒岩钦州大龟山彭松柏等,2004SHRIMP锆石U-Pb248.0±6.0
        Datong 1糜棱岩合浦213.0±4.0
        Datong 2糜棱岩合浦Zhang and Cai, 2009白云母Ar-Ar212.0±3.0
        Hetai 1糜棱岩北流199.0±1.0
        Hetai 2糜棱岩北流195.0±1.0
        02YK-27糜棱状花岗岩信宜230.0±1.0
        02YK-30花岗质糜棱岩信宜白石225.0±1.0
        02YK-38糜棱状片麻岩高州222.0±1.0
        02YK-74糜棱状副片麻岩信宜228.0±1.0
        02YK-39糜棱状混合岩高州谢鸡225.0±1.0
        02YK-09糜棱状片麻岩阳春208.0±1.0
        02YK-12糜棱状片麻岩阳春Wang et al., 2007c黑云母Ar-Ar209.0±1.0
        02YK-15糜棱岩阳春永宁212.0±1.0构造变形
        02YK-56花岗质糜棱岩博白219.0±1.0
        02YK-64糜棱岩容县黎村211.0±1.0
        02YK-80糜棱状花岗岩罗定榃滨209.0±1.0
        02YK-26糜棱状片麻岩信宜钱排214.0±1.0
        02YK-31糜棱状花岗岩信宜白石217.0±1.0
        G13Y1片岩罗定泗纶彭少梅等,1996白云母Ar-Ar249.0±3.0
        G03Y1片理化片麻状花岗岩阳春229.0±2.0
        G13Y1混合岩罗定泗纶250.0±3.0
        G12Y2石英片岩质糜棱岩分界邵建国等,1995白云母Ar-Ar255.0±3.0
        G03Y1糜棱状花岗岩永宁229.0±3.0
        Jiangshan1绢云母千糜岩防城江山丁汝鑫等,2015绢云母Ar-Ar244.8±0.6
        Jiangshan2绢云母千糜岩203.9±1.7
        14HT060糜棱岩河台金矿焦骞骞等,2017LA-ICPMS锆石U-Pb240.1±4.1流体活动
        14HT111糜棱岩河台金矿204.1±4.3

        表 3  云开地区印支期变质年龄统计表

        Table 3.  Summary of Indosinian metamorphic ages in Yunkai region

        第1类年龄利用锆石U-Pb或者独居石U-Th-Pb定年方法获得,对应的样品为中高级变质岩(含麻粒岩),代表区域中下地壳层次物质变质(或深熔)作用年龄.33个年龄值分布区间为253~203 Ma,主体为245~228 Ma(图 7a).云开地块周缘基性和泥质麻粒岩变质年龄为253~238 Ma(彭松柏等, 2004; 赵亮等, 2010; Wang et al., 2012),代表区域造山作用峰期变质年龄.焦淑娟等(2013)通过研究大容山-十万大山麻粒岩包体中变质矿物组合,获得顺时针P-T轨迹.样品1432-1(混合片麻岩)、D116-3(混合岩)、ID7-3(条带状混合岩)、ID7-5(花岗岩)分别获得230.2±2.9 Ma、230.7±1.3 Ma、229.2±5.4 Ma、229.7±2.7 Ma锆石U-Pb年龄,代表印支期近同时的变质、深熔和岩浆作用,暗示~230 Ma可能是云开地块构造体制转换的时间节点(Wang et al., 2012).于津海等(2007a)认为包括云开地块在内的华夏地块印支期变质作用以中低压变质相系为特征,印支期变质岩应属造山作用晚期产物.综合上述资料推断,早于253 Ma,云开地块开始区域造山作用;253~230 Ma,区域造山作用使云开地块被加里东期构造运动改造的具有相同或类似物质和年龄组成的天堂山岩群和云开(岩)群再次就位于中下地壳不同层次,由于地壳增厚,温压升高,这些物质发生中高级变质作用(局部麻粒岩相变质作用),形成各类变质岩;230 Ma及以后,造山带垮塌,快速抬升伸展揭顶导致迅速等温减压,原处于中下地壳层次的物质发生深熔和岩浆作用,形成混合岩和花岗岩.

        图  7  云开地区印支期不同类型变质年龄分布直方图

        Figure 7.  Histograms of differetnt types of Indosinian metamorphic age in Yunkai region

        第2类年龄利用云母Ar-Ar定年方法获得,对应的样品多为构造岩,属中上地壳层次物质,代表区域断裂构造或韧性剪切带活动年龄.24个年龄值分布区间为255~195 Ma,主体为230~205 Ma(图 7b).Wang et al.(2007c)认为云开地块周缘区域性断裂(或韧性剪切带)主要是在印支期造山作用下经过约248~220 Ma和220~200 Ma两期构造活动形成.徐先兵等(2009)认为华南地区印支期构造事件发生在中、晚三叠世(245~225 Ma),构造运动的形迹主要表现为近东西向褶皱和冲断推覆构造以及NE-NNE向左旋走滑韧性剪切.龚贵伦等(2010)认为云开地块及周缘三叠纪末印支运动的主应力为SN向左旋挤压,整个区域强烈造山,形成一系列NE-NNE向的褶皱和断裂,例如防城-灵山断裂、罗定-广宁断裂、吴川-四会断裂.因此,云开地块早期的构造(或韧性剪切带)活动持续时间可能为250~220 Ma,运动性质为左旋;对于晚期220~200 Ma的构造活动,其运动性质目前仍存争议.徐先兵等(2009)将其视为早期(约250~220 Ma)构造活动的延续,Wang et al.(2007c)认为其运动性质仍为左旋运动.Zhang and Cai(2009)蔡建新(2012)丁汝鑫等(2015)则认为220~200 Ma云开地块周缘区域性断裂(或韧性剪切带)的运动性质为右旋.焦骞骞等(2017)获得河台地区韧性剪切带活动时间为194 Ma,其中发现大量右旋运动标志,据此认为,220~200 Ma构造活动的运动性质与早期(约250~220 Ma)相比已发生变化,构造应力由SN向左旋挤压转为SN向右旋挤压并形成右旋韧性剪切带(龚贵伦等, 2010).总的来看,云开地块周缘断裂构造活动时限为250~200 Ma,主体年龄稍晚于变质(或深熔)作用主体年龄,这是由于云母比锆石、独居石等矿物封闭温度低造成,因此有的研究认为在云开地块印支期造山作用过程中,区域构造变形和区域变质作用大致是同时发生的(Wang et al., 2012).

        第3类年龄利用锆石U-Pb定年方法获得,对应的样品相对复杂,有中高级变质岩,也有构造岩,均采集于区域性断裂附近,其对应的锆石样品均具CL图像颜色深、Th/U值低,U含量极高等特征,代表区域流体活动年龄(Rowley et al., 1997; Mojzsis et al, 2002).该类年龄对应的样品较少,3个年龄值分为~200 Ma和~240 Ma两类.虽然3个年龄值统计不具代表性,但至少可以说明云开地块周缘断裂带内存在两期流体活动,且这两类年龄值分别处于云开地块两期构造活动时限内,应代表云开地块区域构造活动所伴随的流体活动记录.

        以上表明云开地块加里东期不同层次的地壳物质叠加了印支期区域变质(深熔)-构造-流体作用影响,区域变质作用、深熔作用和流体活动同时进行,且伴随小规模岩浆活动.由于尚未发现印支期大规模岩浆活动,印支期构造运动在云开地块内的表现可能较加里东期构造运动弱.此外,云开地块虽出露较多燕山期侵入岩,但其周缘断裂带内以印支期变质年龄记录为主,表明云开地块现今的构造格局可能主要由印支期构造运动塑造,后印支期构造运动的影响程度较小.

      • (1) 云开地块基底变质岩系天堂山岩群与云开(岩)群具有相同或类似的物质组成,均形成于早古生代-新元古代,二者存在变质程度和物质面貌的差异.

        (2) 加里东期变质和深熔锆石Lu/Hf同位素组成基本一致,应继承了原岩的同位素组成特征.印支期变质和深熔锆石Lu/Hf同位素组成不同,可能主要由变质作用和深熔作用的差异所致.以古-中元古代为主的地壳物质参与了加里东期和印支期变质-深熔作用;在加里东期和印支期深熔作用过程中,均有少量幔源物质的加入,印支期幔源物质的贡献相对稍显著.

        (3) 在云开地块基底变质岩系中获得440.3±3.3 Ma、230.2±2.9 Ma、230.7±1.3 Ma、459.5±2.7 Ma、431.5±4.3 Ma、229.2±5.4 Ma、229.7±2.7 Ma七组变质或深熔年龄.云开地块加里东期不同层次地壳物质叠加了印支期(250~200 Ma)区域变质(深熔)-构造-流体作用改造.云开地块现今的构造格局可能主要由印支期构造运动塑造,后印支期构造运动的影响程度较小.

    参考文献 (136)

    目录

      /

      返回文章
      返回