• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东喜马拉雅构造结东、西边界断裂对比及其构造演化过程

    董汉文 许志琴 曹汇 李源 刘钊 李化启 易治宇 陈希节 马绪宣 吴婵

    董汉文, 许志琴, 曹汇, 李源, 刘钊, 李化启, 易治宇, 陈希节, 马绪宣, 吴婵, 2018. 东喜马拉雅构造结东、西边界断裂对比及其构造演化过程. 地球科学, 43(4): 933-951. doi: 10.3799/dqkx.2018.701
    引用本文: 董汉文, 许志琴, 曹汇, 李源, 刘钊, 李化启, 易治宇, 陈希节, 马绪宣, 吴婵, 2018. 东喜马拉雅构造结东、西边界断裂对比及其构造演化过程. 地球科学, 43(4): 933-951. doi: 10.3799/dqkx.2018.701
    Dong Hanwen, Xu Zhiqin, Cao Hui, Li Yuan, Liu Zhao, Li Huaqi, Yi Zhiyu, Chen Xijie, Ma Xuxuan, Wu Chan, 2018. Comparison of Eastern and Western Boundary Faults of Eastern Himalayan Syntaxis, and Its Tectonic Evolution. Earth Science, 43(4): 933-951. doi: 10.3799/dqkx.2018.701
    Citation: Dong Hanwen, Xu Zhiqin, Cao Hui, Li Yuan, Liu Zhao, Li Huaqi, Yi Zhiyu, Chen Xijie, Ma Xuxuan, Wu Chan, 2018. Comparison of Eastern and Western Boundary Faults of Eastern Himalayan Syntaxis, and Its Tectonic Evolution. Earth Science, 43(4): 933-951. doi: 10.3799/dqkx.2018.701

    东喜马拉雅构造结东、西边界断裂对比及其构造演化过程

    doi: 10.3799/dqkx.2018.701
    基金项目: 

    中国地质科学院基本科研业务费项目 J1623

    国家自然科学基金项目 41430212

    中国地质科学院基本科研业务费项目 YYWF201708

    国家自然科学基金项目 41502196

    中国地质调查局地质调查项目 DD20160022

    国家自然科学基金项目 41472198

    详细信息
      作者简介:

      董汉文(1988-), 男, 副研究员, 博士, 主要从事喜马拉雅造山带构造变形及岩石大地构造方面的研究

    • 中图分类号: P542

    Comparison of Eastern and Western Boundary Faults of Eastern Himalayan Syntaxis, and Its Tectonic Evolution

    • 摘要: 为了查明东喜马拉雅构造结东、西边界断裂的关系,及其印度与欧亚板块碰撞以来东喜马拉雅构造结的构造演化过程.在综合野外填图、构造观察、代表性岩石的锆石LA-ICP-MS U-Pb测年分析及前人研究的基础上,对东构造结两条边界断裂的几何学、运动学特征进行对比,讨论了两条断裂的多期次、多阶段的变形特征,还探讨了在东构造结地区自印度板块-欧亚板块碰撞以来的演化历史.结果显示,东构造结两条边界断裂几何学和运动学非常相似,构造变形具有明显的同时代、同期次特点,共同经历从碰撞、持续俯冲-折返、直到后期垮塌-隆升等一系列重要的地质事件.

       

    • 图  1  喜马拉雅造山带地质简图(a)和东喜马拉雅构造结构造简图(b)

      许志琴等(2008)

      Fig.  1.  Simplified map of the Himalayan orogen (a) and geological sketch map of the eastern Himalayan syntaxis (b)

      图  2  东喜马拉雅构造结地质简图(a)和剖面图(b, c)

      Xu et al.(2012)

      Fig.  2.  Tectonic map (a) and cross-sections of the eastern Himalayan syntaxis (b, c)

      图  3  东喜马拉雅构造结东、西边界断裂带变形构造

      a1.拉月-迫隆乡段运动学特征;b1.鲁朗-拉月段运动学特征;c1.嘎马-米林段运动学特征;a2.甘登-加拉萨段运动学特征;b2.旁辛-达木段运动特征;c2.阿尼桥-希让段运动学特征.据许志琴等(2008)董汉文等(2014)Dong and Xu(2016)修改

      Fig.  3.  Deformation of the eastern and western boundary faults of the eastern Himalayan syntaxis

      图  4  代表性样品岩相学特征

      Qtz.石英;Pl.斜长石;Kf.钾长石;Amp.角闪石;Bi.黑云母;Grt.石榴石

      Fig.  4.  Petrographic characteristics of representative samples

      图  5  样品锆石LA-ICP-MS U-Pb年龄谐和图

      Fig.  5.  Zircon LA-ICP-MS U-Pb concordia diagrams of samples

      图  6  样品锆石LA-ICP-MS U-Pb年龄谐和图

      Fig.  6.  Zircon LA-ICP-MS U-Pb concordia diagrams of samples

      图  7  样品锆石LA-ICP-MS U-Pb年龄谐和图

      Fig.  7.  Zircon LA-ICP-MS U-Pb concordia diagrams of samples

      图  8  东喜马拉雅构造结南迦巴瓦变质体运动轨迹

      Fig.  8.  Movement of the Namche Barwa metamorphic terrane in the eastern Himalayan syntaxis

      图  9  东喜马拉雅构造结年代学数据统计

      Fig.  9.  Summary of major ages for the eastern Himalayan syntaxis

      表  1  锆石LA-ICP-MS U-Pb定年结果

      Table  1.   Zircon LA-ICP-MS U-Pb dating data

      样品 Th/U 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ
      X7-1-4
      X714.1 0.06 0.047 63 0.005 34 0.064 86 0.007 31 0.009 85 0.000 05 63.2 0.32
      X714.2 0.07 0.047 15 0.004 13 0.064 81 0.005 86 0.009 90 0.000 05 63.5 0.34
      X714.3 0.09 0.048 72 0.002 47 0.066 40 0.003 41 0.009 83 0.000 04 63.0 0.26
      X714.4 0.05 0.047 73 0.005 13 0.066 11 0.007 12 0.009 94 0.000 06 63.8 0.41
      X714.5 0.03 0.045 86 0.002 04 0.063 02 0.002 86 0.009 92 0.000 03 63.6 0.21
      X714.6 0.05 0.047 21 0.004 67 0.064 90 0.006 52 0.009 95 0.000 09 63.8 0.57
      X714.7 0.05 0.046 85 0.004 38 0.064 47 0.006 13 0.009 91 0.000 06 63.6 0.37
      X714.8 0.07 0.049 16 0.003 09 0.067 35 0.004 27 0.009 85 0.000 04 63.2 0.23
      X714.9 0.10 0.048 40 0.002 01 0.066 37 0.002 81 0.009 88 0.000 02 63.4 0.16
      X714.10 0.08 0.045 32 0.002 19 0.062 06 0.003 04 0.009 92 0.000 03 63.6 0.21
      X714.11 0.05 0.049 53 0.002 75 0.066 96 0.003 73 0.009 78 0.000 03 62.8 0.20
      X714.12 0.04 0.048 49 0.004 96 0.066 71 0.007 05 0.009 93 0.000 07 63.7 0.45
      X8-1-1
      X811.1 0.10 0.048 17 0.008 19 0.067 61 0.011 02 0.009 89 0.000 11 63.4 0.68
      X811.2 0.24 0.045 41 0.002 28 0.061 93 0.003 14 0.009 87 0.000 04 63.3 0.23
      X811.3 0.31 0.047 19 0.005 82 0.068 32 0.008 34 0.010 06 0.000 23 64.5 1.45
      X811.4 0.23 0.047 24 0.000 59 0.065 37 0.000 83 0.010 03 0.000 02 64.4 0.11
      X811.5 0.21 0.044 15 0.004 68 0.062 11 0.006 45 0.009 89 0.000 05 63.4 0.34
      X811.6 0.40 0.047 24 0.012 03 0.066 22 0.016 84 0.009 94 0.000 16 63.8 1.05
      X811.7 0.53 0.048 60 0.004 88 0.067 70 0.006 72 0.009 90 0.000 05 63.5 0.35
      X811.8 0.31 0.047 65 0.008 56 0.065 70 0.011 71 0.009 91 0.000 10 63.6 0.62
      X811.9 0.10 0.047 88 0.008 14 0.067 41 0.010 99 0.009 92 0.000 11 63.6 0.68
      X811.10 0.53 0.045 60 0.019 26 0.065 97 0.027 84 0.010 02 0.000 21 64.3 1.36
      X811.11 0.40 0.049 30 0.001 84 0.068 42 0.002 58 0.010 03 0.000 04 64.4 0.23
      X811.12 0.07 0.047 63 0.002 28 0.064 94 0.003 12 0.009 88 0.000 03 63.4 0.19
      X811.13 0.33 0.047 26 0.012 26 0.068 31 0.016 85 0.009 93 0.000 12 63.7 0.76
      X811.14 0.13 0.046 27 0.005 63 0.064 83 0.007 82 0.009 99 0.000 08 64.1 0.50
      X811.15 0.52 0.049 79 0.004 43 0.068 39 0.006 11 0.009 92 0.000 05 63.6 0.35
      X811.16 0.24 0.045 76 0.002 30 0.063 28 0.003 21 0.010 00 0.000 04 64.2 0.24
      X811.17 0.42 0.043 94 0.007 67 0.063 17 0.010 65 0.009 96 0.000 09 63.9 0.58
      X8-1-3
      X8.1.3.1 1.09 0.050 54 0.007 39 0.072 48 0.010 41 0.010 28 0.000 09 66.0 0.56
      X8.1.3.2 0.49 0.047 81 0.005 87 0.070 07 0.008 37 0.010 31 0.000 07 66.1 0.45
      X8.1.3.3 0.05 0.047 78 0.000 80 0.065 16 0.001 13 0.009 89 0.000 03 63.4 0.19
      X8.1.3.4 0.72 0.046 29 0.004 20 0.066 61 0.005 97 0.010 11 0.000 06 64.9 0.36
      X8.1.3.5 0.55 0.046 55 0.009 07 0.068 56 0.012 38 0.009 90 0.000 10 63.5 0.65
      X8.1.3.6 0.76 0.046 15 0.004 40 0.064 15 0.006 06 0.009 99 0.000 05 64.1 0.34
      X8.1.3.7 0.99 0.048 90 0.007 11 0.073 34 0.010 06 0.010 29 0.000 08 66.0 0.54
      X8.1.3.8 0.98 0.049 35 0.003 99 0.070 02 0.005 67 0.010 09 0.000 06 64.7 0.39
      X8.1.3.9 0.79 0.046 56 0.005 67 0.068 10 0.008 06 0.009 96 0.000 07 63.9 0.47
      X8.1.3.10 0.55 0.000 00 0.000 00 0.069 94 0.028 29 0.010 31 0.000 20 66.1 1.30
      X8.1.3.11 0.06 0.050 43 0.001 58 0.070 89 0.002 26 0.010 15 0.000 03 65.1 0.19
      X8.1.3.12 0.94 0.046 44 0.006 29 0.068 82 0.009 03 0.010 04 0.000 08 64.4 0.49
      X8.1.3.13 0.83 0.043 26 0.007 55 0.065 68 0.010 65 0.010 10 0.000 09 64.8 0.56
      X8.1.3.14 0.89 0.033 69 0.012 54 0.063 01 0.015 40 0.009 85 0.000 13 63.2 0.83
      X8.1.3.15 0.79 0.043 77 0.010 60 0.066 68 0.013 82 0.010 16 0.000 12 65.2 0.80
      X8-5-1
      X.8.5.1.1 0.31 0.047 82 0.002 63 0.066 98 0.003 71 0.010 10 0.000 04 64.8 0.23
      X.8.5.1.2 0.40 0.049 03 0.002 80 0.068 17 0.003 89 0.009 98 0.000 04 64.0 0.24
      X.8.5.1.3 0.22 0.033 22 0.005 94 0.047 71 0.008 45 0.010 15 0.000 07 65.1 0.48
      X.8.5.1.4 0.52 0.040 34 0.006 49 0.060 78 0.008 93 0.010 18 0.000 08 65.3 0.53
      X.8.5.1.5 0.58 0.043 55 0.008 51 0.069 40 0.011 85 0.010 08 0.000 10 64.7 0.67
      X.8.5.1.6 0.53 0.043 52 0.005 81 0.062 64 0.008 00 0.009 93 0.000 07 63.7 0.43
      X.8.5.1.7 0.67 0.049 08 0.001 12 0.068 02 0.001 58 0.010 04 0.000 03 64.4 0.16
      X.8.5.1.8 0.47 0.040 24 0.008 00 0.060 18 0.011 18 0.010 12 0.000 10 64.9 0.65
      X.8.5.1.9 0.38 0.049 54 0.001 33 0.069 87 0.001 89 0.010 23 0.000 04 65.6 0.26
      X.8.5.1.10 0.58 0.042 64 0.010 95 0.072 05 0.014 28 0.010 14 0.000 11 65.1 0.72
      X8-7-1
      X8.7.1.1 0.76 0.046 40 0.012 49 0.058 52 0.013 49 0.008 23 0.000 10 52.8 0.64
      X8.7.1.2 0.59 0.035 65 0.035 90 0.054 90 0.033 48 0.008 38 0.000 35 53.8 2.26
      X8.7.1.3 0.63 0.034 70 0.014 10 0.057 56 0.015 07 0.008 31 0.000 13 53.3 0.85
      X8.7.1.4 0.60 0.056 34 0.116 93 0.055 09 0.030 94 0.008 44 0.000 25 54.2 1.62
      X8.7.1.5 0.28 0.021 84 0.025 92 0.052 87 0.024 70 0.008 21 0.000 20 52.7 1.27
      X8.7.1.6 0.50 0.047 47 0.046 06 0.056 45 0.036 85 0.008 27 0.000 31 53.1 1.97
      X8.7.1.7 0.73 0.034 34 0.012 91 0.053 23 0.014 19 0.008 17 0.000 12 52.5 0.77
      X8.7.1.8 0.79 0.064 56 0.025 18 0.053 69 0.024 45 0.008 22 0.000 31 52.7 1.98
      X8.7.1.9 0.76 0.055 57 0.032 97 0.052 21 0.028 46 0.008 67 0.000 19 55.6 1.23
      X8.7.1.10 0.52 0.031 78 0.017 20 0.052 88 0.016 40 0.008 12 0.000 16 52.2 1.02
      X8.7.1.11 0.69 0.017 54 0.023 54 0.052 36 0.023 96 0.008 49 0.000 18 54.5 1.14
      X8.7.1.12 0.61 0.039 92 0.009 37 0.055 14 0.011 01 0.008 53 0.000 09 54.8 0.61
      X8.7.1.13 0.53 0.018 88 0.022 30 0.055 57 0.020 91 0.008 44 0.000 17 54.2 1.08
      X8.7.1.14 0.73 0.000 00 0.000 00 0.054 03 0.022 98 0.008 32 0.000 20 53.4 1.28
      X8.7.1.15 0.56 0.014 49 0.024 50 0.056 13 0.015 71 0.008 45 0.000 14 54.3 0.87
      X8.7.1.16 0.21 0.049 42 0.005 27 0.056 92 0.005 97 0.008 25 0.000 05 53.0 0.33
      X8.7.1.17 0.97 0.014 52 0.027 57 0.058 37 0.025 13 0.008 63 0.000 19 55.4 1.22
      X12-3-9
      X12.3.9.1 0.33 0.046 92 0.005 17 0.057 97 0.006 34 0.008 69 0.000 06 55.8 0.41
      X12.3.9.2 0.60 0.021 30 0.019 75 0.050 83 0.021 16 0.008 60 0.000 18 55.2 1.17
      X12.3.9.3 0.55 0.046 49 0.020 59 0.061 87 0.023 08 0.008 69 0.000 21 55.8 1.32
      X12.3.9.4 0.44 0.035 05 0.013 07 0.055 35 0.014 34 0.008 45 0.000 13 54.3 0.85
      X12.3.9.5 0.60 0.072 36 0.046 13 0.059 88 0.023 30 0.008 89 0.000 20 57.1 1.29
      X12.3.9.6 0.57 0.019 66 0.023 25 0.059 45 0.022 69 0.009 08 0.000 19 58.2 1.21
      X13-2-7
      X1327.1 0.34 0.045 11 0.003 91 0.049 40 0.004 32 0.007 86 0.000 04 50.4 0.28
      X1327.2 0.39 0.036 35 0.016 29 0.050 05 0.016 84 0.007 62 0.000 15 48.9 0.94
      X1327.3 0.44 0.039 58 0.012 27 0.050 74 0.010 88 0.007 50 0.000 10 48.2 0.61
      X1327.4 0.49 0.026 00 0.027 68 0.049 48 0.024 38 0.007 93 0.000 22 50.9 1.40
      X1327.5 0.54 0.515 18 0.441 65 0.051 33 0.034 04 0.007 61 0.000 28 48.9 1.81
      X1327.6 0.38 0.036 86 0.021 45 0.051 97 0.021 51 0.007 77 0.000 16 49.9 1.06
      X1327.7 0.34 0.046 02 0.003 99 0.050 49 0.004 41 0.007 87 0.000 04 50.5 0.28
      X1327.8 0.53 0.042 71 0.024 77 0.054 05 0.025 65 0.007 93 0.000 22 50.9 1.41
      X1327.9 0.56 0.031 12 0.017 41 0.050 38 0.018 11 0.008 00 0.000 14 51.3 0.89
      X1327.10 0.46 0.048 15 0.004 57 0.052 29 0.004 90 0.007 71 0.000 05 49.5 0.29
      X1327.11 0.30 0.047 40 0.000 54 0.050 77 0.000 60 0.007 77 0.000 02 49.9 0.14
      X1327.12 0.39 0.035 40 0.015 86 0.048 75 0.016 40 0.007 62 0.000 15 49.0 0.94
      X1327.13 0.31 0.045 90 0.001 21 0.048 85 0.001 30 0.007 71 0.000 02 49.5 0.11
      X1327.14 0.45 0.036 82 0.020 20 0.049 49 0.020 74 0.007 88 0.000 16 50.6 1.00
      X1327.15 0.54 0.046 91 0.006 37 0.051 86 0.006 88 0.007 71 0.000 06 49.5 0.41
      X1327.16 0.44 0.047 89 0.003 49 0.051 01 0.003 70 0.007 64 0.000 04 49.0 0.23
      X13-2-9
      X1329.1 0.29 0.047 44 0.001 86 0.049 92 0.001 98 0.007 63 0.000 02 49.0 0.13
      X1329.2 0.58 0.040 28 0.017 28 0.049 24 0.017 82 0.007 80 0.000 17 50.1 1.08
      X1329.3 0.41 0.046 98 0.004 98 0.052 38 0.005 32 0.007 80 0.000 05 50.1 0.31
      X1329.4 0.27 0.046 78 0.004 16 0.050 59 0.004 48 0.007 70 0.000 04 49.4 0.23
      X1329.5 0.32 0.044 70 0.002 38 0.047 13 0.002 59 0.007 60 0.000 04 48.8 0.25
      X1329.6 0.44 0.032 88 0.013 22 0.048 30 0.015 07 0.007 74 0.000 13 49.7 0.80
      X1329.7 0.29 0.047 13 0.001 84 0.049 62 0.001 96 0.007 63 0.000 02 49.0 0.13
      X1329.8 0.38 0.045 46 0.004 97 0.048 60 0.005 29 0.007 64 0.000 05 49.0 0.32
      X1329.9 0.35 0.049 67 0.004 14 0.053 31 0.003 45 0.007 80 0.000 15 50.1 0.94
      X1329.10 0.35 0.041 47 0.014 59 0.049 81 0.015 98 0.007 66 0.000 14 49.2 0.88
      X1329.11 0.12 0.048 42 0.003 97 0.052 20 0.004 18 0.007 65 0.000 04 49.1 0.24
      X1329.12 0.58 0.040 64 0.017 44 0.049 61 0.017 96 0.007 79 0.000 17 50.0 1.08
      X13-3-1
      X13.3.1.1 0.37 0.046 89 0.005 21 0.058 76 0.006 25 0.008 65 0.000 06 55.5 0.35
      X13.3.1.2 0.39 0.047 49 0.006 78 0.059 54 0.007 98 0.008 49 0.000 06 54.5 0.41
      X13.3.1.3 0.50 0.048 66 0.008 79 0.062 71 0.010 50 0.008 72 0.000 10 56.0 0.61
      X13.3.1.4 0.47 0.046 94 0.005 24 0.057 60 0.006 29 0.008 53 0.000 06 54.7 0.39
      X13.3.1.5 0.41 0.041 53 0.009 19 0.058 79 0.010 88 0.008 69 0.000 10 55.8 0.62
      X13.3.1.6 0.44 0.040 44 0.011 60 0.056 01 0.013 58 0.008 63 0.000 10 55.4 0.62
      X13.3.1.7 0.57 0.043 38 0.006 22 0.053 87 0.007 57 0.008 68 0.000 07 55.7 0.45
      X13.3.1.8 0.41 0.049 10 0.005 61 0.060 15 0.006 60 0.008 57 0.000 05 55.0 0.35
      X13.3.1.9 0.55 0.032 36 0.015 35 0.052 26 0.015 54 0.008 50 0.000 14 54.5 0.93
      X13.3.1.10 0.44 0.045 65 0.007 68 0.059 61 0.009 10 0.008 59 0.000 08 55.1 0.52
      X13.3.1.11 0.19 0.046 02 0.010 43 0.058 79 0.012 62 0.008 55 0.000 11 54.9 0.68
      X13.3.1.12 0.43 0.046 40 0.010 97 0.058 88 0.013 04 0.008 79 0.000 10 56.4 0.65
      X13.3.1.13 0.52 0.046 50 0.003 96 0.055 97 0.004 75 0.008 62 0.000 04 55.3 0.28
      X13.3.1.14 0.47 0.048 33 0.005 47 0.056 85 0.006 44 0.008 46 0.000 06 54.3 0.41
      X13.3.1.15 0.50 0.043 49 0.007 13 0.055 77 0.008 79 0.008 97 0.000 08 57.6 0.53
      X20-1-10
      X20110.1 0.09 0.046 58 0.002 09 0.048 64 0.002 22 0.007 53 0.000 03 48.4 0.22
      X20110.2 0.17 0.046 20 0.000 62 0.047 73 0.000 65 0.007 49 0.000 02 48.1 0.14
      X20110.3 0.19 0.051 12 0.000 83 0.052 88 0.000 99 0.007 50 0.000 03 48.1 0.22
      X20110.4 0.18 0.047 38 0.001 27 0.048 84 0.001 33 0.007 47 0.000 02 48.0 0.10
      X20110.5 0.01 0.049 49 0.000 91 0.047 82 0.000 89 0.007 00 0.000 02 45.0 0.11
      X20110.6 0.15 0.047 21 0.000 92 0.048 89 0.000 98 0.007 50 0.000 02 48.2 0.12
      X20110.7 0.09 0.046 47 0.002 02 0.048 24 0.002 14 0.007 48 0.000 03 48.1 0.17
      X20110.8 0.36 0.045 49 0.001 51 0.047 06 0.001 59 0.007 47 0.000 02 48.0 0.10
      X20110.9 0.04 0.048 75 0.000 92 0.050 30 0.000 97 0.007 48 0.000 01 48.0 0.09
      X20110.10 0.08 0.046 14 0.002 05 0.047 71 0.002 14 0.007 48 0.000 02 48.1 0.15
      X20110.11 0.20 0.047 76 0.001 88 0.049 53 0.002 00 0.007 48 0.000 02 48.0 0.13
      X20110.12 0.01 0.047 53 0.001 18 0.049 60 0.001 24 0.007 56 0.000 01 48.6 0.09
      X2-3-1
      X2.3.1.1 0.44 0.041 96 0.006 99 0.028 50 0.004 49 0.004 63 0.000 04 29.8 0.25
      X2.3.1.2 0.40 0.046 67 0.008 84 0.031 35 0.005 40 0.004 55 0.000 05 29.2 0.29
      X2.3.1.3 1.22 0.047 16 0.005 20 0.030 95 0.003 26 0.004 61 0.000 03 29.7 0.21
      X2.3.1.4 1.55 0.050 40 0.000 35 0.031 34 0.000 26 0.004 51 0.000 02 29.0 0.12
      X2.3.1.5 0.13 0.041 04 0.007 03 0.027 22 0.004 41 0.004 58 0.000 04 29.5 0.26
      X2.3.1.6 0.29 0.043 16 0.007 65 0.028 43 0.004 85 0.004 65 0.000 04 29.9 0.27
      X2.3.1.7 0.89 0.047 42 0.005 21 0.030 50 0.003 32 0.004 63 0.000 03 29.8 0.20
      X2.3.1.8 0.89 0.048 10 0.002 72 0.030 47 0.001 74 0.004 56 0.000 02 29.3 0.11
      X2.3.1.9 0.29 0.046 10 0.004 79 0.030 36 0.003 11 0.004 55 0.000 03 29.3 0.20
      X2.3.1.10 0.30 0.042 34 0.004 82 0.027 78 0.003 03 0.004 53 0.000 03 29.1 0.19
      X2.3.1.11 0.10 0.050 40 0.003 40 0.032 13 0.002 15 0.004 57 0.000 02 29.4 0.13
      X2.3.1.12 0.19 0.049 52 0.003 56 0.031 80 0.002 33 0.004 59 0.000 02 29.5 0.13
      X2.3.1.13 0.17 0.044 67 0.008 49 0.030 90 0.005 33 0.004 59 0.000 05 29.5 0.32
      X2-4-2
      X.2.4.2.1 0.17 0.047 61 0.003 67 0.030 43 0.002 28 0.004 67 0.000 09 30.0 0.58
      X.2.4.2.2 0.35 0.050 54 0.003 63 0.031 55 0.002 34 0.004 54 0.000 08 29.2 0.54
      X.2.4.2.3 0.58 0.049 91 0.002 74 0.030 58 0.001 59 0.004 47 0.000 07 28.8 0.43
      X.2.4.2.4 0.18 0.050 01 0.002 65 0.030 98 0.001 57 0.004 53 0.000 06 29.2 0.41
      X.2.4.2.5 0.51 0.047 78 0.005 00 0.030 60 0.003 14 0.004 46 0.000 03 28.7 0.17
      X.2.4.2.6 0.36 0.049 57 0.001 24 0.030 41 0.000 77 0.004 44 0.000 01 28.5 0.09
      X.2.4.2.7 5.45 0.050 11 0.001 71 0.031 01 0.001 07 0.004 47 0.000 01 28.7 0.08
      X.2.4.2.8 0.35 0.049 63 0.001 54 0.030 51 0.000 96 0.004 44 0.000 01 28.5 0.09
      X.2.4.2.9 1.15 0.046 67 0.004 72 0.029 65 0.002 84 0.004 46 0.000 02 28.7 0.14
      X.2.4.2.10 0.48 0.048 65 0.001 80 0.029 70 0.001 14 0.004 41 0.000 03 28.4 0.16
      X.2.4.2.11 0.43 0.046 07 0.004 78 0.028 92 0.002 94 0.004 42 0.000 03 28.4 0.17
      X.2.4.2.12 3.53 0.049 93 0.002 83 0.031 33 0.001 90 0.004 48 0.000 02 28.8 0.15
      X.2.4.2.13 1.24 0.049 76 0.002 94 0.030 33 0.001 72 0.004 40 0.000 03 28.3 0.18
      X.2.4.2.14 1.12 0.046 41 0.003 14 0.028 95 0.001 96 0.004 46 0.000 02 28.7 0.13
      X.2.4.2.15 3.55 0.046 06 0.005 28 0.030 96 0.003 25 0.004 59 0.000 03 29.5 0.20
      X.2.4.2.16 2.07 0.051 34 0.001 98 0.031 66 0.001 26 0.004 47 0.000 02 28.8 0.12
      X.2.4.2.17 2.29 0.048 76 0.004 71 0.031 72 0.002 97 0.004 59 0.000 03 29.5 0.21
      X.2.4.2.18 0.58 0.048 19 0.003 67 0.029 92 0.002 24 0.004 47 0.000 03 28.8 0.17
      X8-3-1
      X831.1 0.38 0.047 03 0.015 95 0.029 27 0.009 59 0.004 39 0.000 09 28.2 0.55
      X831.2 0.47 0.043 23 0.012 27 0.031 08 0.007 79 0.004 60 0.000 07 29.6 0.42
      X831.3 0.60 0.046 09 0.012 24 0.031 52 0.007 52 0.004 64 0.000 06 29.9 0.41
      X831.4 0.55 0.040 86 0.009 69 0.029 71 0.006 00 0.004 52 0.000 06 29.1 0.39
      X831.5 0.48 0.043 11 0.011 82 0.028 74 0.006 92 0.004 36 0.000 05 28.0 0.34
      X831.6 0.64 0.043 60 0.011 79 0.030 36 0.007 00 0.004 39 0.000 06 28.2 0.39
      X831.7 0.46 0.039 04 0.016 72 0.031 35 0.011 90 0.004 76 0.000 10 30.6 0.65
      X831.8 0.17 0.044 85 0.003 27 0.027 43 0.002 01 0.004 41 0.000 02 28.3 0.12
      X831.9 0.59 0.038 25 0.011 09 0.029 51 0.005 97 0.004 37 0.000 05 28.1 0.34
      X831.10 0.38 0.047 43 0.016 09 0.029 79 0.009 76 0.004 43 0.000 09 28.5 0.56
      X831.11 0.74 0.044 07 0.007 63 0.027 64 0.004 61 0.004 39 0.000 04 28.2 0.27
      X831.12 0.64 0.038 80 0.012 15 0.028 43 0.006 81 0.004 45 0.000 07 28.6 0.45
      X831.13 0.58 0.045 31 0.007 40 0.029 47 0.004 47 0.004 45 0.000 04 28.6 0.23
      X831.14 0.59 0.035 34 0.014 88 0.027 35 0.008 77 0.004 44 0.000 09 28.5 0.56
      X831.15 0.47 0.042 95 0.015 55 0.028 51 0.009 27 0.004 40 0.000 09 28.3 0.55
      X831.16 0.55 0.038 73 0.009 98 0.028 16 0.006 09 0.004 45 0.000 06 28.6 0.35
      X831.17 0.59 0.040 76 0.014 40 0.030 80 0.008 83 0.004 59 0.000 07 29.5 0.42
      X831.18 0.54 0.038 10 0.026 44 0.029 27 0.016 34 0.004 64 0.000 15 29.9 0.98
      X831.19 0.47 0.043 74 0.012 42 0.031 70 0.007 94 0.004 64 0.000 07 29.8 0.43
      X831.20 0.62 0.048 95 0.006 20 0.030 63 0.003 83 0.004 43 0.000 03 28.5 0.20
      X831.21 0.52 0.049 96 0.014 07 0.030 60 0.008 02 0.004 56 0.000 21 29.3 1.37
      X831.22 0.50 0.044 46 0.013 60 0.031 56 0.008 71 0.004 64 0.000 07 29.9 0.43
      X831.23 0.23 0.028 02 0.022 93 0.030 86 0.007 95 0.004 57 0.000 07 29.4 0.43
      X7-4-2
      X742.1 0.05 0.046 17 0.004 43 0.004 85 0.000 08 0.030 86 0.002 92 31.2 0.54
      X742.2 0.13 0.044 52 0.005 12 0.004 95 0.000 10 0.030 36 0.003 44 31.8 0.64
      X742.3 0.07 0.045 54 0.004 10 0.005 04 0.000 10 0.031 65 0.002 79 32.4 0.61
      X742.4 0.08 0.045 92 0.002 62 0.004 88 0.000 06 0.030 92 0.001 72 31.4 0.38
      X742.5 0.07 0.050 00 0.003 02 0.004 70 0.000 06 0.032 38 0.001 90 30.2 0.41
      X742.6 0.16 0.047 34 0.006 10 0.004 80 0.000 12 0.031 34 0.003 97 30.9 0.74
      X742.7 0.06 0.050 43 0.002 86 0.004 75 0.000 06 0.033 05 0.001 82 30.6 0.41
      X742.8 0.06 0.045 51 0.002 54 0.004 73 0.000 06 0.029 69 0.001 61 30.4 0.38
      X742.9 0.02 0.049 99 0.001 71 0.004 97 0.000 05 0.034 24 0.001 12 31.9 0.31
      X742.10 0.03 0.046 86 0.001 89 0.004 96 0.000 05 0.032 05 0.001 25 31.9 0.33
      X742.11 0.12 0.040 63 0.004 20 0.004 95 0.000 09 0.027 72 0.002 82 31.8 0.57
      X742.12 0.08 0.044 94 0.021 70 0.004 80 0.000 45 0.029 73 0.014 09 30.8 2.86
      X742.13 0.06 0.044 13 0.002 91 0.004 77 0.000 07 0.029 00 0.001 86 30.7 0.43
      X742.14 0.03 0.046 25 0.002 26 0.004 96 0.000 06 0.031 61 0.001 50 31.9 0.38
      X742.15 0.08 0.045 64 0.004 07 0.004 91 0.000 09 0.030 88 0.002 70 31.6 0.56
      X742.16 0.03 0.047 82 0.001 93 0.004 97 0.000 05 0.032 78 0.001 27 32.0 0.34
      X742.17 0.07 0.049 04 0.003 84 0.004 70 0.000 08 0.031 79 0.002 43 30.2 0.53
      X742.18 0.08 0.049 67 0.002 69 0.004 77 0.000 06 0.032 66 0.001 71 30.7 0.39
      X742.19 0.03 0.052 90 0.001 74 0.004 75 0.000 05 0.034 63 0.001 08 30.5 0.29
      X742.20 0.13 0.047 98 0.002 12 0.005 11 0.000 06 0.033 84 0.001 44 32.9 0.37
      X742.21 0.07 0.051 31 0.002 60 0.004 74 0.000 06 0.033 50 0.001 65 30.5 0.37
      X742.22 0.09 0.049 57 0.003 01 0.004 80 0.000 06 0.032 81 0.001 94 30.9 0.41
      X742.23 0.15 0.053 66 0.005 61 0.004 67 0.000 09 0.034 52 0.003 54 30.0 0.60
      X742.24 0.12 0.047 77 0.005 14 0.004 68 0.000 09 0.030 84 0.003 26 30.1 0.59
      X742.25 0.03 0.048 18 0.001 73 0.004 81 0.000 05 0.031 97 0.001 10 31.0 0.30
      下载: 导出CSV
    • [1] Booth, A.L., Zeitler, P.K., Kidd, W.S.F., et al., 2004.U-Pb Zircon Constraints on the Tectonic Evolution of Southeastern Tibet, Namche Barwa Area.American Journal of Science, 304(10):889-929. https://doi.org/10.2475/ajs.304.10.889
      [2] Bracciali, L., Parrish, R.R., Najman, Y., et al., 2016.Plio-Pleistocene Exhumation of the Eastern Himalayan Syntaxis and Its Domal "Pop-Up".Earth-Science Reviews, 160:350-385. https://doi.org/10.1016/j.earscirev.2016.07.010
      [3] Burg, J.P., Nievergelt, P., Oberli, F., et al., 1998.The Namche Barwa Syntaxis:Evidence for Exhumation Related to Compressional Crustal Folding.Journal of Asian Earth Sciences, 16(2-3):239-252. https://doi.org/10.1016/s0743-9547(98)00002-6
      [4] Carosi, R., Montomoli, C., Rubatto, D., et al., 2013.Leucogranite Intruding the South Tibetan Detachment in Western Nepal:Implications for Exhumation Models in the Himalayas.Terra Nova, 25(6):478-489. https://doi.org/10.1111/ter.12062
      [5] Corfu, F., Hanchar, J.M., Hoskin, P.W.O., et al., 2003.Atlas of Zircon Textures.Reviews in Mineralogy and Geochemistry, 53(1):469-500. doi: 10.2113/0530469
      [6] Ding, L., Zhong, D.L., 1999.Metamorphic Characteristics and Geotectonic Implications of the High-Pressure Granulites from Namjagbarwa, Eastern Tibet.Science in China (Series D), 29(5):385-397 (in Chinese).
      [7] Ding, L., Zhong, D.L., 2013.The Tectonic Evolution of the Eastern Himalaya Syntaxis since the Collision of the Indian and Eurasian Plates.Chinese Journal of Geology, 48(2):317-333 (in Chinese with English abstract).
      [8] Ding, L., Zhong, D.L., Pan, Y.S., et al., 1995.Fission-Track Evidence for Neocene Uplift of Eastern Himalayan Syntaxis.Chinese Science Bulletin, 40(16):1497-1500 (in Chinese). http://adsabs.harvard.edu/abs/2006JAESc..27..265Q
      [9] Ding, L., Zhong, D.L., Yin, A., et al., 2001.Cenozoic Structural and Metamorphic Evolution of the Eastern Himalayan Syntaxis (Namche Barwa).Earth and Planetary Science Letters, 192(3):423-438. https://doi.org/10.1016/s0012-821x(01)00463-0
      [10] Dong, H.W., Xu, Z.Q., 2016.Kinematics, Fabrics and Geochronology Analysis in the Médog Shear Zone, Eastern Himalayan Syntaxis.Tectonophysics, 667:108-123. https://doi.org/10.1016/j.tecto.2015.11.015
      [11] Dong, H.W., Xu, Z.Q., Li, Y.et al., 2014.Characteristics of the Médog Shear Zone in the Eastern Himalayan Syntaxis and Its Tectonic Significance.Acta Petrologica Sinica, 30(8):2229-2240 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20140808
      [12] Dong, H.W., Xu, Z.Q., Li, Y., et al., 2013.Petrogenesis of High Sr/Y Granite in Motuo Area of Namche Barwa Syntaxis:Constraints from Geochemistry, Zircon U-Pb Geochronology and Hf Isotopic Compositions.Acta Petrologica Sinica, 29(6):2013-2023 (in Chinese with English abstract). https://www.researchgate.net/publication/287703459_Petrogenesis_of_high_SrY_granite_in_Motuo_area_of_Namche_Barwa_Syntaxis_Constraints_from_geochemistry_zircon_U-Pb_geochronology_and_Hf_isotopic_compositions
      [13] Geng, Q.R., Pan, G.T., Zheng, L.L., et al., 2006.The Eastern Himalayan Syntaxis:Major Tectonic Domains, Ophiolitic Mélanges and Geologic Evolution.Journal of Asian Earth Sciences, 27(3):265-285. https://doi.org/10.1016/j.jseaes.2005.03.009
      [14] Geng, Q.R., Peng, Z.M., Zhang, Z., 2011.Geochronological Study of the Yarlung Tsangpo Ophiolite in the Region of the Eastern Himalayan Syntaxis.Acta Geologica Sinica, 85(7):1116-1127 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2001E&PSL.192..423D
      [15] Geng, Q.R., Zheng, L.L., Dong, H., et al., 2008.Geochemistry, Geochronology and Petrogenesis of the Miocene Granite in the Lulang and Médog Area in the Eastern Segment of the Gangdese Belt, Tibet, China.Geological Bulletin of China, 27(1):69-82 (in Chinese with English Abstract).
      [16] Gong, J.F., Ji, J.Q., Chen, J.J., et al., 2008.40Ar/39Ar Geochronology Studies of Rocks in Eastern Himalaya Syntaxis.Acta Petrologica Sinica, 24(10):2255-2272 (in Chinese with English abstract). http://www.academia.edu/3193099/_sup_40_sup_Ar_sup_39_sup_Ar_dating_of_volcanic_rocks_of_the_Shyok_suture_zone_in_north_west_trans-Himalaya_Implications_for_the_post-collision_evolution_of_
      [17] Gong, J.F., Ji, J.Q., Zhou, J., et al., 2009.Cooling History Constrained by Detrital 40Ar/39Ar Geochronology in Eastern Himalaya Syntaxis:Implications for Climatic and Tectonic Records.Acta Petrologica Sinica, 25(3):621-635 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20090314
      [18] Harrison, T.M., Copeland, P., Kidd, W.S.F., et al., 1992.Raising Tibet.Science, 255(5052):1663-1670. https://doi.org/10.1126/science.255.5052.1663
      [19] Ji, J.Q., 2000.Cenozoic Constructural Evolution of the Lithosphere, Uplift of the Tibet Plateau and Its Environmental Influence in East Tibet Plateau (Report).Peking University, Beijing (in Chinese).
      [20] Le Fort, P., 1975.Himalayas:The Collided Range:Present Knowledge of the Continental Arc.American Journal of Science, 275-A:1-44. http://www.oalib.com/references/7070282
      [21] Lin, C.H., Peng, M., Tan, H.D., et al., 2017.Crustal Structure beneath Namche Barwa, Eastern Himalayan Syntaxis:New Insights from Three-Dimensional Magnetotelluric Imaging.Journal of Geophysical Research:Solid Earth, 122(7):5082-5100. https://doi.org/10.1002/2016jb013825
      [22] Liu, Q., Deng, Y.B., Xiang, S.Y., et al., 2017.Early Ordovician Tectono-Thermal Event in Zhongba Terrane and Its Geological Significance.Earth Science, 42 (6):881-890 (in Chinese with English abstract). doi: 10.1139/e11-076
      [23] Liu, Y., Siebel, W., Wang, M., 2006.Intracontinental Deformed Processes of the Eastern Hiamalayan Syntaxis.Acta Geologica Sinica, 80(9):1274-1285 (in Chinese with English abstract). http://www.ees.lehigh.edu/groups/corners/papers/booth_etal_2009.pdf
      [24] Liu, Y., Zhong, D.L., 1997.Petrology of High-Pressure Granulites from the Eastern Himalayan Syntaxis.Journal of Metamorphic Geology, 15(4):451-466. https://doi.org/10.1111/j.1525-1314.1997.00033.x
      [25] Liu, Y., Zhong, D.L., 1998.Petrology of High-Pressure Granulites from Eastern Himalaya:Implications to Tectonic Significance.Scientia Geologica Sinica, 33(3):267-281 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD200403003.htm
      [26] Montomoli, C., Carosi, R., Iaccarino, S., 2014.Tectonometamorphic Discontinuities in the Greater Himalayan Sequence:A Local or a Regional Feature?Geological Society, London, Special Publications, 412(1):25-41. https://doi.org/10.1144/sp412.3
      [27] Pan, F.B., Zhang, H.F., Harris, N., et al., 2012.Oligocene Magmatism in the Eastern Margin of the East Himalayan Syntaxis and Its Implication for the India-Asia Post-Collisional Process.Lithos, 154:181-192. https://doi.org/10.1016/j.lithos.2012.07.004
      [28] Peng, M., Jiang, M., Li, Z.H., et al., 2016.Complex Indian Subduction Style with Slab Fragmentation beneath the Eastern Himalayan Syntaxis Revealed by Teleseismic P-Wave Tomography.Tectonophysics, 667:77-86. https://doi.org/10.1016/j.tecto.2015.11.012
      [29] Qi, X.X., Li, H.Q., Li, T.F., et al., 2010.Zircon SHRIMP U-Pb Dating for Garnet-Rich Granite Veins in High-Pressure Granulites from the Namche Barwa Complex, Eastern Syntaxis of the Himalayas, and the Relationship with Exhumation.Acta Petrologica Sinica, 26(3):975-984 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20100326
      [30] Ratschbacher, L., Frisch, W., Chen C.S., et al., 1992.Deformation and Motion along the Southern Margin of the Lhasa Block (Tibet) Prior to and during the India-Asia Collision.Journal of Geodynamics, 16(1-2):21-54. https://doi.org/10.1016/0264-3707(92)90017-m
      [31] Roche, R.S.L., Godin, L., Cottle, J.M., et al., 2016.Direct Shear Fabric Dating Constrains Early Oligocene Onset of the South Tibetan Detachment in the Western Nepal Himalaya.Geology, 44(6):403-406. https://doi.org/10.1130/g37754.1
      [32] Rubatto, D., 2002.Zircon Trace Element Geochemistry:Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism.Chemical Geology, 184(1):123-138. http://boris.unibe.ch/87960/
      [33] Seward, D., Burg, J.P., 2008.Growth of the Namche Barwa Syntaxis and Associated Evolution of the Tsangpo Gorge:Constraints from Structural and Thermochronological Data.Tectonophysics, 451(1-4):282-289. https://doi.org/10.1016/j.tecto.2007.11.057
      [34] Stewart, R.J., Hallet, B., Zeitler, P.K., et al., 2008.Brahmaputra Sediment Flux Dominated by Highly Localized Rapid Erosion from the Easternmost Himalaya.Geology, 36(9):711-714. https://doi.org/10.1130/g24890a.1
      [35] Sun, Z.M., Geng, Q.R., Lou, X.Y., et al., 2004a.The Subdivision of the Namjagbarwa Group Complex within the Eastern Himalayan Syntaxis, Xizang.Sedimentary Geology and Tethyan Geology, 24(2):8-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200104003.htm
      [36] Sun, Z.M., Zheng, L.L., Geng, Q.R., et al., 2004b.Genetic Mechanisms and Exhumation Processes of the High-Pressure Granulites within the Eastern Himalayan Syntaxis, Xizang.Sedimentary Geology and Tethyan Geology, 24(3):22-29 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD200403003.htm
      [37] Tapponnier, P., Lacassin, R., Leloup, P.H., et al., 1990.The Ailao Shan/Red River Metamorphic Belt:Tertiary Left-Lateral Shear between Indochina and South China.Nature, 343(6257):431-437. https://doi.org/10.1038/343431a0
      [38] Tian, Z.L., Kang, D.Y., Mu, H.C., 2017.Metamorphic P-T-t Path of Garnet Amphibolite from the Eastern Himalayan Syntaxis:Phase Equilibria and Zircon Chronology.Acta Petrologica Sinica, 33(8):2467-2478 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20170809
      [39] Wang, X.X., Zhang, J.J., Wang, J.M., 2016.Geochronology and Formation Mechanism of the Paiku Granite in the Northern Himalaya, and Its Tectonic Implications.Earth Science, 41(6):982-998 (in Chinese with English abstract). https://www.researchgate.net/publication/305417406_Geochronology_and_formation_mechanism_of_the_Paiku_granite_in_the_northern_himalaya_and_its_tectonic_implications
      [40] Xu, Z.Q., Cai, Z.H., Zhang, Z.M., et al., 2008.Tectonics and Fabric Kinematics of the Namche Barwa Terrane, Eastern Himalayan Syntaxis.Acta Petrologica Sinica, 24(7):1463-1476 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1342937X11001924
      [41] Xu, Z.Q., Ji, S.C., Cai, Z.H., et al., 2012.Kinematics and Dynamics of the Namche Barwa Syntaxis, Eastern Himalaya:Constraints from Deformation, Fabrics and Geochronology.Gondwana Research, 21(1):19-36. https://doi.org/10.1016/j.gr.2011.06.010
      [42] Yin, A., 2000.Mode of Cenozoic East-West Extension in Tibet Suggesting a Common Origin of Rifts in Asia during the Indo-Asian Collision.Journal of Geophysical Research:Solid Earth, 105(B9):21745-21759. https://doi.org/10.1029/2000jb900168
      [43] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      [44] Zeng, L.S., Gao, L.E., Xie, K.J., et al., 2011.Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes:Melting Thickened Lower Continental Crust.Earth and Planetary Science Letters, 303(3-4):251-266. https://doi.org/10.1016/j.epsl.2011.01.005
      [45] Zhang, J.J., Ji, J.Q., Zhong, D.L., et al., 2004.Structural Pattern of Eastern Himalayan Syntaxis in Namjagbarwa and Its Formation Process.Science in China (Seres D), 33(4):373-383 (in Chinese). doi: 10.1360/02yd0042
      [46] Zhang, Z.G., Liu, Y.H., Wang, T.W., et al., 1992.Geology of the Mt.Namjagbarwa Region.Science Press, Beijing (in Chinese). https://digital.library.adelaide.edu.au/dspace/bitstream/2440/67162/9/01front.pdf
      [47] Zhang, Z.M., Wang, J.L., Zhao, G.C., et al., 2008.Geochronology and Precambiran Tectonic Evolution of the Namche Barwa Complex from the Eastern Himalayan Syntaxis, Tibet.Acta Petrologica Sinica, 24(7):1477-1487 (in Chinese with English abstract).
      [48] Zhang, Z.M., Zhao, G.C., Santosh, M., et al., 2010.Two Stages of Granulite Facies Metamorphism in the Eastern Himalayan Syntaxis, South Tibet:Petrology, Zircon Geochronology and Implications for the Subduction of Neo-Tethys and the Indian Continent beneath Asia.Journal of Metamorphic Geology, 28(7):719-733. https://doi.org/10.1111/j.1525-1314.2010.00885.x
      [49] Zhang, Z.M., Zheng, L.L., Wang, J.L., et al., 2007.Garnet Pyroxenite in the Namjagbarwa Group-Complex in the Eastern Himalayan Tectonic Syntaxis, Tibet, China:Evidence for Subduction of the Indian Continent beneath the Eurasian Plate at 80-100km Depth.Geological Bulletin of China, 26(1):1-12 (in Chinese with English abstract).
      [50] Zheng, L.L., Jin, Z.M., Pan, G.T., et al., 2004.Geological Features and Tectonic Evolution in the Namjagbarwa Area, Eastern Himalayas.Acta Geologica Sinica, 78(6):744-751 (in Chinese with English abstract). https://www.researchgate.net/publication/286872973_Geological_features_and_tectonic_evolution_in_the_Namjagbarwa_area_eastern_Himalayas
      [51] Zhong, D.L., Ding, L., 1995.Finding of the High-Pressure Granulite from the Namche Barwa, Southern Tibet.Chinese Science Bulletin, 40(14):1343 (in Chinese).
      [52] Zhong, D.L., Ding, L., 1996.Rising Mechnism of the Tibetan Plateau.Science in China (Series D), 26(4):289-295 (in Chinese).
      [53] 丁林, 钟大赉, 1999.西藏南迦巴瓦峰地区高压麻粒岩相变质作用特征及其构造地质意义.中国科学(D辑), 29(5):385-397. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk199905000&dbname=CJFD&dbcode=CJFQ
      [54] 丁林, 钟大赉, 2013.印度与欧亚板块碰撞以来东喜马拉雅构造结的演化.地质科学, 48(2):317-333. http://www.cqvip.com/QK/94066X/201302/45437756.html
      [55] 丁林, 钟大赉, 潘裕生, 等, 1995.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据.科学通报, 40(16):1497-1500. doi: 10.3321/j.issn:0023-074X.1995.16.018
      [56] 董汉文, 许志琴, 李源, 等, 2014.东喜马拉雅构造结墨脱剪切带特征及其区域构造意义.岩石学报, 30(8):2229-2240. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20140808
      [57] 董汉文, 许志琴, 李源, 等, 2013.南迦巴瓦构造结墨脱地区高Sr/Y花岗岩的成因:地球化学、锆石U-Pb年代学及Hf同位素约束.岩石学报, 29(6):2013-2023. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20130611&journal_id=ysxb&year_id=2013
      [58] 耿全如, 彭智敏, 张璋, 2011.喜马拉雅东构造结地区雅鲁藏布江蛇绿岩地质年代学研究.地质学报, 85(7):1116-1127. http://www.oalib.com/paper/4875686
      [59] 耿全如, 郑来林, 董翰, 等, 2008.冈底斯带东段鲁朗-墨脱地区中新世花岗岩的地球化学、年代学及成因.地质通报, 27(1):69-82. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD200801007.htm
      [60] 龚俊峰, 季建清, 陈建军, 等, 2008.东喜马拉雅构造结岩体冷却的40Ar/39Ar年代学研究.岩石学报, 24(10):2255-2272. http://www.doc88.com/p-9592938877787.html
      [61] 龚俊峰, 季建清, 周晶, 等, 2009.东喜马拉雅构造结气候构造作用下热史演化的40Ar/39Ar年代学记录.岩石学报, 25(3):621-635. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20090314
      [62] 季建清, 2000. 青藏高原东南部新生代岩石圈构造演化、高原隆升及其环境效应(博士后出站报告). 北京: 北京大学.
      [63] 刘强, 邓玉彪, 向树元, 等, 2017.藏南仲巴地体早奥陶世构造-热事件及其地质意义.地球科学, 42(6):881-890. http://www.earth-science.net/WebPage/Article.aspx?id=3585
      [64] 刘焰, Siebel, W., 王猛, 2006.东喜马拉雅构造结陆内变形过程的研究.地质学报, 80(9):1274-1285. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200609005
      [65] 刘焰, 钟大赉, 1998.东喜马拉雅地区高压麻粒岩岩石学研究及构造意义.地球科学, 33(3):267-281. http://www.cqvip.com/QK/94066X/1998003/3089976.html
      [66] 戚学祥, 李化启, 李天福, 等, 2010.东喜马拉雅构造结南迦巴瓦群高压麻粒岩中含石榴石花岗岩脉锆石SHRIMP U-Pb定年及其与折返作用.岩石学报, 26(3):975-984. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20100326
      [67] 孙志明, 耿全如, 楼雄英, 等, 2004a.东喜马拉雅构造结南迦巴瓦岩群的解体.沉积与特提斯地质, 24(2):8-15. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ttsd200402001&dbname=CJFD&dbcode=CJFQ
      [68] 孙志明, 郑来林, 耿全如, 等, 2004b.东喜马拉雅构造结高压麻粒岩特征、形成机制及折返过程.沉积与特提斯地质, 24(3):22-29. http://www.cqvip.com/QK/98500A/200403/10855515.html
      [69] 田作林, 康东艳, 穆虹辰, 2017.东喜马拉雅构造结石榴角闪岩变质作用P-T-t轨迹:相平衡模拟与锆石年代学.岩石学报, 33(8):2467-2478. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20170809&year_id=2017&quarter_id=8&falg=1
      [70] 王晓先, 张进江, 王佳敏, 2016.北喜马拉雅佩枯花岗岩年代学、成因机制及其构造意义.地球科学, 41(6):982-998. doi: 10.11764/j.issn.1672-1926.2016.06.0982
      [71] 许志琴, 蔡志慧, 张泽明, 等, 2008.喜马拉雅东构造结-南迦巴瓦构造及组构运动学.岩石学报, 24(7):1463-1476. http://www.docin.com/p-14824124.html
      [72] 张进江, 季建清, 钟大赉, 等, 2003.东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨.中国科学(D辑), 33(4):373-383. http://earth.scichina.com:8080/sciD/CN/abstract/abstract308571.shtml
      [73] 章振根, 刘玉海, 王天武, 等, 1992.南迦巴瓦峰地区地质.北京:科学出版社.
      [74] 张泽明, 郑来林, 王金丽, 等, 2007.东喜马拉雅构造结南迦巴瓦岩群中的石榴辉石岩-印度大陆向欧亚板块之下俯冲至80~100km深度的证据.地质通报, 26(1):3-12. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200701001.htm
      [75] 张泽明, 王金丽, 赵国春, 等, 2008.喜马拉雅造山带东构造结南迦巴瓦岩群地质年代学和前寒武纪构造演化.岩石学报, 24(7):1477-1487. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20080705
      [76] 郑来林, 金振民, 潘桂棠, 等, 2004.东喜马拉雅南迦巴瓦地区区域地质特征及构造演化.地质学报, 78(6):744-751. http://www.cqvip.com/QK/95080X/200406/11527256.html
      [77] 钟大赉, 丁林, 1995.西藏南迦巴瓦峰地区发现高压麻粒岩.科学通报, 40(14):1343. doi: 10.3321/j.issn:0023-074X.1995.14.029
      [78] 钟大赉, 丁林, 1996.青藏高原隆起过程及其机制探讨.中国科学(D辑), 26(4):289-295. http://mall.cnki.net/magazine/Article/JDXK199604000.htm
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  3012
    • HTML全文浏览量:  1202
    • PDF下载量:  78
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-12-20
    • 刊出日期:  2018-04-15

    目录

      /

      返回文章
      返回