• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    扬子东南缘新元古代花岗岩的锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素:对地壳生长的约束

    王艳 马昌前 王连训 刘园园

    王艳, 马昌前, 王连训, 刘园园, 2018. 扬子东南缘新元古代花岗岩的锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素:对地壳生长的约束. 地球科学, 43(3): 635-654. doi: 10.3799/dqkx.2018.900
    引用本文: 王艳, 马昌前, 王连训, 刘园园, 2018. 扬子东南缘新元古代花岗岩的锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素:对地壳生长的约束. 地球科学, 43(3): 635-654. doi: 10.3799/dqkx.2018.900
    Wang Yan, Ma Changqian, Wang Lianxun, Liu Yuanyuan, 2018. Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes of the Neoproterozoic Granites on the Southeastern Margin of the Yangtze Block: Constraint on Crustal Growth. Earth Science, 43(3): 635-654. doi: 10.3799/dqkx.2018.900
    Citation: Wang Yan, Ma Changqian, Wang Lianxun, Liu Yuanyuan, 2018. Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes of the Neoproterozoic Granites on the Southeastern Margin of the Yangtze Block: Constraint on Crustal Growth. Earth Science, 43(3): 635-654. doi: 10.3799/dqkx.2018.900

    扬子东南缘新元古代花岗岩的锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素:对地壳生长的约束

    doi: 10.3799/dqkx.2018.900
    基金项目: 

    国家自然科学基金重点项目 40334037

    湖北省自然科学基金重点项目 2009CDA004

    国际科技合作计划项目 2007DFA21230

    教育部和国家外国专家局高等学校学科创新引智计划 B07039

    详细信息
      作者简介:

      王艳(1985-), 女, 工程师, 硕士, 主要从事地质矿产勘查工作

      通讯作者:

      马昌前

    • 中图分类号: P581

    Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes of the Neoproterozoic Granites on the Southeastern Margin of the Yangtze Block: Constraint on Crustal Growth

    • 摘要: 出露于扬子板块东南缘的九宫山片麻状花岗岩侵位于早新元古代双桥山群.通过阴极发光图像分析和LA-ICP-MS锆石U-Pb年龄测试表明,九宫山岩体的岩浆结晶年龄为830±8 Ma;4个继承锆石分析点给出加权平均值为873±7 Ma的年龄值,可能记录了新元古代早期扬子与华夏板块碰撞产生的岩浆活动.九宫山岩体具有高SiO2(71.83%~74.20%)、高K2O+Na2O(7.06%~7.90%)、低基性组分(∑TiO2+FeOT+MgO=2.64%~4.00%)的含量特征,高K2O/Na2O比值(1.25~1.64),铝饱和指数(A/CNK)为1.03~1.27,主要为弱过铝质花岗岩.岩石具有轻稀土富集的右倾模式和明显的Eu负异常(Eu/Eu*=0.35~0.47),K、Rb、Th、U等大离子亲石元素富集,Sr、P、Nb、Ta、Ti等相对亏损.全岩εNdt)值为-1.49~+5.24,同岩浆锆石和继承锆石的εHft)值分别为3.5±1.0~11.0±1.1、5.1±0.9~12.9±1.1,指示岩浆源区含有显著的新生地壳物质.九宫山岩体可能形成于陆内裂谷环境,由类似双桥山群的变质砂屑岩和火山岩部分熔融形成.区域对比表明,江南造山带新元古代中期花岗岩的Nd-Hf同位素组成具有从东向西逐渐降低的特征,表明该区早新元古代时期新生地壳物质对花岗岩的影响由东向西呈减弱趋势,这可能是扬子与华夏板块碰撞拼合过程中岛弧岩浆作用由东向西逐渐减弱而使新生地壳物质减少所引起.

       

    • 图  1  (a) 华南地质简图及研究区位置;(b)扬子板块东南缘九宫山岩体地质简图和采样点位置

      a.引自Li et al.(2003a);b.根据1:20万地质图修改

      Fig.  1.  (a) A geological sketch map of South China, with the location of studying area and (b) simplified geological map showing the distribution of the Jiugongshan intrusions and sampling localities at the southeastern margin of the Yangtze Block

      图  2  九宫山岩体野外和显微照片

      a.九宫山岩体野外照片,岩石片麻状构造显著;b.九宫山岩体野外照片,岩石片麻状构造明显;c.斑状细粒二长花岗岩中暗色微粒包体野外照片;d.正交偏光下斑状细粒二长花岗岩显微照片.Kf.钾长石; Pl.斜长石; Q.石英; Bi.黑云母

      Fig.  2.  Field photographs and photomicrographs of the rocks from the Jiugongshan intrusion

      图  3  九宫山岩体Q-A-P图解

      1a.石英岩;1b.富石英花岗岩; 2.碱性长石花岗岩;3a.正长花岗岩;3b.二长花岗岩;4.花岗闪长岩;5.英云闪长岩;6*.石英碱性长石正长岩;7*.石英正长岩;8*.石英二长岩;9*.石英二长闪长岩/石英二长辉长岩;10*.石英闪长岩/石英辉长岩/石英斜长岩;6.碱性长石正长岩;7.正长岩;8.二长岩;9.二长闪长岩/二长辉长岩;10.闪长岩/辉长岩/斜长岩;引自Streckeisen(1974)

      Fig.  3.  Q-A-P diagram for the Jiugongshan intrusion

      图  4  九宫山岩体代表性锆石的阴极发光(CL)图像及U-Pb年龄(Ma)、εHf(t)值

      实线圆表示U-Pb年龄分析点,虚线圆表示Hf同位素分析点,旁边数字分别代表εHf(t)值和206Pb/238U年龄

      Fig.  4.  Representative CL images with U-Pb ages (Ma) and εHf(t) values of zircons from the Jiugongshan pluton

      图  5  九宫山岩体的LA-ICP-MS锆石U-Pb年龄谐和图

      Fig.  5.  LA-ICP-MS zircon U-Pb concordia diagram for the Jiugongshan pluton

      图  6  九宫山岩体A/NK-A/CNK图解

      引自Maniar and Piccoli, 1989

      Fig.  6.  A/NK vs.A/CNK diagram for the Jiugongshan pluton

      图  7  九宫山岩体(a)球粒陨石标准化稀土元素分布型式和(b)原始地幔标准化微量元素蛛网图

      球粒陨石REE值引自Sun and McDonough(1989);原始地幔微量元素值引自McDonough and Sun(1995);赣西北花岗闪长岩数据引自Li et al.(2003a);皖南花岗闪长岩数据引自Li et al.(2003a)Wu et al.(2006a)

      Fig.  7.  (a) Chondrite-normalized REE patterns and (b) primitive mantle-normalized trace element spidergrams for the Jiugongshan pluton

      图  8  九宫山岩体全岩εNd(t)值-年龄图解

      数据来源:皖南花岗岩引自Li et al.(2003a)Wu et al.(2006a);赣西北花岗闪长岩引自Li et al.(2003a)钟玉芳(2007);桂北花岗岩引自Li et al.(2003a)Wang et al.(2006);双桥山群引自Chen and Jahn(1998)张海祥等(2000)

      Fig.  8.  Whole-rock εNd(t) values vs.ages diagram for the Jiugongshan pluton

      图  9  九宫山岩体锆石U-Pb年龄-εHf(t)值图解

      数据来源:皖南花岗岩引自Wu et al.(2006a);赣西北花岗闪长岩钟玉芳(2007);桂北花岗岩王孝磊等(2006)Zheng et al.(2007); 亏损地幔演化线用176Hf/177Hf=0.283 25和176Lu/177Hf=0.038 4(Griffin et al., 2000)来计算;地壳增生曲线用平均地壳的176Lu/177Hf比值0.015(Griffin et al., 2002)来计算

      Fig.  9.  Zircon εHf(t) values vs.U-Pb ages diagram for Jiugongshan pluton

      图  10  九宫山岩体锆石Hf模式年龄(TDM2)柱状图

      Fig.  10.  Histogram of two-stage model Hf ages for the Jiugongshan pluton

      图  11  九宫山岩体(a)Eu/Eu*-SiO2、(b)Sr-Eu/Eu*和(c)Ba-Eu/Eu*图解

      Fig.  11.  Diagrams of (a) Eu/Eu* vs. SiO2, (b) Sr vs. Eu/Eu* and (c) Ba vs. Eu/Eu* for the Jiugongshan pluton

      图  12  江南造山带早新元古代火山岩εNd(900 Ma)值柱状图

      数据来源:桂北四堡群火山岩韩发等(1994)李献华(1996)Zhou et al.(2004);赣北双桥山群火山岩引自Chen and Jahn(1998);浙北双溪坞群火山岩沈渭洲等(1991)徐步台和邱郁双(1996)以及Li et al.(2009)

      Fig.  12.  Histogram of εNd(900 Ma) values for the early Neoproterozoic volcanics at the Jiangnan orogeny

      表  1  九宫山片麻状花岗岩LA-ICP-MS锆石U-Pb同位素分析结果

      Table  1.   LA-ICP-MS zircon U-Pb isotope analytical results for the Jiugongshan gneissic granites

      分析点 元素含量(10-6) Th/U 同位素比值 年龄(Ma)
      Pb Th U 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ
      08JGS34
      1.1 51.7 76 316 0.24 0.067 06 0.001 09 1.286 25 0.021 21 0.138 62 0.001 20 840 20 840 9 837 7
      2.1 36.1 74 215 0.35 0.067 58 0.001 26 1.295 95 0.023 60 0.138 73 0.001 15 856 24 844 10 837 6
      3.1 66.4 54 430 0.13 0.067 24 0.001 21 1.249 75 0.022 14 0.134 30 0.001 06 845 24 823 10 812 6
      4.1 64.0 63 435 0.14 0.067 17 0.001 30 1.181 82 0.022 63 0.127 17 0.001 23 843 24 792 11 772 7
      5.1 43.1 63 243 0.26 0.069 05 0.001 40 1.388 54 0.027 40 0.145 50 0.001 29 900 26 884 12 876 7
      6.1 91.3 84 608 0.14 0.068 96 0.001 08 1.242 20 0.019 13 0.130 17 0.001 07 897 19 820 9 789 6
      7.1 28.6 143 144 0.99 0.068 59 0.001 37 1.310 37 0.024 19 0.138 68 0.001 32 886 23 850 11 837 7
      8.1 16.3 66 81 0.82 0.072 23 0.001 84 1.444 51 0.036 19 0.144 89 0.001 47 992 34 908 15 872 8
      9.1 63.7 64 426 0.15 0.067 98 0.001 10 1.216 35 0.019 82 0.129 08 0.001 23 868 19 808 9 783 7
      10.1 46.9 171 258 0.66 0.068 36 0.001 27 1.287 21 0.023 11 0.136 00 0.001 16 880 23 840 10 822 7
      11.1 46.1 59 265 0.22 0.068 03 0.001 21 1.359 83 0.023 10 0.144 39 0.001 15 869 22 872 10 869 6
      12.1 60.1 65 363 0.18 0.066 08 0.001 03 1.276 40 0.019 58 0.139 52 0.001 15 809 19 835 9 842 6
      13.1 101.1 236 617 0.38 0.065 78 0.000 99 1.207 81 0.018 20 0.132 49 0.001 01 799 19 804 8 802 6
      14.1 65.9 191 363 0.53 0.066 63 0.001 31 1.279 29 0.024 55 0.138 65 0.001 17 826 26 837 11 837 7
      15.1 39.9 51 240 0.21 0.066 14 0.001 85 1.243 35 0.032 05 0.136 34 0.001 46 811 60 820 15 824 8
      16.1 91.3 322 505 0.64 0.068 93 0.001 27 1.282 73 0.024 46 0.134 40 0.001 12 897 26 838 11 813 6
      17.1 62.8 208 315 0.66 0.067 88 0.001 27 1.368 55 0.026 11 0.145 77 0.001 37 865 24 876 11 877 8
      18.1 157.7 1 100 792 1.39 0.066 62 0.001 03 1.170 75 0.018 57 0.126 99 0.000 99 826 20 787 9 771 6
      19.1 48.8 289 227 1.27 0.066 73 0.001 27 1.287 91 0.025 20 0.139 49 0.001 20 830 26 840 11 842 7
      20.1 105.2 83 278 0.30 0.111 23 0.001 58 4.713 81 0.074 78 0.306 20 0.003 03 1 820 15 1 770 13 1 722 15
      21.1 25.1 55 145 0.38 0.068 87 0.002 33 1.303 20 0.041 93 0.137 23 0.001 43 895 71 847 18 829 8
      22.1 89.0 78 232 0.34 0.114 12 0.001 55 4.771 64 0.063 50 0.302 22 0.002 23 1 866 14 1 780 11 1 702 11
      23.1 87.0 646 409 1.58 0.067 82 0.001 01 1.211 58 0.018 72 0.128 94 0.001 02 863 19 806 9 782 6
      下载: 导出CSV

      表  2  九宫山片麻状花岗岩的主量元素(%)和微量元素(10-6)分析结果

      Table  2.   Major (%) and trace element (10-6) data for the Jiugongshan gneissic granites

      样品号 08JGS25 08JGS26 08JGS34 08JGS37 08JGS38 08JGS39
      SiO2 74.20 72.89 72.36 72.47 73.99 71.83
      TiO2 0.28 0.30 0.38 0.37 0.24 0.39
      Al2O3 13.45 13.74 13.33 13.55 13.04 13.75
      Fe2O3T 1.67 1.98 2.34 2.36 1.71 2.49
      MnO 0.03 0.04 0.05 0.05 0.05 0.05
      MgO 0.87 0.89 0.61 0.62 0.50 0.85
      CaO 0.57 1.14 1.41 1.51 1.04 2.14
      Na2O 2.80 3.43 3.33 3.27 3.16 3.09
      K2O 4.58 4.30 4.53 4.63 4.69 3.97
      P2O5 0.09 0.08 0.10 0.11 0.10 0.08
      H2O+ 0.96 0.71 0.93 0.58 0.92 0.85
      CO2 0.15 0.15 0.22 0.07 0.22 0.11
      总量 99.65 99.65 99.59 99.59 99.66 99.60
      K2O/Na2O 1.64 1.25 1.36 1.42 1.48 1.28
      A/CNK 1.27 1.11 1.03 1.03 1.07 1.04
      Mg# 45.50 41.90 29.50 29.70 31.90 35.40
      Sc 6.26 6.33 7.38 7.12 5.79 8.05
      V 31.60 29.80 32.70 33.60 22.40 41.10
      Cr 15.00 14.50 9.40 10.20 9.00 15.10
      Co 3.96 4.78 4.60 5.03 3.43 6.37
      Ni 6.78 7.32 5.55 5.86 5.04 8.67
      Ga 18.40 16.20 17.00 16.70 15.20 16.30
      Rb 218.00 216.00 180.00 196.00 251.00 174.00
      Sr 90.50 120.80 89.80 96.40 95.80 112.00
      Y 22.00 25.00 43.00 41.80 45.20 38.60
      Zr 134.00 139.00 186.00 163.00 121.00 181.00
      Nb 7.70 7.73 7.55 7.36 6.85 7.04
      Cs 22.30 13.70 9.20 19.30 22.20 14.50
      Ba 542.00 475.00 554.00 574.00 379.00 499.00
      La 24.00 25.10 29.00 29.20 24.00 31.00
      Ce 49.70 52.30 60.30 61.40 51.10 64.90
      Pr 5.92 6.23 7.39 7.53 6.17 7.83
      Nd 21.70 23.00 27.60 28.80 23.20 29.70
      Sm 4.54 5.00 6.09 6.23 5.36 6.22
      Eu 0.67 0.73 0.89 0.95 0.62 0.94
      Gd 4.27 4.66 6.12 6.48 5.49 6.17
      Tb 0.66 0.75 1.07 1.12 1.06 1.05
      Dy 3.81 4.39 6.68 6.91 6.95 6.44
      Ho 0.72 0.86 1.44 1.45 1.53 1.34
      Er 2.05 2.28 3.88 4.05 4.49 3.61
      Tm 0.31 0.35 0.59 0.58 0.74 0.55
      Yb 2.00 2.26 3.84 3.69 4.78 3.46
      Lu 0.29 0.34 0.55 0.54 0.71 0.52
      Hf 4.02 4.12 5.15 4.91 3.97 5.27
      Ta 0.96 0.95 0.66 0.72 1.30 0.74
      Pb 30.30 19.00 29.30 29.30 98.80 28.10
      Th 15.00 15.70 15.40 15.40 16.40 16.80
      U 2.49 2.33 3.37 3.40 3.28 3.08
      Eu/Eu* 0.47 0.46 0.45 0.46 0.35 0.47
      (La/Yb)N 8.62 7.94 5.42 5.68 3.60 6.42
      M 1.12 1.31 1.41 1.42 1.33 1.42
      TZr(℃) 791.00 780.00 799.00 786.00 767.00 796.00
      注:Fe2O3T为全铁; A/CNK=摩尔Al2O3/(CaO+Na2O+K2O); Mg#=100×Mg2+/(Mg2++TFe2+); Eu/Eu*=EuN/(SmN×GdN)1/2; 下标N表示球粒陨石标准化数据, 球粒陨石标准化数值引自Sun and McDonough(1989); M=(Na+K+2×Ca)/(Al×Si)(Watson and Harrison, 1983); TZr=12 900/[2.95+0.85M+ln(496 000/Zrmelt)](Miller et al., 2003); Zrmelt为熔体中Zr含量.
      下载: 导出CSV

      表  3  九宫山片麻状花岗岩全岩Sr-Nd同位素分析结果

      Table  3.   Whole-rock Sr and Nd isotopic compositions for the Jiugongshan gneissic granites

      样品号 87Rb/86Sr 87Sr/86Sr ±(2σ) (87Sr/86Sr)i 147Sm/144Nd 143Nd/144Nd ±(2σ) εNd(t) TDM1(Ga) TDM2(Ga)
      08JGS25 7.010 9 0.766 963 0.000 006 0.683 843 0.126 7 0.512 525 0.000 005 5.24 1.09 1.07
      08JGS26 5.212 7 0.772 582 0.000 005 0.710 782 0.131 5 0.512 207 0.000 004 -1.49 1.74 1.62
      08JGS34 5.840 5 0.776 020 0.000 006 0.706 777 0.133 2 0.512 309 0.000 009 0.33 1.59 1.47
      08JGS37 5.922 6 0.777 223 0.000 007 0.707 006 0.131 0 0.512 394 0.000 004 2.23 1.39 1.32
      08JGS38 7.638 3 0.789 728 0.000 005 0.699 170 0.140 0 0.512 474 0.000 005 2.83 1.40 1.27
      08JGS39 4.518 9 0.762 827 0.000 007 0.709 252 0.126 5 0.512 308 0.000 003 1.01 1.47 1.42
      注:(1)87Rb/86Sr和147Sm/144Nd比值用全岩Rb、Sr、Sm和Nd含量(表 2)计算;(2)(87Sr/86Sr)i=(87Sr/86Sr)S+(87Rb/86Sr)S× (eλt-1), λ=1.42×10-11a-1;(3)εNd(t)=[(143Nd/144Nd)S/(143Nd/144Nd)CHUR(t)-1]×104, (143Nd/144Nd)CHUR(t)=0.512 638-0.196 7×(eλt-1);(4)TDM1=1/λ×ln{1+[((143Nd/144Nd)S-(143Nd/144Nd)DM)/((147Sm/144Nd)S-(147Sm/144Nd)DM)]}; TDM2=1/λ×ln{1+[(143Nd/144Nd)S-(143Nd/144Nd)DM-((147Sm/144Nd)S-(147Sm/144Nd)C) ×(eλt-1)]/[ (147Sm/144Nd)C-(147Sm/144Nd)DM]}; 公式中的下标S、CHUR、DM、C分别表示样品测量值、球粒陨石值、亏损地幔值、大陆地壳平均值, (143Nd/144Nd)DM=0.513 15, (147Sm/144Nd)DM=0.213 7, (147Sm/144Nd)C=0.118;λSm-Nd=6.54×10-12a-1; t代表岩浆结晶年龄为830 Ma.
      下载: 导出CSV

      表  4  九宫山片麻状花岗岩锆石Hf同位素分析结果

      Table  4.   Zircon Hf isotopic compositions for the Jiugongshan gneissic granites

      点号 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±(2σ) 年龄(Ma) (176Hf/177Hf)i εHf(t) ±(2σ) TDM1(Ga) TDM2(Ga) ±(2σ) 年龄点
      08JGS34
      1 0.122 103 0.004 194 0.282 508 0.000 025 830 0.282 442 6.7 0.9 1.15 1.30 0.11 1.1
      2 0.104 305 0.003 471 0.282 478 0.000 027 830 0.282 424 6.0 0.9 1.17 1.34 0.12 2.1
      3 0.123 278 0.004 161 0.282 629 0.000 030 830 0.282 564 11.0 1.1 0.96 1.03 0.13 3.1
      4* 0.087 263 0.002 854 0.282 417 0.000 025 876 0.282 370 5.1 0.9 1.24 1.43 0.11 5.1
      5 0.132 882 0.004 408 0.282 511 0.000 028 830 0.282 442 6.7 1.0 1.15 1.30 0.12 6.1
      6 0.083 596 0.002 901 0.282 535 0.000 021 830 0.282 490 8.3 0.8 1.07 1.19 0.10 7.1
      7* 0.072 873 0.002 501 0.282 622 0.000 023 872 0.282 581 12.5 0.8 0.93 0.96 0.11 8.1
      8* 0.129 814 0.004 245 0.282 662 0.000 031 869 0.282 592 12.9 1.1 0.92 0.94 0.14 11.1
      9 0.110 374 0.003 664 0.282 486 0.000 027 830 0.282 429 6.2 0.9 1.17 1.33 0.12 12.1
      10 0.094 232 0.003 226 0.282 432 0.000 027 830 0.282 382 4.5 1.0 1.23 1.43 0.12 10.1
      11 0.147 145 0.004 766 0.282 471 0.000 028 830 0.282 397 5.1 1.0 1.23 1.40 0.13 13.1
      12 0.081 860 0.002 855 0.282 401 0.000 032 830 0.282 356 3.6 1.1 1.27 1.49 0.14 16.1
      13 0.091 848 0.003 069 0.282 489 0.000 024 830 0.282 441 6.6 0.9 1.14 1.30 0.11 15.1
      14 0.106 146 0.003 382 0.282 407 0.000 029 830 0.282 354 3.5 1.0 1.28 1.49 0.13 18.1
      15 0.108 108 0.003 411 0.282 492 0.000 032 830 0.282 439 6.5 1.1 1.15 1.31 0.14 19.1
      16* 0.104 312 0.003 471 0.282 131 0.000 031 1820 0.282 011 13.7 1.1 1.69 1.63 0.14 20.1
      17 0.162 450 0.005 008 0.282 467 0.000 027 830 0.282 388 4.8 1.0 1.24 1.42 0.12 23.1
      18* 0.048 154 0.001 542 0.281 934 0.000 027 1866 0.281 879 10.1 1.0 1.88 1.89 0.12 22.1
      注:(176Hf/177Hf)i=(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1);εHf(t)=10 000×{[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1};TDM1=1/λ×ln{1+[(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)DM]};TDM2=TDM1-(TDM1-t)×[(fCC-fS)/(fCC-fDM)];f=(176Lu/177Hf)S/(176Lu/177Hf)CHUR-1;公式中下标S、CHUR、DM分别表示样品测量值、球粒陨石值、亏损地幔值, fCC, fS, fDM分别为平均地壳、样品和亏损地幔的fLu/Hf;(176Hf/177Hf)CHUR, 0=0.282 772, (176Lu/177Hf)CHUR=0.033 2(Blichert-Toft and Albarède, 1997);(176Hf/177Hf)DM=0.283 25, (176Lu/177Hf)DM=0.038 4, fDM=0.16(Griffin et al., 2000); fCC=-0.55(Griffin et al., 2002); λ=1.867×10-11a-1(Söderlund et al., 2004); t表示年龄,带上标“*”的分析点用单个锆石年龄计算,其余分析点用岩浆结晶年龄(830 Ma)计算.
      下载: 导出CSV
    • Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses that do not Report 204Pb.Chemical Geology, 192(1/2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      Blichert-Toft, J., Albarède, F., 1997.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148(1/2):243-258. https://doi.org/10.1016/s0012-821x(97)00198-2
      Charvet, J., Shu, L.S., Shi, Y.S., et al., 1996.The Building of South China:Collision of Yangzi and Cathaysia Blocks, Problems and Tentative Answers.Journal of Southeast Asian Earth Sciences, 13(3/4/5):223-235. https://doi.org/10.1016/0743-9547(96)00029-3
      Chen, J.F., Foland, K.A., Xing, F.M., et al., 1991.Magmatism along the Southeast Margin of the Yangtze Block:Precambrian Collision of the Yangtze and Cathysia Blocks of China.Geology, 19(8):8-15.https://doi.org/10.1130/0091-7613(1991)019<0815:matsmo>2.3.co;2 doi: 10.1130/0091-7613(1991)019<0815:matsmo>2.3.co;2
      Chen, J.F., Jahn, B.M., 1998.Crustal Evolution of Southeastern China:Nd and Sr Isotopic Evidence.Tectonophysics, 284(1/2):101-133. https://doi.org/10.1016/s0040-1951(97)00186-8
      Chen, Z.H., Guo, K.Y., Dong, Y.G., et al., 2009.Possible Early Neoproterozoic Magmatism Associated with Slab Window in the Pingshui Segment of the Jiangshan-Shaoxing Suture Zone:Evidence from Zircon LA-ICP-MS U-Pb Geochronology and Geochemistry.Science in China Series D-Earth Sciences, 39(7):994-1008 (in Chinese). doi: 10.1007/s11430-009-0071-6
      Corfu, F., Hanchar, J.M., Hoskin, P.W.O., et al., 2003.Atlas of Zircon Textures.Reviews in Mineralogy and Geochemistry, 53(1):469-500. https://doi.org/10.2113/0530469
      Cui, X., Zhu, W.B., Fitzsimons, I.C.W., et al., 2017.A Possible Transition from Island Arc to Continental Arc Magmatism in the Eastern Jiangnan Orogen, South China:Insights from a Neoproterozoic (870-860 Ma) Gabbroic-Dioritic Complex near the Fuchuan Ophiolite.Gondwana Research, 46:1-16. https://doi.org/10.13039/501100001809
      Gao, S., Ling, W.L., Qiu, Y.M., et al., 1999.Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton:Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis.Geochimica et Cosmochimica Acta, 63(13/14):2071-2088. https://doi.org/10.1016/s0016-7037(99)00153-2
      Gao, S., Zhang, B.R., Xie, Q.L., et al., 1991.Average Chemical Compositions of Post-Archean Sedimentary and Volcanic Rocks from the Qinling Orogenic Belt and Its Adjacent North China and Yangtze Cratons.Chemical Geology, 92(4):261-282. https://doi.org/10.1016/0009-2541(91)90074-2
      Griffin, W.L., Pearson, N.J., Belousova, E.A., et al., 2006.Comment:Hf-Isotope Heterogeneity in Zircon 91500.Chemical Geology, 233(3/4):358-363. https://doi.org/10.1016/j.chemgeo.2006.03.007
      Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
      Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3/4):237-269. https://doi.org/10.1016/s0024-4937(02)00082-8
      Han, F., Chen, J.Z., Nie, F.J., et al., 1994.The Geochronical Studies of Sibao Group in the Southern Margin of Jiangnan Massif.Acta Geoscientia Sinica, 15(1-2):43-50 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqxb4z1.007.htm
      Li, J. P., Wu, C. R., Chen, L., et al., 1999. Instruction of Geologic Map (Baoshihe Breadth). Hubei Regional Survey of Geology and Mineral Resources, Wuhan, 27-40 (in Chinese).
      Li, W.X., Li, X.H., 2003.Adakitic Granites within the NE Jiangxi Ophiolites, South China:Geochemical and Nd Isotopic Evidence.Precambrian Research, 122(1-4):29-44. https://doi.org/10.1016/S0301-9268(02)00206-1
      Li, W.X., Li, X.H., Li, Z.X., 2005.Neoproterozoic Bimodal Magmatism in the Cathaysia Block of South China and Its Tectonic Significance.Precambrian Research, 136(1):51-66. https://doi.org/10.1016/j.precamres.2004.09.008
      Li, W.X., Li, X.H., Li, Z.X., 2010a.Ca.850 Ma Bimodal Volcanic Rocks in Northeastern Jiangxi Province, South China:Initial Extension during the Breakup of Rodinia? American Journal of Science, 310(9):951-980. https://doi.org/10.2475/09.2010.08
      Li, W.X., Li, X.H., Li, Z.X., et al., 2008b.Obduction-Type Granites within the NE Jiangxi Ophiolite:Implications for the Final Amalgamation between the Yangtze and Cathaysia Blocks.Gondwana Research, 13(3):288-301. https://doi.org/10.1016/j.gr.2007.12.010
      Li, X.H., 1996.Sm-Nd Isotopic Systematics of Sibao Group form the Southern Margin of Yangtze Block:Implications for the Crustal Evolution.Scientia Geologica Sinica, 31(3):218-228 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/80009155844
      Li, X.H., 1999.U-Pb Zircon Ages of Granites from the Southern Margin of the Yangtze Block:Timing of Neoproterozoic Jinning:Orogeny in SE China and Implications for Rodinia Assembly.Precambrian Research, 97(1/2):43-57. https://doi.org/10.1016/s0301-9268(99)00020-0
      Li, X.H., Li, W.X., Li, Q.L., et al., 2010b.Petrogenesis and Tectonic Significance of the~850 Ma Gangbian Alkaline Complex in South China:Evidence from in Situ Zircon U-Pb Dating, Hf-O Isotopes and Whole-Rock Geochemistry.Lithos, 114(1/2):1-15. https://doi.org/10.1016/j.lithos.2009.07.011
      Li, X.H., Li, W.X., Li, Z.X., et al., 2008a.850-790 Ma Bimodal Volcanic and Intrusive Rocks in Northern Zhejiang, South China:A Major Episode of Continental Rift Magmatism during the Breakup of Rodinia.Lithos, 102(1/2):341-357. https://doi.org/10.1016/j.lithos.2007.04.007
      Li, X.H., Li, W.X., Li, Z.X., et al., 2009.Amalgamation between the Yangtze and Cathaysia Blocks in South China:Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks.Precambrian Research, 174(1/2):117-128. https://doi.org/10.1016/j.precamres.2009.07.004
      Li, X.H., Li, Z.X., Ge, W.C., et al., 2003a.Neoproterozoic Granitoids in South China:Crustal Melting above a Mantle Plume at Ca.825 Ma? Precambrian Research, 122(1-4):45-83. https://doi.org/10.1016/S0301-9268(02)00207-3
      Li, X.H., Li, Z.X., Sinclair, J.A., et al., 2006.Revisiting the "Yanbian Terrane":Implications for Neoproterozoic Tectonic Evolution of the Western Yangtze Block, South China.Precambrian Research, 151(1-2):14-30. https://doi.org/10.1016/j.precamres.2006.07.009
      Li, X.H., McCulloch, M.T., 1996.Secular Variation in the Nd Isotopic Composition of Neoproterozoic Sediments from the Southern Margin of the Yangtze Block:Evidence for a Proterozoic Continental Collision in Southeast China.Precambrian Research, 76(1-2):67-76. https://doi.org/10.1016/0301-9268(95)00024-0
      Li, X.H., Zhao, J.X., McCulloch, M.T., et al., 1997.Geochemical and Sm-Nd Isotopic Study of Neoproterozoic Ophiolites from Southeastern China:Petrogenesis and Tectonic Implications.Precambrian Research, 81(1-2):129-144. https://doi.org/10.1016/S0301-9268(96)00032-0
      Li, X.H., Zhou, G.Q., Zhao, J.X., et al., 1994.SHRIMP Ion Microprobe Zircon U-Pb Age and Sm-Nd Isotopic Characteristics of the NE Jiangxi Ophiolite and Its Tectonic Implications.Chinese Journal of Geochemistry, 13(4):317-325. https://doi.org/10.1007/BF02838521
      Li, Z.X., Li, X.H., Kinny, P.D., et al., 1999.The Breakup of Rodinia:Did It Start with a Mantle Plume beneath South China? Earth and Planetary Science Letters, 173(3):171-181. https://doi.org/10.1016/S0012-821X(99)00240-X
      Li, Z.X., Li, X.H., Kinny, P.D., et al., 2003b.Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents:Evidence for a Mantle Superplume That Broke Up Rodinia.Precambrian Research, 122(1-4):85-109. https://doi.org/10.1016/S0301-9268(02)00208-5
      Li, Z.X., Li, X.H., Zhou, H.W., et al., 2002.Grenvillian Continental Collision in South China:New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia.Geology, 30(2):163-166.https://doi.org/10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2 doi: 10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2
      Li, Z.X., Wartho, J.A., Occhipinti, S., et al., 2007.Early History of the Eastern Sibao Orogen (South China) during the Assembly of Rodinia:New Mica 40Ar/39Ar Dating and SHRIMP U-Pb Detrital Zircon Provenance Constraints.Precambrian Research, 159(1/2):79-94. https://doi.org/10.1016/j.precamres.2007.05.003
      Li, Z.X., Zhang, L.H., Powell, C.M., 1995.South China in Rodinia:Part of the Missing Link between Australia-East Antarctica and Laurentia?Geology, 23(5):407-410.https://doi.org/10.1130/0091-7613(1995)023<0407:scirpo>2.3.co;2 doi: 10.1130/0091-7613(1995)023<0407:scirpo>2.3.co;2
      Ling, W.L., Duan, R.C., Xie, X.J., et al., 2009.Contrasting Geochemistry of the Cretaceous Volcanic Suites in Shandong Province and Its Implications for the Mesozoic Lower Crust Delamination in the Eastern North China Craton.Lithos, 113(3/4):640-658. https://doi.org/10.1016/j.lithos.2009.07.001
      Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010a.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082
      Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010b.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546. https://doi.org/10.1007/s11434-010-3052-4
      Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008.Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole:Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates.Chemical Geology, 247(1/2):133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016
      Ludwig, K.R., 2003.User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel.California:Berkeley Geochronology Center Special Publication, 4:1-39. https://searchworks.stanford.edu/view/6739593
      Lyu, P.L., Li, W.X., Wang, X.C., et al., 2017.Initial Breakup of Supercontinent Rodinia as Recorded by Ca 860-840 Ma Bimodal Volcanism along the Southeastern Margin of the Yangtze Block, South China.Precambrian Research, 296:148-167. https://doi.org/10.13039/501100002367
      Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      McDonough, W.F., Sun, S.S., 1995.The Composition of the Earth.Chemical Geology, 120(3/4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      Miller, C.F., McDowell, S.M., Mapes, R.W., 2003.Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance.Geology, 31(6):529.https://doi.org/10.1130/0091-7613(2003)031<0529:hacgio>2.0.co;2 doi: 10.1130/0091-7613(2003)031<0529:hacgio>2.0.co;2
      Qin, S.X., Zhang, Z.J., Zhang, Z., et al., 2002.Study on the Behavior of the Low-Grade Metamorphism and High Deformation of the Middle Proterozoic Shuangqiaoshan Group in North Jiangxi and Grenville Phase Orogeny.Geological Science and Technology Information, 21(2):8-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ200202002.htm
      Qiu, Y.M., Gao, S., McNaughton, N.J., et al., 2000.First Evidence of > 3.2 Ga Continental Crust in the Yangtze Craton of South China and Its Implications for Archean Crustal Evolution and Phanerozoic Tectonics.Geology, 28(1):11-14.https://doi.org/10.1130/0091-7613(2000)028<0011:feogcc>2.3.co;2 doi: 10.1130/0091-7613(2000)028<0011:feogcc>2.3.co;2
      Shen, W.Z., Zhang, B.T., Ling, H.F., et al., 1991.Nd, Sr and O Isotopic Study on Spilite-Keratophyre in Xiqiu, Zhejiang Province.Acta Geologica Sinica, 65(4):337-346 (in Chinese with English abstract).
      Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219(3/4):311-324. https://doi.org/10.1016/s0012-821x(04)00012-3
      Streckeisen, A., 1974.Classification and Nomenclature of Plutonic Rocks Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks.Geologische Rundschau, 63(2):773-786. https://doi.org/10.1007/bf01820841
      Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Wang, J., 2005.New Advances in the Study of "the Nanhuaan System"-with Particular Reference to the Stratigraphic Division and Correlation of the Nanhuaan System, South China.Geological Bulletin of China, 24(6):491-495 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200506001.htm
      Wang, X.L., Zhou, J.C., Griffin, W.L., et al., 2007.Detrital Zircon Geochronology of Precambrian Basement Sequences in the Jiangnan Orogen:Dating the Assembly of the Yangtze and Cathaysia Blocks.Precambrian Research, 159(1/2):117-131. https://doi.org/10.1016/j.precamres.2007.06.005
      Wang, X.L., Zhou, J.C., Griffin, W.L., et al., 2014.Geochemical Zonation across a Neoproterozoic Orogenic Belt:Isotopic Evidence from Granitoids and Metasedimentary Rocks of the Jiangnan Orogen, China.Precambrian Research, 242:154-171. https://doi.org/10.1016/j.precamres.2013.12.023
      Wang, X.L., Zhou, J.C., Qiu, J.S., et al., 2004.Geochemistry of the Meso-to Neoproterozoic Basic-Acid Rocks from Hunan Province, South China:Implications for the Evolution of the Western Jiangnan Orogen.Precambrian Research, 135(1-2):79-103. https://doi.org/10.1016/j.precamres.2004.07.006
      Wang, X.L., Zhou, J.C., Qiu, J.S., et al., 2006.LA-ICP-MS U-Pb Zircon Geochronology of the Neoproterozoic Igneous Rocks from Northern Guangxi, South China:Implications for Tectonic Evolution.Precambrian Research, 145(1/2):111-130. https://doi.org/10.1016/j.precamres.2005.11.014
      Wang, X.L., Zhou, J.C., Qiu, J.S., et al., 2006.Petrogenesis of the Neoproterozoic Strongly Peraluminous Granitoicls from Northern Guangyi:Constraints from Zircon Geochronology and Hf Isotopes.Acta Petrologica Sinica, 22(2):326-342 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200602007.htm
      Wang, X.L., Zhou, J.C., Qiu, J.S., et al., 2008a.Geochronology and Geochemistry of Neoproterozoic Mafic Rocks from Western Hunan, South China:Implications for Petrogenesis and Post-Orogenic Extension.Geological Magazine, 145(2):215-233. https://doi.org/10.1017/S0016756807004025
      Wang, X.L., Zhao, G.C., Zhou, J.C., et al., 2008b.Geochronology and Hf Isotopes of Zircon from Volcanic Rocks of the Shuangqiaoshan Group, South China:Implications for the Neoproterozoic Tectonic Evolution of the Eastern Jiangnan Orogen.Gondwana Research, 14(3):355-367. https://doi.org/10.1016/j.gr.2008.03.001
      Wang, X.S., Gao, J., Klemd, R., et al., 2015.Early Neoproterozoic Multiple Arc-Back-Arc System Formation during Subduction-Accretion Processes between the Yangtze and Cathaysia Blocks:New Constraints from the Supra-Subduction Zone NE Jiangxi Ophiolite (South China).Lithos, 236-237:90-105. https://doi.org/10.13039/501100001809
      Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304. https://doi.org/10.1016/0012-821x(83)90211-x
      Wu, R.X., Zheng, Y.F., Wu, Y.B., et al., 2006a.Reworking of Juvenile Crust:Element and Isotope Evidence from Neoproterozoic Granodiorite in South China.Precambrian Research, 146(3/4):179-212. https://doi.org/10.1016/j.precamres.2006.01.012
      Wu, F.Y., Yang, Y.H., Xie, L.W., et al., 2006b.Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology.Chemical Geology, 234(1-2):105-126. https://doi.org/10.1016/j.chemgeo.2006.05.003
      Wu, H., Zhang, Y.H., Ling, W.L., et al., 2016.Recognition of Mantle Input and Its Tectonic Implication for the Nature of ~815 Ma Magmatism in the Yangtze Continental Interior, South China.Precambrian Research, 279:17-36. https://doi.org/10.1016/j.precamres.2016.04.005
      Wu, Y.B., Zheng, Y.F., Tang, J., et al., 2007.Zircon U-Pb Dating of Water-Rock Interaction during Neoproterozoic Rift Magmatism in South China.Chemical Geology, 246(1/2):65-86. https://doi.org/10.1016/j.chemgeo.2007.09.004
      Xin, Y.J., Li, J.H., Dong, S.W., et al., 2017.Neoproterozoic Post-Collisional Extension of the Central Jiangnan Orogen:Geochemical, Geochronological, and Lu-Hf Isotopic Constraints from the Ca.820-800 Ma Magmatic Rocks.Precambrian Research, 294:91-110. https://doi.org/10.13039/501100001809
      Xu, B.T., Qiu, Y.S., 1996.Sm-Nd and 40Ar-39Ar Ages of Shuangxiwu Group and Their Geological Significance.Geology of Zhejiang, 12(1):46-53 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZJDZ199601003.htm
      Xu, P., Wu, F.Y., Xie, L.W., et al., 2004.Hf Isotopic Compositions of the Standard Zircons for U-Pb Dating.Chinese Science Bulletin, 49(14):1403-1410 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxtw20041500f&dbname=CJFD&dbcode=CJFQ
      Yang, C., Li, X.H., Wang, X.C., et al., 2015.Mid-Neoproterozoic Angular Unconformity in the Yangtze Block Revisited:Insights from Detrital Zircon U-Pb Age and Hf-O Isotopes.Precambrian Research, 266:165-178. https://doi.org/10.13039/501100002855
      Yao, J.L., Shu, L.S., Santosh, M., 2014.Neoproterozoic Arc-Trench System and Breakup of the South China Craton:Constraints from N-MORB Type and Arc-Related Mafic Rocks, and Anorogenic Granite in the Jiangnan Orogenic Belt.Precambrian Research, 247:187-207. https://doi.org/10.1016/j.precamres.2014.04.008
      Yao, J.L., Shu, L.S., Santosh, M., et al., 2015.Neoproterozoic Arc-Related Andesite and Orogeny-Related Unconformity in the Eastern Jiangnan Orogenic Belt:Constraints on the Assembly of the Yangtze and Cathaysia Blocks in South China.Precambrian Research, 262:84-100. https://doi.org/10.13039/501100001809
      Ye, M.F., Li, X.H., Li, W.X., et al., 2007.SHRIMP Zircon U-Pb Geochronological and Whole-Rock Geochemical Evidence for an Early Neoproterozoic Sibaoan Magmatic Arc along the Southeastern Margin of the Yangtze Block.Gondwana Research, 12(1/2):144-156. https://doi.org/10.1016/j.gr.2006.09.001
      Zhang, H.X., Sun, D.Z., Zhu, B.Q., et al., 2000.Pb, Nd Isotopic Study of Proterozoic Metamorphic Sediments in North Jiangxi and Its Tectonic Significance.Regional Geology of China, 19(1):66-71 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200001010.htm
      Zhang, S.B., Zheng, Y.F., Wu, Y.B., et al., 2006a.Zircon Isotope Evidence for ≥ 3.5 Ga Continental Crust in the Yangtze Craton of China.Precambrian Research, 146(1-2):16-34. https://doi.org/10.1016/j.precamres.2006.01.002
      Zhang, S.B., Zheng, Y.F., Wu, Y.B., et al., 2006b.Zircon U-Pb Age and Hf-O Isotope Evidence for Paleoproterozoic Metamorphic Event in South China.Precambrian Research, 151(3-4):265-288. https://doi.org/10.1016/j.precamres.2006.08.009
      Zhang, S.B., Zheng, Y.F., Zhao, Z.F., et al., 2009.Origin of TTG-Like Rocks from Anatexis of Ancient Lower Crust:Geochemical Evidence from Neoproterozoic Granitoids in South China.Lithos, 113(3/4):347-368. https://doi.org/10.1016/j.lithos.2009.04.024
      Zhang, Y.Z., Wang, Y.J., Geng, H.Y., et al., 2013.Early Neoproterozoic (~850 Ma) Back-Arc Basin in the Central Jiangnan Orogen (Eastern South China):Geochronological and Petrogenetic Constraints from Meta-Basalts.Precambrian Research, 231:325-342. https://doi.org/10.1016/j.precamres.2013.03.016
      Zhang, Z. J., Yin, C. Q., Zeng, Z. X., et al., 1995. Instruction of Geologic Map (Gangkou Town Breadth). Northwest Jiangxi Geology Team, Jiangxi Bureau of Geology and Mineral Resources, Jiujiang, 15-26 (in Chinese).
      Zhao, J.H., Zhou, M.F., 2013.Neoproterozoic High-Mg Basalts Formed by Melting of Ambient Mantle in South China.Precambrian Research, 233:193-205. https://doi.org/10.13039/501100001809
      Zhao, J.H., Zhou, M.F., Yan, D.P., et al., 2008.Zircon Lu-Hf Isotopic Constraints on Neoproterozoic Subduction-Related Crustal Growth along the Western Margin of the Yangtze Block, South China.Precambrian Research, 163(3/4):189-209. https://doi.org/10.1016/j.precamres.2007.11.003
      Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., et al., 2006.Widespread Archean Basement beneath the Yangtze Craton.Geology, 34(6):417-420. https://doi.org/10.1130/G22282.1
      Zheng, Y.F., 1989.Influences of the Nature of the Initial Rb-Sr System on Isochron Validity.Chemical Geology (Isotope Geoscience Section), 80(1):1-16. https://doi.org/10.1016/0168-9622(89)90043-2
      Zheng, Y.F., Wu, R.X., Wu, Y.B., et al., 2008.Rift Melting of Juvenile Arc-Derived Crust:Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China.Precambrian Research, 163(3/4):351-383. https://doi.org/10.1016/j.precamres.2008.01.004
      Zheng, Y.F., Wu, Y.B., Chen, F.K., et al., 2004.Zircon U-Pb and Oxygen Isotope Evidence for a Large-Scale 18O Depletion Event in Igneous Rocks during the Neoproterozoic.Geochimica et Cosmochimica Acta, 68(20):4145-4165. https://doi.org/10.1016/j.gca.2004.01.007
      Zheng, Y.F., Zhang, S.B., Zhao, Z.F., et al., 2007.Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China:Implications for Growth and Reworking of Continental Crust.Lithos, 96(1/2):127-150. https://doi.org/10.1016/j.lithos.2006.10.003
      Zhong, Y. F., 2007. Petrogenesis and Geological Significance of Jiuling Granitic Complex Batholith in Northern Jiangxi Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Zhong, Y.F., Ma, C.Q., She, Z.B., et al., 2005.SHRIMP U-Pb Zircon Geochronology of the Jiuling Granitic Complex Batholith in Jiangxi Province.Earth Science, 30(6):685-691 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqkx200506004.htm
      Zhou, J.C., Wang, X.L., Qiu, J.S., 2009.Geochronology of Neoproterozoic Mafic Rocks and Sandstones from Northeastern Guizhou, South China:Coeval Arc Magmatism and Sedimentation.Precambrian Research, 170(1/2):27-42. https://doi.org/10.1016/j.precamres.2008.11.002
      Zhou, J.C., Wang, X.L., Qiu, J.S., et al., 2004.Geochemistry of Meso-and Neoproterozoic Mafic-Ultramafic Rocks from Northern Guangxi, China:Arc or Plume Magmatism? Geochemical Journal, 38(2):139-152. https://doi.org/10.2343/geochemj.38.139
      Zhou, M.F., Kennedy, A.K., Sun, M., et al., 2002a.Neoproterozoic Arc-Related Mafic Intrusions along the Northern Margin of South China:Implications for the Accretion of Rodinia.The Journal of Geology, 110(5):611-618. https://doi.org/10.1086/341762
      Zhou, M.F., Ma, Y.X., Yan, D.P., et al., 2006a.The Yanbian Terrane (Southern Sichuan Province, SW China):A Neoproterozoic Arc Assemblage in the Western Margin of the Yangtze Block.Precambrian Research, 144(1-2):19-38. https://doi.org/10.1016/j.precamres.2005.11.002
      Zhou, M.F., Yan, D.P., Kennedy, A.K., et al., 2002b.SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China.Earth and Planetary Science Letters, 196(1-2):51-67. https://doi.org/10.1016/S0012-821X(01)00595-7
      Zhou, M.F., Yan, D.P., Wang, C.L., et al., 2006b.Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China):Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China.Earth and Planetary Science Letters, 248(1-2):286-300. https://doi.org/10.1016/j.epsl.2006.05.032
      Zhu, W.G., Zhong, H., Deng, H.L., et al., 2006.SHRIMP Zircon U-Pb Age, Geochemistry, and Nd-Sr Isotopes of the Gaojiacun Mafic-Ultramafic Intrusive Complex, Southwest China.International Geology Review, 48(7):650-668. https://doi.org/10.2747/0020-6814.48.7.650
      陈志洪, 郭坤一, 董永观, 等, 2009.江山-绍兴拼合带平水段可能存在新元古代早期板片窗岩浆活动:来自锆石LA-ICP-MS年代学和地球化学的证据.中国科学D辑:地球科学, 39(7):994-1008. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk200907011&dbname=CJFD&dbcode=CJFQ
      韩发, 沈建忠, 聂凤军, 等, 1994.江南古陆南缘四堡群同位素地质年代学研究.地球学报, 15(1-2):43-50. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqxb4z1.007&dbname=CJFD&dbcode=CJFQ
      李金平, 吴传荣, 陈璘, 等, 1999. 地质图说明书(宝石河幅). 武汉: 湖北省区域地质矿产调查所, 27-40.
      李献华, 1996.扬子块体南缘四堡群Sm-Nd同位素体系及其地壳演化意义.地质科学, 31(3):218-228. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkx603.001&dbname=CJFD&dbcode=CJFQ
      秦松贤, 章泽军, 张志, 等, 2002.赣北中元古界双桥山群低变质强变形行为与格林威尔期造山作用.地质科技情报, 21(2):8-12. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkq200202002&dbname=CJFD&dbcode=CJFQ
      沈渭洲, 章邦桐, 凌洪飞, 等, 1991.浙江西裘细碧-角斑岩的Nd、Sr、O同位素地质研究.地质学报, 65(4):337-346. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxe199104003&dbname=CJFD&dbcode=CJFQ
      王剑, 2005.华南"南华系"研究新进展——论南华系地层划分与对比.地质通报, 24(6):491-495. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zqyd200506001&dbname=CJFD&dbcode=CJFQ
      王孝磊, 周金城, 邱检生, 等, 2006.桂北新元古代强过铝花岗岩的成因:锆石年代学和Hf同位素制约.岩石学报, 22(2):326-342. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200602007&dbname=CJFD&dbcode=CJFQ
      徐步台, 邱郁双, 1996.章村-楼塔一带双溪坞群Sm-Nd和40Ar-39Ar年龄及地质年代意义.浙江地质, 12(1):46-53. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zjdz199601003&dbname=CJFD&dbcode=CJFQ
      徐平, 吴福元, 谢烈文, 等, 2004.U-Pb同位素定年标准锆石的Hf同位素.科学通报, 49(14):1403-1410. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kxtb200414012&dbname=CJFD&dbcode=CJFQ
      张海祥, 孙大中, 朱炳泉, 等, 2000.赣北元古代变质沉积岩的铅钕同位素特征.中国区域地质, 19(1):66-71. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zqyd200001010&dbname=CJFD&dbcode=CJFQ
      章泽军, 印纯清, 曾佐勋, 等, 1995. 地质图说明书(港口幅). 九江: 江西省地矿局赣西北大队, 15-26.
      钟玉芳, 2007. 赣北地区九岭复式花岗岩基的成因及成岩意义(博士学位论文). 武汉: 中国地质大学.
      钟玉芳, 马昌前, 佘振兵, 等, 2005.江西九岭花岗岩类复式岩基锆石SHRIMP U-Pb年代学.地球科学, 30(6):685-691. http://www.earth-science.net/WebPage/Article.aspx?id=1522
    • 加载中
    图(12) / 表(4)
    计量
    • 文章访问数:  4648
    • HTML全文浏览量:  1693
    • PDF下载量:  70
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-09-15
    • 刊出日期:  2018-03-15

    目录

      /

      返回文章
      返回