Magmatism in Subduction Zones and Growth of Continental Crust
-
摘要: 大陆地壳的起源、生长和改造一直都是国际地学界广泛关注的热点问题,目前仍存在一定的争议,特别体现在陆壳增生的方式和速率上.为了探讨大陆地壳的生长方式,简要综述了俯冲带及其岩浆作用和大陆地壳生长的研究成果.俯冲带可划分为洋洋俯冲带、洋陆俯冲带和陆陆俯冲带,其岩浆作用以产出弧岩浆岩为主要特征,被广泛接受为大陆地壳生长的主要方式.目前主要有两种陆壳生长的假说:玄武岩模式和安山岩模式.玄武岩模式主要通过拆沉和底垫过程来实现新生地壳向大陆地壳的演化;安山岩模式则强调陆壳直接形成于产出安山质岩浆的俯冲带岩浆弧环境.俯冲带和碰撞带等板块汇聚边界是显生宙大陆地壳生长和改造的主要位置,俯冲带岩浆作用对陆壳生长发挥着重要的作用.Abstract: The origin, growth and reworking of continental crust have always been a hot topics in the international geosciences, and there are still some disputes, particularly about the mode and rate of continental crust growth.In order to discuss continental crustal growth style, it briefly reviews the research achievements of subduction-related magmatism and continental crustal growth.Subduction zones can be divided into oceanic-oceanic subduction zones, oceanic-continental subduction zones and continental-continental subduction zones, characterized by arc magmatic rocks.Subduction-related magmatism has been widely accepted as the main continental crustal growth style.At present, there are two hypotheses of the growth of continental crust:basalt model and andesite model.The basalt model mainly highlights the evolution of the new crust to the continental crust through the processes of delamination and relamination, while the andesite model emphasizes that the continental crust is directly formed in the magmatic arc environments of the subduction zones where andesitic magmas occur.Plate convergent boundaries such as subduction and collision zones are considered to be the main locations for the growth and reworking of the Phanerozoic continental crust, and subduction-related magmatism is of great significance to continental crustal growth.
-
Key words:
- subduction zone /
- magmatic arc /
- magmatism /
- continental crust /
- crustal growth /
- tectonics /
- petrology
-
图 1 大陆地壳结构组成示意图
Fig. 1. Schematic diagram of the structure of the continental crust
图 4 岛弧下地壳与大陆下地壳微量元素组成对比
Fig. 4. Comparison of trace elements in arc versus continental lower crust
图 6 底垫模式构造背景示意图
Fig. 6. Schematic diagrams of the tectonic settings for relamination
图 7 原生安山质及玄武质岩浆生成模式示意图
Fig. 7. Formation patterns of primary andesitic and basaltic magmas
-
Arculus, R.J., 1981.Island Arc Magmatism in Relation to the Evolution of the Crust and Mantle.Tectonophysics, 75(1-2):113-133. https://doi.org/10.1016/0040-1951(81)90212-2 Armstrong, R.L., 1981.Radiogenic Isotopes:The Case for Crustal Recycling on a Near-Steady-State No-Continental-Growth Earth.Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 301(1461):443-472. https://doi.org/10.1098/rsta.1981.0122 Beall, A.P., Moresi, L., Cooper, C.M., 2018.Formation of Cratonic Lithosphere during the Initiation of Plate Tectonics.Geology, 46(6):487-490. https://doi.org/10.1130/g39943.1 Beck, S.L., Zandt, G., 2002.The Nature of Orogenic Crust in the Central Andes.Journal of Geophysical Research:Solid Earth, 107(B10):ESE 7-1-ESE 7-16. https://doi.org/10.1029/2000jb000124 Bird, P., 1979.Continental Delamination and the Colorado Plateau.Journal of Geophysical Research:Solid Earth, 84(B13):7561-7571. https://doi.org/10.1029/jb084ib13p07561 Bourdon, B., Turner, S., Dosseto, A., 2003.Dehydration and Partial Melting in Subduction Zones:Constraints from U-Series Disequilibria.Journal of Geophysical Research:Solid Earth, 108(B6). https://doi.org/10.1029/2002jb001839 Cai, P.J., Xu, R.K., Zheng, Y.Y., et al., 2018.From Oceanic Subduction to Continental Colision in North Qaidam:Evidence from Kaipinggou Orogenic M-Type Peridotite.Earth Science, 43(8):2875-2892 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808025.htm Castro, A., Vogt, K., Gerya, T., 2013.Generation of New Continental Crust by Sublithospheric Silicic-Magma Relamination in Arcs:A Test of Taylor's Andesite Model.Gondwana Research, 23(4):1554-1566. https://doi.org/10.1016/j.gr.2012.07.004 Chemenda, A.I., Burg, J.P., Mattauer, M., 2000.Evolutionary Model of the Himalaya-Tibet System:Geopoem Based on New Modelling, Geological and Geophysical Data.Earth and Planetary Science Letters, 174(3-4):397-409. https://doi.org/10.1016/s0012-821x(99)00277-0 Chen, L., Zhao, Z.F., Zheng, Y.F., 2014.Origin of Andesitic Rocks:Geochemical Constraints from Mesozoic Volcanics in the Luzong Basin, South China.Lithos, 190-191:220-239. https://doi.org/10.1016/j.lithos.2013.12.011 Chen, L.H., Zhou, X.H., 2005.Subduction-Related Metasomatism in the Thinning Lithosphere:Evidence from a Composite Dunite-Orthopyroxenite Xenolith Entrained in Mesozoic Laiwu High-Mg Diorite, North China Craton.Geochemistry, Geophysics, Geosystems, 6(6). https://doi.org/10.1029/2005gc000938 DeBari, S.M., Greene, A.R., 2011.Vertical Stratification of Composition, Density, and Inferred Magmatic Processes in Exposed Arc Crustal Sections.In: DeBari, S.M., Greene, A.R., eds., Frontiers in Earth Sciences.Springer Berlin Heidelberg, Berlin, 121-144.https://doi.org/10.1007/978-3-540-88558-0_5 Ducea, M.N., Saleeby, J.B., Bergantz, G., 2015.The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs.Annual Review of Earth and Planetary Sciences, 43(1):299-331. https://doi.org/10.1146/annurev-earth-060614-105049 Ellam, R.M., Hawkesworth, C.J., 1988.Is Average Continental Crust Generated at Subduction Zones? Geology, 16(4):314-317.https://doi.org/10.1130/0091-7613(1988)0160314:iaccga>2.3.co;2 doi: 10.1130/0091-7613(1988)0160314:iaccga>2.3.co;2 Ernst, W.G., 2005.Alpine and Pacific Styles of Phanerozoic Mountain Building:Subduction-Zone Petrogenesis of Continental Crust.Terra Nova, 17(2):165-188. https://doi.org/10.1111/j.1365-3121.2005.00604.x Fan, W.M., Peng, T.P., Wang, Y.J., 2009.Triassic Magmatism in the Southern Lancangjiang Zone, Southwestern China and Its Constraints on the Tectonic Evolution of Paleo-Tethys.Earth Science Frontiers, 16(6):291-302(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200906031 Foley, S.F., Barth, M.G., Jenner, G.A., 2000.Rutile/Melt Partition Coefficients for Trace Elements and an Assessment of the Influence of Rutile on the Trace Element Characteristics of Subduction Zone Magmas.Geochimica et Cosmochimica Acta, 64(5):933-938. https://doi.org/10.1016/s0016-7037(99)00355-5 Gao, S., Luo, T.C., Zhang, B.R., et al., 1998a.Chemical Composition of the Continental Crust as Revealed by Studies in East China.Geochimica et Cosmochimica Acta, 62(11):1959-1975. https://doi.org/10.1016/s0016-7037(98)00121-5 Gao, S., Zhang, B.R., Jin, Z.M., et al., 1998b.How Mafic is the Lower Continental Crust? Earth and Planetary Science Letters, 161(1-4):101-117. https://doi.org/10.1016/s0012-821x(98)00140-x Grove, T.L., Till, C.B., Krawczynski, M.J., 2012.The Role of H2O in Subduction Zone Magmatism.Annual Review of Earth and Planetary Sciences, 40(1):413-439. https://doi.org/10.1146/annurev-earth-042711-105310 Guy, A., Edel, J.B., Schulmann, K., et al., 2011.A Geophysical Model of the Variscan Orogenic Root (Bohemian Massif):Implications for Modern Collisional Orogens.Lithos, 124(1-2):144-157. https://doi.org/10.1016/j.lithos.2010.08.008 Hacker, B.R., Kelemen, P.B., Behn, M.D., 2011.Differentiation of the Continental Crust by Relamination.Earth and Planetary Science Letters, 307(3-4):501-516. https://doi.org/10.1016/j.epsl.2011.05.024 Hacker, B.R., Kelemen, P.B., Behn, M.D., 2015.Continental Lower Crust.Annual Review of Earth and Planetary Sciences, 43(1):167-205. https://doi.org/10.1146/annurev-earth-050212-124117 Hao, J., Wang, E.Q., Liu, X.H., et al., 2006.Jinyanshan Collisional Orogenic Belt of the Early Paleozoic in the Altun Mountains:Evidence from Single Zircon U-Pb and 40Ar/39Ar Isotopic Dating for the Arc Magmatite and Ophiolitic Mélange.Acta Petrologica Sinica, 22(11):2743-2752(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200611011.htm Harmon, R.S., Barreiro, B.A., Moorbath, S., et al., 1984.Regional O-, Sr-, and Pb-Isotope Relationships in Late Cenozoic Calc-Alkaline Lavas of the Andean Cordillera.Journal of the Geological Society, 141(5):803-822. https://doi.org/10.1144/gsjgs.141.5.0803 Hastie, A.R., Kerr, A.C., Pearce, J.A., et al., 2007.Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements:Development of the Th-Co Discrimination Diagram.Journal of Petrology, 48(12):2341-2357. https://doi.org/10.1093/petrology/egm062 Hawkesworth, C.J., Turner, S.P., McDermott, F., et al., 1997.U-Th Isotopes in Arc Magmas:Implications for Element Transfer from the Subducted Crust.Science, 276(5312):551-555. https://doi.org/10.1126/science.276.5312.551 Hong, D.W., Wang, S.G., Xie, X.L., et al., 2000.Genesis of Positive ε(Nd, t) Granitoids in the Da Hinggan Mts.-Mongolia Orogenic Belt and Growth Continental Crust.Earth Science Frontiers, 7(2):441-456 (in Chinese with English abstract). Huang, Y., Chubakov, V., Mantovani, F., et al., 2013.A Reference Earth Model for the Heat-Producing Elements and Associated Geoneutrino Flux.Geochemistry, Geophysics, Geosystems, 14(6):2003-2029. https://doi.org/10.1002/ggge.20129 Ishikawa, A., Kuritani, T., Makishima, A., et al., 2007.Ancient Recycled Crust beneath the Ontong Java Plateau:Isotopic Evidence from the Garnet Clinopyroxenite Xenoliths, Malaita, Solomon Islands.Earth and Planetary Science Letters, 259(1-2):134-148. https://doi.org/10.1016/j.epsl.2007.04.034 Jacobson, C.E., Grove, M., Pedrick, J.N., et al., 2011.Late Cretaceous-Early Cenozoic Tectonic Evolution of the Southern California Margin Inferred from Provenance of Trench and Forearc Sediments.Geological Society of America Bulletin, 123(3-4):485-506. https://doi.org/10.1130/b30238.1 Jagoutz, O., Kelemen, P.B., 2015.Role of Arc Processes in the Formation of Continental Crust.Annual Review of Earth and Planetary Sciences, 43(1):363-404. https://doi.org/10.1146/annurev-earth-040809-152345 Jull, M., Kelemen, P.B., 2001.On the Conditions for Lower Crustal Convective Instability.Journal of Geophysical Research:Solid Earth, 106(B4):6423-6446. https://doi.org/10.1029/2000jb900357 Kapp, P., Yin, A., Manning, C.E., et al., 2003.Tectonic Evolution of the Early Mesozoic Blueschist-Bearing Qiangtang Metamorphic Belt, Central Tibet.Tectonics, 22(4):17-1-17-11. https://doi.org/10.1029/2002tc001383 Karato, S.I., 2012.On the Origin of the Asthenosphere.Earth and Planetary Science Letters, 321-322:95-103. https://doi.org/10.1016/j.epsl.2012.01.001 Kearey, P., Klepeis, K.A., Vine, F.J., et al., 2009.Global Tectonics.Wiley-Blackwell, Chiechester, 482. Kelemen, P.B., Behn, M.D., 2016.Formation of Lower Continental Crust by Relamination of Buoyant Arc Lavas and Plutons.Nature Geoscience, 9(3):197-205. https://doi.org/10.1038/ngeo2662 Kelemen, P.B., Hanghøj, K., Greene, A.R., 2003.One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust.In: Kelemen, P.B., Hanghøj, K., Greene, A.R., eds., Treatise on Geochemistry, Volume 3.Elsevier, Oxford, 593-659. Kelemen, P.B., Yogodzinski, G.M., Scholl, D.W., 2004.Along-Strike Variation in the Aleutian Island Arc: Genesis of High Mg# Andesite and Implications for Continental Crust.In: Kelemen, P.B., Yogodzinski, G.M., Scholl, D.W., eds., Inside the Subduction Factory.American Geophysical Union, Washington, D.C., 223-276. Kessel, R., Schmidt, M.W., Ulmer, P., et al., 2005.Trace Element Signature of Subduction-Zone Fluids, Melts and Supercritical Liquids at 120-180 km Depth.Nature, 437(7059):724-727. https://doi.org/10.1038/nature03971 Kirby, S.H., 2000.Taking the Temperature of Slabs.Nature, 403(6765):31-34. https://doi.org/10.1038/47382 Kodaira, S., Noguchi, N., Takahashi, N., et al., 2010.Evolution from Fore-Arc Oceanic Crust to Island Arc Crust:A Seismic Study along the Izu-Bonin Fore Arc.Journal of Geophysical Research:Solid Earth, 115(B9):B09102. Kodaira, S., Sato, T., Takahashi, N., et al., 2007.New Seismological Constraints on Growth of Continental Crust in the Izu-Bonin Intra-Oceanic Arc.Geology, 35(11):1031-1034. https://doi.org/10.1130/g23901a.1 Komiya, T., Maruyama, S., Masuda, T., et al., 1999.Plate Tectonics at 3.8-3.7 Ga:Field Evidence from the Isua Accretionary Complex, Southern West Greenland.The Journal of Geology, 107(5):515-554. https://doi.org/10.1086/314371 Korenaga, J., 2013.Initiation and Evolution of Plate Tectonics on Earth:Theories and Observations.Annual Review of Earth and Planetary Sciences, 41(1):117-151. https://doi.org/10.1146/annurev-earth-050212-124208 Lee, C.T.A., Cheng, X., Horodyskyj, U., 2006.The Development and Refinement of Continental Arcs by Primary Basaltic Magmatism, Garnet Pyroxenite Accumulation, Basaltic Recharge and Delamination:Insights from the Sierra Nevada, California.Contributions to Mineralogy and Petrology, 151(2):222-242. https://doi.org/10.1007/s00410-005-0056-1 Lee, C.T.A., Morton, D.M., Kistler, R.W., et al., 2007.Petrology and Tectonics of Phanerozoic Continent Formation:From Island Arcs to Accretion and Continental Arc Magmatism.Earth and Planetary Science Letters, 263(3-4):370-387. https://doi.org/10.1016/j.epsl.2007.09.025 Lexa, O., Schulmann, K., Janoušek, V., et al., 2011.Heat Sources and Trigger Mechanisms of Exhumation of HP Granulites in Variscan Orogenic Root.Journal of Metamorphic Geology, 29(1):79-102. https://doi.org/10.1111/j.1525-1314.2010.00906.x Li, H.M., Zhai, S.K., Tao, C.H., et al., 2009.Advances on the Magmatism Processes in the Subduction Zones.Advances in Marine Science, 27(1):98-105(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBHH200901014.htm Li, Z.H., 2014.A Review on the Numerical Geodynamic Modeling of Continental Subduction, Collision and Exhumation.Science China Earth Sciences, 57(1):47-69. https://doi.org/10.1007/s11430-013-4696-0 Ling, W.L., Cheng, J.P., Wang, X.H., et al., 2002.Geochemical Features of the Neoproterozoic Igneous Rocks from the Wudang Region and Their Implications for the Reconstruction of the Jinning Tectonic Evolution along the South Qinling Orogenic Belt.Acta Petrologica Sinica, 18(1):25-36(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200201004 Lustrino, M., 2005.How the Delamination and Detachment of Lower Crust can Influence Basaltic Magmatism.Earth-Science Reviews, 72(1-2):21-38. https://doi.org/10.1016/j.earscirev.2005.03.004 Manikyamba, C., Kerrich, R., Khanna, T.C., et al., 2009.Enriched and Depleted Arc Basalts, with Mg-Andesites and Adakites:A Potential Paired Arc-back-Arc of the 2.6 Ga Hutti Greenstone Terrane, India.Geochimica et Cosmochimica Acta, 73(6):1711-1736. https://doi.org/10.1016/j.gca.2008.12.020 Maruyama, S., Liou, J.G., Terabayashi, M., 1996.Blueschists and Eclogites of the World and Their Exhumation.International Geology Review, 38(6):485-594. https://doi.org/10.1080/00206819709465347 McCulloch, M.T., Gamble, J.A., 1991.Geochemical and Geodynamical Constraints on Subduction Zone Magmatism.Earth and Planetary Science Letters, 102(3-4):358-374. https://doi.org/10.1016/0012-821x(91)90029-h Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt.Geological Journal of China Universities, 13(3):403-414(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200703005.htm Morse, S.A., 1980.Basalts and Phase Diagrams:An Introduction to the Quantitative Use of Phase Diagrams in Igneous Petrology.Precambrian Research, 17(3):306-307. http://www.sciencedirect.com/science/article/pii/0301926882900304 Nebel, O., Capitanio, F.A., Moyen, J.F., et al., 2018.When Crust Comes of Age:On the Chemical Evolution of Archaean, Felsic Continental Crust by Crustal Drip Tectonics.Philosophical Transactions.Series A, Mathematical, Physical, and Engineering Sciences, 376(2132):20180103. doi: 10.1098/rsta.2018.0103 Nielsen, S.G., Horner, T.J., Pryer, H.V., et al., 2018.Barium Isotope Evidence for Pervasive Sediment Recycling in the Upper Mantle.Science Advances, 4(7):eaas8675. https://doi.org/10.1126/sciadv.aas8675 Niu, Y.L., O'Hara, M.J., 2009.MORB Mantle Hosts the Missing Eu (Sr, Nb, Ta and Ti) in the Continental Crust:New Perspectives on Crustal Growth, Crust-Mantle Differentiation and Chemical Structure of Oceanic Upper Mantle.Lithos, 112(1-2):1-17. https://doi.org/10.1016/j.lithos.2008.12.009 Niu, Y.L., Zhao, Z.D., Zhu, D.C., et al., 2013.Continental Collision Zones are Primary Sites for Net Continental Crust Growth:A Testable Hypothesis.Earth-Science Reviews, 127:96-110. https://doi.org/10.1016/j.earscirev.2013.09.004 Peacock, S.M., Wang, K., 1999.Seismic Consequences of Warm versus Cool Subduction Metamorphism:Examples from Southwest and Northeast Japan.Science, 286(5441):937-939. https://doi.org/10.1126/science.286.5441.937 Perfit, M.R., Gust, D.A., Bence, A.E., et al., 1980.Chemical Characteristics of Island-Arc Basalts:Implications for Mantle Sources.Chemical Geology, 30(3):227-256. https://doi.org/10.1016/0009-2541(80)90107-2 Plank, T., Langmuir, C.H., 1993.Tracing Trace Elements from Sediment Input to Volcanic Output at Subduction Zones.Nature, 362(6422):739-743. https://doi.org/10.1038/362739a0 Polat, A., Kerrich, R., 2002.Nd-Isotope Systematics of ~2.7 Ga Adakites, Magnesian Andesites, and Arc Basalts, Superior Province:Evidence for Shallow Crustal Recycling at Archean Subduction Zones.Earth and Planetary Science Letters, 202(2):345-360. https://doi.org/10.1016/s0012-821x(02)00806-3 Poli, S., Schmidt, M.W., 2002.Petrology of Subducted Slabs.Annual Review of Earth and Planetary Sciences, 30(1):207-235. https://doi.org/10.1146/annurev.earth.30.091201.140550 Price, R.C., Gamble, J.A., Smith, I.E.M., et al., 2012.The Anatomy of an Andesite Volcano:A Time-Stratigraphic Study of Andesite Petrogenesis and Crustal Evolution at Ruapehu Volcano, New Zealand.Journal of Petrology, 53(10):2139-2189. https://doi.org/10.1093/petrology/egs050 Rudnick, R., Gao, S., 2003.Composition of the Continental Crust.Treatise on Geochemistry, 3:659. doi: 10.1016-0016-7037(95)00038-2/ Seber, D., Barazangi, M., Ibenbrahim, A., et al., 1996.Geophysical Evidence for Lithospheric Delamination beneath the Alboran Sea and Rif-Betic Mountains.Nature, 379(6568):785-790. https://doi.org/10.1038/379785a0 Shao, J.A., Tian, W., Tang, K.D., et al., 2015.Petrogenesis and Tectonic Settings of the Late Carboniferous High Mg Basalts of Inner Mongolia.Earth Science Frontiers, 22(5):171-181(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201505014 Singer, B.S., Jicha, B.R., Leeman, W.P., et al., 2007.Along-Strike Trace Element and Isotopic Variation in Aleutian Island Arc Basalt:Subduction Melts Sediments and Dehydrates Serpentine.Journal of Geophysical Research:Solid Earth, 112(B6):B06206. http://www.researchgate.net/publication/42794049_Along-strike_trace_element_and_isotopic_variation_in_Aleutian_Island_arc_basalt_subduction_melts_sediments_and_dehydrates_serpentine?ev=prf_cit Smith, I.E.M., Price, R.C., 2006.The Tonga-Kermadec Arc and Havre-Lau back-Arc System:Their Role in the Development of Tectonic and Magmatic Models for the Western Pacific.Journal of Volcanology and Geothermal Research, 156(3-4):315-331. https://doi.org/10.1016/j.jvolgeores.2006.03.006 Song, S.G., Niu, Y.L., Su, L., et al., 2014.Continental Orogenesis from Ocean Subduction, Continent Collision/Subduction, to Orogen Collapse, and Orogen Recycling:The Example of the North Qaidam UHPM Belt, NW China.Earth-Science Reviews, 129:59-84. https://doi.org/10.1016/j.earscirev.2013.11.010 Song, S.G., Niu, Y.L., Zhang, L.F., et al., 2009.Time Constraints on Orogenesis from Oceanic Subtraction to Continental Subduction, Collision, and Exhumation:An Example from North Qilian and North Qaidam HP-UHP Belts.Acta Petrologica Sinica, 25(9):2067-2077(in Chinese with English abstract). Song, S.G., Wang, M.J., Wang, C., et al., 2015.Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth:A Perspective.Science China Earth Sciences, 58(8):1284-1304. https://doi.org/10.1007/s11430-015-5102-x Spandler, C., Pirard, C., 2013.Element Recycling from Subducting Slabs to Arc Crust:A Review.Lithos, 170-171:208-223. https://doi.org/10.1016/j.lithos.2013.02.016 Stalder, R., Foley, S.F., Brey, G.P., et al., 1998.Mineral-Aqueous Fluid Partitioning of Trace Elements at 900-1 200 ℃ and 3.0-5.7 GPa:New Experimental Data for Garnet, Clinopyroxene, and Rutile, and Implications for Mantle Metasomatism.Geochimica et Cosmochimica Acta, 62(10):1781-1801. https://doi.org/10.1016/s0016-7037(98)00101-x Stern, R.J., 2002.Subduction Zones.Reviews of Geophysics, 40(4):3-1-3-38. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232216228/ Straub, S.M., Zellmer, G.F., 2012.Volcanic Arcs as Archives of Plate Tectonic Change.Gondwana Research, 21(2-3):495-516. https://doi.org/10.1016/j.gr.2011.10.006 Syracuse, E.M., Abers, G.A., 2006.Global Compilation of Variations in Slab Depth beneath Arc Volcanoes and Implications.Geochemistry, Geophysics, Geosystems, 7(5):Q05017. https://doi.org/10.1029/2005gc001045 Tamura, Y., Ishizuka, O., Aoike, K., et al., 2010.Missing Oligocene Crust of the Izu-Bonin Arc:Consumed or Rejuvenated during Collision? Journal of Petrology, 51(4):823-846. https://doi.org/10.1093/petrology/egq002 Tamura, Y., Sato, T., Fujiwara, T., et al., 2016.Advent of Continents:A New Hypothesis.Scientific Reports, 6:33517. https://doi.org/10.1038/srep33517 Tan, D.B., Li, D.Y., Xiao, Y.L., 2018.Geochemical Characteristics of Niobium and Tantalum:A Review of Twin Elements.Earth Science, 43(1):317-332(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201801019 Tang, Y.J., Zhang, H.F., Ying, J.F., et al., 2013.Rapid Eruption of the Ningwu Volcanics in Eastern China:Response to Cretaceous Subduction of the Pacific Plate.Geochemistry, Geophysics, Geosystems, 14(6):1703-1721. https://doi.org/10.1002/ggge.20121 Taylor, S.R., 1967.The Origin and Growth of Continents.Tectonophysics, 4(1):17-34. https://doi.org/10.1016/0040-1951(67)90056-x Taylor, S.R., McLennan, S.M., 1995.The Geochemical Evolution of the Continental Crust.Reviews of Geophysics, 33(2):241-265. https://doi.org/10.1029/95rg00262 Turner, S., Caulfield, J., Turner, M., et al., 2012.Recent Contribution of Sediments and Fluids to the Mantle's Volatile Budget.Nature Geoscience, 5(1):50-54. https://doi.org/10.1038/ngeo1325 Uyeda, S., Kanamori, H., 1979.Back-Arc Opening and the Mode of Subduction.Journal of Geophysical Research:Solid Earth, 84(B3):1049-1061. doi: 10.1029/JB084iB03p01049 van Keken, P.E., Hacker, B.R., Syracuse, E.M., et al., 2011.Subduction Factory:4.Depth-Dependent Flux of H2O from Subducting Slabs Worldwide.Journal of Geophysical Research:Solid Earth, 116(B1):B01401. doi: 10.1029-2010JB007922/ Wakita, K., Metcalfe, I., 2005.Ocean Plate Stratigraphy in East and Southeast Asia.Journal of Asian Earth Sciences, 24(6):679-702. https://doi.org/10.1016/j.jseaes.2004.04.004 Wei, C.J., Zhang, Y.H., 2008.Phase Transition in the Subducted Oceanic Lithosphere and Generation of the Subduction Zone Magma.Chinese Science Bulletin, 53(23):3603-3614. https://doi.org/10.1007/s11434-008-0405-3 Winchester, J.A., Floyd, P.A., 1976.Geochemical Magma Type Discrimination:Application to Altered and Metamorphosed Basic Igneous Rocks.Earth and Planetary Science Letters, 28(3):459-469. https://doi.org/10.1016/0012-821x(76)90207-7 Winter, J.D., 2001. An Introduction to Igneous and Metamorphic Petrology.Prentice Hall, Englewood Cliffs. Xiao, Q.H., Deng, J.F., Qiu, R.Z., et al., 2009.A Preliminary Study of the Relationship between Granitoids and the Growth of Continental Crust:A Case Study of the Formation of Key Orogen Granitoids in China.Geology in China, 36(3):594-622(in Chinese with English abstract). Xiong, X.L., Keppler, H., Audétat, A., et al., 2011.Partitioning of Nb and Ta between Rutile and Felsic Melt and the Fractionation of Nb/Ta during Partial Melting of Hydrous Metabasalt.Geochimica et Cosmochimica Acta, 75(7):1673-1692. https://doi.org/10.1016/j.gca.2010.06.039 Yogodzinski, G.M., Kelemen, P.B., 1998.Slab Melting in the Aleutians:Implications of an Ion Probe Study of Clinopyroxene in Primitive Adakite and Basalt.Earth and Planetary Science Letters, 158(1-2):53-65. https://doi.org/10.1016/s0012-821x(98)00041-7 Yogodzinski, G.M., Kelemen, P.B., 2007.Trace Elements in Clinopyroxenes from Aleutian Xenoliths:Implications for Primitive Subduction Magmatism in an Island Arc.Earth and Planetary Science Letters, 256(3-4):617-632. https://doi.org/10.1016/j.epsl.2007.02.015 Zandt, G., Gilbert, H., Owens, T.J., et al., 2004.Active Foundering of a Continental Arc Root beneath the Southern Sierra Nevada in California.Nature, 431(7004):41-46. https://doi.org/10.1038/nature02847 Zhang, H.F., Sun, M., Zhou, X.H., et al., 2003.Secular Evolution of the Lithosphere beneath the Eastern North China Craton:Evidence from Mesozoic Basalts and High-Mg Andesites.Geochimica et Cosmochimica Acta, 67(22):4373-4387. https://doi.org/10.1016/s0016-7037(03)00377-6 Zhang, J., Li, H.P., Chen, Q., et al., 2015.Review on the Research of Subduction Zone.Geological Survey and Research, 38(1):18-27, 34 (in Chinese with English abstract). Zhang, J.J., Zheng, Y.F., Zhao, Z.F., 2009.Geochemical Evidence for Interaction between Oceanic Crust and Lithospheric Mantle in the Origin of Cenozoic Continental Basalts in East-Central China.Lithos, 110(1):305-326. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=70d804fe7d04b8b69ca0666e2bd9abb9 Zhang, X.H., Zhai, M.G., 2010.Magmatism and Its Metallogenetic Effects during the Paleozoic Continental Crustal Construction in Northern North China:An Overview.Acta Petrologica Sinica, 26(5):1329-1341 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201005001.htm Zhao, Z.H., Wang, Q., Xiong, X.L., 2004.Complex Mantle-Crust Interaction in Subduction Zone.Bulletin of Mineralogy, Petrology and Geochemistry, 23(4):277-284(in Chinese with English abstract). Zheng, Y.F., 2012.Metamorphic Chemical Geodynamics in Continental Subduction Zones.Chemical Geology, 328:5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005 Zheng, Y.F., Chen, R.X., Xu, Z., et al., 2016.The Transport of Water in Subduction Zones.Science China Earth Sciences, 59(4):651-682. https://doi.org/10.1007/s11430-015-5258-4 Zheng, Y.F., Chen, Y.X., Dai, L.Q., et al., 2015.Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens.Science China Earth Sciences, 58(7):1045-1069. https://doi.org/10.1007/s11430-015-5097-3 Zheng, Y.F., Zhao, Z.F., Chen, Y.X., 2013.Continental Subduction Channel Processes:Plate Interface Interaction during Continental Collision.Chinese Science Bulletin, 58(35):4371-4377. https://doi.org/10.1007/s11434-013-6066-x Zheng, Y.F., Wu, F.Y., 2009.Growth and Reworking of Cratonic Lithosphere.Chinese Science Bulletin, 54(19):3347-3353. https://doi.org/10.1007/s11434-009-0458-y Zhu, D.C., Wang, Q., Zhao, Z.D., et al., 2018.Magmatic Origin of Continental Arcs and Continental Crust Formation.Earth Science Frontiers, 25(6):67-77(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201806007 Zirakparvar, N.A., Baldwin, S.L., Vervoort, J.D., 2013.The Origin and Geochemical Evolution of the Woodlark Rift of Papua New Guinea.Gondwana Research, 23(3):931-943. https://doi.org/10.1016/j.gr.2012.06.013 蔡鹏捷, 许荣科, 郑有业, 等, 2018.柴北缘从大洋俯冲到陆陆碰撞:来自开屏沟造山带M型橄榄岩的证据.地球科学, 43(8):2875-2892. http://earth-science.net/WebPage/Article.aspx?id=3918 范蔚茗, 彭头平, 王岳军, 2009.滇西古特提斯俯冲-碰撞过程的岩浆作用记录.地学前缘, 16(6):291-302. doi: 10.3321/j.issn:1005-2321.2009.06.031 郝杰, 王二七, 刘小汉, 等, 2006.阿尔金山脉中金雁山早古生代碰撞造山带:弧岩浆岩的确定与岩体锆石U-Pb和蛇绿混杂岩40Ar/39Ar年代学研究的证据.岩石学报, 22(11):2743-2752. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200611012 洪大卫, 王式洸, 谢锡林, 等, 2000.兴蒙造山带正ε(Nd, t)值花岗岩的成因和大陆地壳生长.地学前缘, 7(2):441-456. doi: 10.3321/j.issn:1005-2321.2000.02.012 李怀明, 翟世奎, 陶春辉, 等, 2009.板块俯冲带岩浆作用过程的研究.海洋科学进展, 27(1):98-105. doi: 10.3969/j.issn.1671-6647.2009.01.013 凌文黎, 程建萍, 王歆华, 等, 2002.武当地区新元古代岩浆岩地球化学特征及其对南秦岭晋宁期区域构造性质的指示.岩石学报, 18(1):25-36. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200201004 莫宣学, 罗照华, 邓晋福, 等, 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3):403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010 邵济安, 田伟, 唐克东, 等, 2015.内蒙古晚石炭世高镁玄武岩的成因和构造背景.地学前缘, 22(5):171-181. http://d.old.wanfangdata.com.cn/Periodical/dxqy201505014 宋述光, 牛耀龄, 张立飞, 等, 2009.大陆造山运动:从大洋俯冲到大陆俯冲、碰撞、折返的时限:以北祁连山、柴北缘为例.岩石学报, 25(9):2067-2077. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200909003 谭东波, 李东永, 肖益林, 2018."孪生元素"铌-钽的地球化学特性和研究进展.地球科学, 43(1):317-332. http://earth-science.net/WebPage/Article.aspx?id=3711 肖庆辉, 邓晋福, 邱瑞照, 等, 2009.花岗岩类与大陆地壳生长初探:以中国典型造山带花岗岩类岩石的形成为例.中国地质, 36(3):594-622. doi: 10.3969/j.issn.1000-3657.2009.03.008 张继, 李海平, 陈青, 等, 2015.俯冲带研究进展与问题.地质调查与研究, 38(1):18-27, 34. doi: 10.3969/j.issn.1672-4135.2015.01.003 张晓晖, 翟明国, 2010.华北北部古生代大陆地壳增生过程中的岩浆作用与成矿效应.岩石学报, 26(5):1329-1341. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201005001 赵振华, 王强, 熊小林, 2004.俯冲带复杂的壳幔相互作用.矿物岩石地球化学通报, 23(4):277-284. doi: 10.3969/j.issn.1007-2802.2004.04.001 朱弟成, 王青, 赵志丹, 等, 2018.大陆边缘弧岩浆成因与大陆地壳形成.地学前缘, 25(6):67-77. http://d.old.wanfangdata.com.cn/Periodical/dxqy201806007