• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    红河-哀牢山剪切带角闪岩中角闪石变形特征及地震波各向异性

    刘建华 曹淑云 周丁奎 李俊瑜 程雪梅

    刘建华, 曹淑云, 周丁奎, 李俊瑜, 程雪梅, 2019. 红河-哀牢山剪切带角闪岩中角闪石变形特征及地震波各向异性. 地球科学, 44(5): 1716-1733. doi: 10.3799/dqkx.2019.053
    引用本文: 刘建华, 曹淑云, 周丁奎, 李俊瑜, 程雪梅, 2019. 红河-哀牢山剪切带角闪岩中角闪石变形特征及地震波各向异性. 地球科学, 44(5): 1716-1733. doi: 10.3799/dqkx.2019.053
    Liu Jianhua, Cao Shuyun, Zhou Dingkui, Li Junyu, Cheng Xuemei, 2019. Deformation Characteristics and Seismic Wave Anisotropy of Amphibole in Amphibolite from Red River-Ailao Shan Shear Zone. Earth Science, 44(5): 1716-1733. doi: 10.3799/dqkx.2019.053
    Citation: Liu Jianhua, Cao Shuyun, Zhou Dingkui, Li Junyu, Cheng Xuemei, 2019. Deformation Characteristics and Seismic Wave Anisotropy of Amphibole in Amphibolite from Red River-Ailao Shan Shear Zone. Earth Science, 44(5): 1716-1733. doi: 10.3799/dqkx.2019.053

    红河-哀牢山剪切带角闪岩中角闪石变形特征及地震波各向异性

    doi: 10.3799/dqkx.2019.053
    基金项目: 

    国家自然科学项目 41722207

    国家重点研发计划项目 2017YFC0602401

    国家自然科学项目 41472188

    详细信息
      作者简介:

      刘建华(1994-), 男, 硕士研究生, 主要从事构造地质学研究

      通讯作者:

      曹淑云

    • 中图分类号: P54

    Deformation Characteristics and Seismic Wave Anisotropy of Amphibole in Amphibolite from Red River-Ailao Shan Shear Zone

    • 摘要: 角闪岩作为中下地壳的重要物质组成,其岩石和矿物的变形行为及力学强度表现直接制约着中下地壳力学属性与状态,因此开展对其中重要组成矿物角闪石的变形行为和地震波各向异性研究,具有重要地质意义.以红河-哀牢山剪切带中出露的变形角闪岩中角闪石为研究对象,其中显微构造分析表明,变形角闪岩分别呈现出粗、中粒条带状糜棱岩和细粒条带状超糜棱岩.分别对这3种变形岩石中的角闪石矿物颗粒进行了EBSD晶格优选定向分析和地震波各向异性计算,结果表明3种变形角闪岩中的角闪石呈现出不同取向及典型晶质塑性变形特征,(100)[001]主要滑移系发育,同时发育不同程度的(010)[001]和(110)[001]次级滑移系.我们认为在剪切变形过程中,角闪石双晶滑移和解理面滑移共同作用致使角闪石细粒化.从粗粒到细粒条带状角闪石,随着角闪石颗粒粒度减小,角闪石中AVp也有逐渐变小的趋势,表明角闪石变形行为、形态优选定向及晶格优选定向共同影响着地震波各向异性.

       

    • 图  1  东南亚地区(a)以及红河-哀牢山剪切带地质简图(b)

      修改自Cao et al.(2011a)

      Fig.  1.  Tectonic outline of Southeast Asia (a) and simplified geological map of the Red River-Ailao Shan shear zone (b)

      图  2  不同糜棱岩宏观露头照片

      a.长英质混合岩,黑云母和长石发生强烈塑性变形;b.闪长质糜棱岩,具有长石、黑云母、角闪石定向拉长形成的矿物拉伸线理;c.花岗质糜棱岩,其中钾长石形成σ残斑,指示左行剪切;d.黑云斜长片麻岩,黑云母富集呈薄层,且可见大颗粒长石残斑;e.初糜棱岩化斜长角闪岩,角闪石颗粒粒度粗大,弱定向性,且有长石变形残斑出现;f.斜长角闪岩表现为条带状,其矿物拉伸线理与糜棱叶理发育;g.强烈糜棱岩化的斜长角闪岩,其中斜长石变形强烈形成条带状;h.超糜棱岩化斜长角闪岩,无明显角闪石变形残斑,有残缕状长石脉体定向排列

      Fig.  2.  Outcrop photos of different mylonites

      图  3  角闪石矿物晶体及不同取向切面示意

      Fig.  3.  Schematic diagram of amphibole crystal and its sections of two different orientations

      图  4  不同类型角闪质岩石显微照片

      a, b.粗粒条带状角闪质岩石,角闪石颗粒粗大,长轴强烈定向,具有不同解理和形态的角闪石类型,并可见有机械双晶出现;c, d.中粒条带状角闪质岩石、具有两种不同取向角闪石,且角闪石颗粒更为细长;e, f.细粒条带状角闪质岩石,角闪石呈细颗粒条带状,不可见角闪石解理,并具有旋转变形特征;a, c, e, f为正交偏光,b, d.为单偏光;Amp.角闪石; Mag.磁铁矿; Pl.斜长石; Qtz.石英; Chl.绿泥石

      Fig.  4.  Microscopic photographs of different amphibolites

      图  5  R-φ关系

      a.粗粒条带状角闪石;b.中粒条带状角闪石;c.细粒条带状角闪石;R为横纵轴比,φ为角闪石颗粒长轴与线理方向夹角,逆时针方向为正;蓝色三角表示单个角闪石矿物颗粒

      Fig.  5.  R-φ relationship diagrams

      图  6  不同粒度条带状角闪质岩石中角闪石EBSD组构极密图

      a.粗粒条带状角闪石;b.中粒条带状角闪石;c.细粒条带状角闪石;采用下半球等面积赤平投影

      Fig.  6.  EBSD pole figures of amphiboles in amphibolites with different grain sizes

      图  7  不同粒度条带状角闪质岩石中角闪石EBSD组构反极密图

      a.粗粒条带状角闪石;b.中粒条带状角闪石;c.细粒条带状角闪石;采用下半球等面积赤平投影

      Fig.  7.  EBSD inverse pole figures of amphiboles in amphibolites with different grain sizes

      图  8  三种不同粒度条带状角闪石电子背散射图像以及角闪石取向差角度分布频率

      a.粗粒条带状角闪石;b.中粒条带状角闪石; c.细粒条带状角闪石

      Fig.  8.  BSE images and misorientation angle frequency distributions of three different size banded amphiboles

      图  9  地震波波速与各向异性

      a.粗粒条带状角闪石; b.中粒条带状角闪石; c.细粒条带状角闪石; 黑色正方形为最大值点,白色圆形为最小值点

      Fig.  9.  Seismic wave velocity and anisotropy

      图  10  角闪石矿物变形过程简图

      a.在递进剪切变形过程中,矿物单晶体发生晶格滑移和定向拉长;b.颗粒形态、晶格取向和剪切面之间的关系示意,其中(Ⅰ)单晶中的滑移面,(Ⅱ)矿物颗粒集合体中的主要滑移系,其中黑色代表滑移面;c.角闪石矿物颗粒晶体轴、晶面及各方向地震波速(P波和S1波波速单位为kms-1)

      Fig.  10.  Sketch map of amphibole's deformation process

    • Aleksandrov, K.S., Ryzhova, T.V., 1961.The Elastic Properties of Rock Forming Minerals, Pyroxenes and Amphiboles.Bull.Acad.Sci.USSR Geophys.Ser., 871-875:1339-1344.
      Allison, I., La Tour, T.E., 1977.Brittle Deformation of Hornblende in a Mylonite:A Direct Geometrical Analogue of Ductile Deformation by Translation Gliding.Canadian Journal of Earth Sciences, 14(8):1953-1958. https://doi.org/10.1139/e77-166
      Babaie, H.A., La Tour, T.E., 1994.Semibrittle and Cataclastic Deformation of Hornblende-Quartz Rocks in a Ductile Shear Zone.Tectonophysics, 229(1-2):19-30. https://doi.org/10.1016/0040-1951(94)90003-5
      Baker, D.W., Carter, N.L., 1972.Seismic Velocity Anisotropy Calculated for Ultramafic Minerals and Aggregates, in Flow and Fracture of Rocks, Geophysics.Monogr.Ser., 16:157-166.
      Bestmann, M., Prior, D.J., 2003.Intragranular Dynamic Recrystallization in Naturally Deformed Calcite Marble:Diffusion Accommodated Grain Boundary Sliding as a Result of Subgrain Rotation Recrystallization.Journal of Structural Geology, 25(10):1597-1613. https://doi.org/10.1016/s0191-8141(03)00006-3
      Biermann, C., van Roermund, H.L.M., 1983.Defect Structures in Naturally Deformed Clinoamphiboles-A TEM Study.Tectonophysics, 95(3-4):267-278. https://doi.org/10.1016/0040-1951(83)90072-0
      Birch, F., 1960.The Velocity of Compressional Waves in Rocks to 10 Kilobars:1.Journal of Geophysical Research, 65(4):1083-1102. https://doi.org/10.1029/jz065i004p01083
      Brodie, K.H., Rutter, E., 1985.On the Relationship between Deformation and Metamorphism with Special Reference to the Behavior of Basic Rocks.In: Thompson, A.B., Rubie, D.C., eds., Advances in Physical Geochemistry.Springer, Berlin, 138-179.
      Burlini, L., Fountain, D.M., 1993.Seismic Anisotropy of Metapelites from the Ivrea-Verbano Zone and Serie Dei Laghi (Northern Italy).Physics of the Earth and Planetary Interiors, 78(3-4):301-317. https://doi.org/10.1016/0031-9201(93)90162-3
      Cai, Z.R., Xiang, J.Y., Huang, Q.T., et al., 2018.The Morphology of Nanoparticles in the Ductile Shear Zone of Red River Fault and Its Tectonic Significance.Earth Science, 43(5):1524-1531(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201805013
      Cao, S.Y., Liu, J.L., 2006.Modern Techniques for the Analysis of Rock Microstructure:EBSD and Its Application.Advances in Earth Science, 21(10):1091-1096(in Chinese with English abstract).
      Cao, S.Y., Liu, J.L., Hu, L., 2007.Micro-and Submicrostructural Evidence for High Temperature Brittle-Ductile Transition Deformation of Hornblende:Case Study of High-Grade Mylonites from Diancangshan, Western Yunnan.Science in China (Series D:Earth Sciences), 37(8):1004-1013(in Chinese).
      Cao, S.Y., Liu, J.L., Leiss, B., 2010a.Orientation-Related Deformation Mechanisms of Naturally Deformed Amphibole in Amphibolite Mylonites from the Diancang Shan, SW Yunnan, China.Journal of Structural Geology, 32(5):606-622. doi: 10.1016/j.jsg.2010.03.012
      Cao, S.Y., Liu, J.L., Leiss, B., et al., 2010b.New Zircon U-Pb Geochronology of the Post-Kinematic Granitic Plutons in the Diancang Shan Metamorphic Massif along the Ailao Shan-Red River Shear Zone and Its Geological Implications.Acta Geologica Sinica (English Edition), 84(6):1474-1487. https://doi.org/10.1111/j.1755-6724.2010.00342.x
      Cao, S.Y., Liu, J.L., Leiss, B., et al., 2011a.Oligo-Miocene Shearing along the Ailao Shan-Red River Shear Zone:Constraints from Structural Analysis and Zircon U/Pb Geochronology of Magmatic Rocks in the Diancang Shan Massif, SE Tibet, China.Gondwana Research, 19(4):975-993. https://doi.org/10.1016/j.gr.2010.10.006
      Cao, S.Y., Neubauer, F., Liu, J.L., et al., 2011b.Exhumation of the Diancang Shan Metamorphic Complex along the Ailao Shan-Red River Belt, Southwestern Yunnan, China:Evidence from 40Ar/39Ar Thermochronology.Journal of Asian Earth Sciences, 42(3):525-550. https://doi.org/10.1016/j.jseaes.2011.04.017
      Cheng, X.M., Cao, S.Y., Li, J.Y., et al., 2018.Metamorphic, Deformation, Fluids and Geological Significance of Low-Temperature Retrograde Mylonites of Diancangshan Metamorphic Massif along Ailaoshan-Red River Strike-Slip Fault Zone, Yunnan, China.Science China Earth Sciences, 61(8):1023-1041. https://doi.org/10.1007/s11430-017-9194-4
      Christensen, N.I., Mooney, W.D., 1995.Seismic Velocity Structure and Composition of the Continental Crust:A Global View.Journal of Geophysical Research (Solid Earth), 100(B6):9761-9788. https://doi.org/10.1029/95jb00259
      Crampin, S., Gao, Y., Bukits, J., 2015.A Review of Retrospective Stress-Forecasts of Earthquakes and Eruptions.Physics of the Earth and Planetary Interiors, 245:76-87. https://doi.org/10.1016/j.pepi.2015.05.008
      Dempsey, E.D., Prior, D.J., Mariani, E., et al., 2011.Mica-Controlled Anisotropy within Mid-to-Upper Crustal Mylonites:An EBSD Study of Mica Fabrics in the Alpine Fault Zone, New Zealand.Geological Society, London, Special Publications, 360(1):33-47. https://doi.org/10.1144/sp360.3
      Díaz Aspiroz, M., Lloyd, G.E., Fernández, C., 2007.Development of Lattice Preferred Orientation in Clinoamphiboles Deformed under Low-Pressure Metamorphic Conditions:A SEM/EBSD Study of Metabasites from the Aracena Metamorphic Belt (SW Spain).Journal of Structural Geology, 29(4):629-645. https://doi.org/10.1016/j.jsg.2006.10.010
      Endrun, B., Lebedev, S., Meier, T., et al., 2011.Complex Layered Deformation within the Aegean Crust and Mantle Revealed by Seismic Anisotropy.Nature Geoscience, 4:203-207. https://doi.org/10.1038/ngeo1065
      Fliervoet, T.F., Drury, M.R., Choprac, P.N., 1999.Crystallographic Preferred Orientations and Misorientations in Some Olivine Rocks Deformed by Diffusion or Dislocation Creep.Tectonophysics, 303(1-4):1-27. https://doi.org/10.1016/s0040-1951(98)00250-9
      Fliervoet, T.F., White, S.H., Drury, M.R., 1997.Evidence for Dominant Grain-Boundary Sliding Deformation in Greenschist-and Amphibolite-Grade Polymineralic Ultramylonites from the Redbank Deformed Zone, Central Australia.Journal of Structural Geology, 19(12):1495-1520. https://doi.org/10.1016/s0191-8141(97)00076-x
      Getsinger, A.J., Hirth, G., 2014.Amphibole Fabric Formation during Diffusion Creep and the Rheology of Shear Zones.Geology, 42(6):535-538. https://doi.org/10.1130/g35327.1
      Gilley, L.D., Harrison, T.M., Leloup, P.H., et al., 2003.Direct Dating of Left-Lateral Deformation along the Red River Shear Zone, China and Vietnam.Journal of Geophysical Research (Solid Earth), 108(B2):108. https://doi.org/10.1029/2001jb001726
      Gong, W., Jiang, X.D., 2017.Thermal Evolution History and Its Genesis of the Ailao Shan-Red River Fault Zone in the Ailao Shan and Day Nui Con Voi Massif during Oligocene-Early Miocene.Earth Science, 42(2):223-239(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201702005
      Guo, X.F., Wang, Y.J., Liu, H.C., et al., 2016.Zircon U-Pb Geochronology of the Cenozoic Granitic Mylonite along the Ailaoshan-Red River Shear Zone:New Constraints on the Timing of the Sinistral Shearing.Journal of Earth Science, 27(3):435-443. doi: 10.1007/s12583-016-0678-2
      Imon, R., Okudaira, T., Kanagawa, K., 2004.Development of Shape-and Lattice-Preferred Orientations of Amphibole Grains during Initial Cataclastic Deformation and Subsequent Deformation by Dissolution-Precipitation Creep in Amphibolites from the Ryoke Metamorphic Belt, SW Japan.Journal of Structural Geology, 26(5):793-805. https://doi.org/10.1016/j.jsg.2003.09.004
      Ji, S.C., Mainprice, D., 1988.Natural Deformation Fabrics of Plagioclase:Implications for Slip Systems and Seismic Anisotropy.Tectonophysics, 147(1-2):145-163. https://doi.org/10.1016/0040-1951(88)90153-9
      Ji, S.C., Shao, T.B., Michibayashi, K., et al., 2013.A New Calibration of Seismic Velocities, Anisotropy, Fabrics, and Elastic Moduli of Amphibole-Rich Rocks.Journal of Geophysical Research (Solid Earth), 118(9):4699-4728. https://doi.org/10.1002/jgrb.50352
      Ji, S.C., Shao, T.B., Michibayashi, K., et al., 2015.Magnitudeand Symmetry of Seismic Anisotropy in Mica-and Amphibole-Bearing Metamorphic Rocks and Implications for Tectonic Interpretation of Seismic Data from the Southeast Tibetan Plateau.Journal of Geophysical Research (Solid Earth), 120(9):6404-6430. https://doi.org/10.1002/2015jb012209
      Jiang, Z.T., Prior, D.J., Wheeler, J., 2000.Albite Crystallographic Preferred Orientation and Grain Misorientation Distribution in a Low-Grade Mylonite:Implications for Granular Flow.Journal of Structural Geology, 22(11-12):1663-1674. https://doi.org/10.1016/s0191-8141(00)00079-1
      Jin, Z.M., Ji, S.C., Jin, S.Y., 1994.Lattice Preferred Orientation of Olivines and Seismic Anisotropy in the Upper Mantle.Acta Geophysica Sinica, 37(4):469-477(in Chinese with English abstract).
      Jung, H., Park, M., Jung, S., et al., 2010.Lattice Preferred Orientation, Water Content, and Seismic Anisotropy of Orthopyroxene.Journal of Earth Science, 21(5):555-568. https://doi.org/10.1007/s12583-010-0118-9
      Kang, H., Jung, H., 2019.Lattice-Preferred Orientation of Amphibole, Chlorite, and Olivine Found in Hydrated Mantle Peridotites from Bjørkedalen, Southwestern Norway, and Implications for Seismic Anisotropy.Tectonophysics, 750:137-152. https://doi.org/10.1016/j.tecto.2018.11.011
      Kern, H., Wenk, H.R., 1990.Fabric-Related Velocity Anisotropy and Shear-Wave Splitting in Rocks from the Santa Rosa Mylonite Zone, California.Journal of Geophysical Research, 95:11213-11224. doi: 10.1029/JB095iB07p11213
      Kitamura, K., 2006.Constraint of Lattice-Preferred Orientation (LPO) on Vp Anisotropy of Amphibole-Rich Rocks.Geophysical Journal International, 165(3):1058-1065. https://doi.org/10.1111/j.1365-246x.2006.02961.x
      Ko, B., Jung, H., 2015.Crystal Preferred Orientation of an Amphibole Experimentally Deformed by Simple Shear.Nature Communications, 6:6586. https://doi.org/10.1038/ncomms7586
      Kruse, R., Stünitz, H., 1999.Deformation Mechanisms and Phase Distribution in Mafic High-Temperature Mylonites from the Jotun Nappe, Southern Norway.Tectonophysics, 303(1-4):223-249. https://doi.org/10.1016/s0040-1951(98)00255-8
      Leloup, P.H., Arnaud, N., Lacassin, R., et al., 2001.New Constraints on the Structure, Thermochronology, and Timing of the Ailao Shan-Red River Shear Zone, SE Asia.Journal of Geophysical Research (Solid Earth), 106(B4):6683-6732. https://doi.org/10.1029/2000jb900322
      Leloup, P.H., Kienast, J.R., 1993.High-Temperature Metamorphism in a Major Strike-Slip Shear Zone:The Ailao Shan-Red River, People's Republic of China.Earth and Planetary Science Letters, 118(1-4):213-234.https://doi.org/10.1016/0012-821x (93)90169-a doi: 10.1016/0012-821x(93)90169-a
      Leloup, P.H., Lacassin, R., Tapponnier, P., et al., 1995.The Ailao Shan-Red River Shear Zone (Yunnan, China), Tertiary Transform Boundary of Indochina.Tectonophysics, 251(1-4):3-10, 13-84. https://doi.org/10.1016/0040-1951(95)00070-4
      Licciardi, A., Eken, T., Taymaz, T., et al., 2018.Seismic Anisotropy in Central North Anatolian Fault Zone and Its Implications on Crustal Deformation.Physics of the Earth and Planetary Interiors, 277:99-112. https://doi.org/10.1016/j.pepi.2018.01.012
      Liu, J.L., Cao, S.Y., Zhai, Y.F., et al., 2007.Rotation of Crustal Blocks as an Explanation of Oligo-Miocene Extension in Southeastern Tibet-Evidenced by the Diancangshan and nearby Metamorphic Core Complexes.Earth Science Frontiers, 14(4):40-48. https://doi.org/10.1016/s1872-5791(07)60028-1
      Lloyd, G.E., Butler, R.W.H., Casey, M.et al., 2009.Mica, Deformation Fabrics and the Seismic Properties of the Continental Crust.Earth Planet.Sci.Lett, 288:320-328. doi: 10.1016/j.epsl.2009.09.035
      Lloyd, G.E., Butler, R.W.H., Casey, M., et al., 2011.Constraints on the Seismic Properties of the Middle and Lower Continental Crust.Geological Society, London, Special Publications, 360(1):7-32. doi: 10.1144/SP360.2
      Lloyd, G.E., Farmer, A.B., Mainprice, D., 1997.Misorientation Analysis and the Formation and Orientation of Subgrain and Grain Boundaries.Tectonophysics, 279(1-4):55-78. https://doi.org/10.1016/s0040-1951(97)00115-7
      Mahan, K., 2006.Retrograde Mica in Deep Crustal Granulites:Implications for Crustal Seismic Anisotropy.Geophysical Research Letters, 33(24):L24301. https://doi.org/10.1029/2006gl028130
      Mainprice, D., 1990.A FORTRAN Program to Calculate Seismic Anisotropy from the Lattice Preferred Orientation of Minerals.Computers & Geosciences, 16(3):385-393. https://doi.org/10.1016/0098-3004(90)90072-2
      Mainprice, D., Nicolas, A., 1989.Development of Shape and Lattice Preferred Orientations:Application to the Seismic Anisotropy of the Lower Crust.Journal of Structural Geology, 11(1-2):175-189. https://doi.org/10.1016/0191-8141(89)90042-4
      Mehl, L., Hirth, G., 2008.Plagioclase Preferred Orientation in Layered Mylonites:Evaluation of Flow Laws for the Lower Crust.Journal of Geophysical Research, 113(B5):1-19. https://doi.org/10.1029/2007jb005075
      Melosha, B.L., Rowe, C.D., Gerbi, C., et al., 2018.Seismic Cycle Feedbacks in a Mid-Crustal Shear Zone.Journal of Structural Geology, 112:95-111. https://doi.org/10.1016/j.jsg.2018.04.004
      McNamara, D.D., Wheeler, J., Pearce, M., et al., 2012.Fabrics Produced Mimetically during Static Metamorphism in Retrogressed Eclogites from the Zermatt-Saas Zone, Western Italian Alps.Journal of Structural Geology, 44:167-178. https://doi.org/10.1016/j.jsg.2012.08.006
      Nyman, M.W., Law, R.D., Smelik, E.A., 1992.Cataclastic Deformation Mechanism for the Development of Core-Mantle Structures in Amphibole.Geology, 20(5):455.https://doi.org/10.1130/0091-7613(1992)020<0455:cdmftd>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0455:cdmftd>2.3.co;2
      Peltzer, G., Tapponnier, P., 1988.Formation and Evolution of Strike-Slip Faults, Rifts, and Basins during the India-Asia Collision:An Experimental Approach.Journal of Geophysical Research (Solid Earth), 93(B12):15085-15117. https://doi.org/10.1029/jb093ib12p15085
      Pennock, G.M., Drury, M.R., Peach, C.J., et al., 2006.The Influence of Water on Deformation Microstructures and Textures in Synthetic NaCl Measured Using EBSD.Journal of Structural Geology, 28(4):588-601. https://doi.org/10.1016/j.jsg.2006.01.014
      Rasolofosaon, P.N.J., Rabbel, W., Siegesmund, S., et al., 2000.Characterization of Crack Distribution:Fabric Analysis versus Ultrasonic Inversion.Geophysical Journal International, 141(2):413-424. https://doi.org/10.1046/j.1365-246x.2000.00093.x
      Rudnick, R., Gao, S., 2003.Composition of the Continental Crust.Treatise Geochem., 3:1-64. doi: 10.1016-0016-7037(95)00038-2/
      Shapiro, N.M., Ritzwoller, M.H., Molnar, P., et al., 2004.Thinning and Flow of Tibetan Crust Constrained by Seismic Anisotropy.Science, 305(5681):233-236. https://doi.org/10.1126/science.1098276
      Sherrington, H.F., Zandt, G., Frederiksen, A., 2004.Crustal Fabric in the Tibetan Plateau Based on Waveform Inversions for Seismic Anisotropy Parameters.Journal of Geophysical Research (Solid Earth), 109(B2):376. https://doi.org/10.1029/2002jb002345
      Skemer, P., Karato, S.I., 2008.Sheared Lherzolite Xenoliths Revisited.Journal of Geophysical Research, 113(B7):1-14. https://doi.org/10.1029/2007jb005286
      Skrotzki, W., 1992.Defect Structure and Deformation Mechanisms in Naturally Deformed Hornblende.Physica Status Solidi (a), 131(2):605-624. https://doi.org/10.1002/pssa.2211310232
      Stünitz, H., Gerald, J.D.F., 1993.Deformation of Granitoids at Low Metamorphic Grade.Ⅱ:Granular Flow in Albite-Rich Mylonites.Tectonophysics, 221(3-4):299-324. https://doi.org/10.1016/0040-1951(93)90164-f
      Sun, S.S., Ji, S.C., 2011.On the Formation of Seismic Anisotropy and Shear Wave Splitting in Oceanic Subduction Zones.Geotectonica et Metallogenia, 35(4):628-647(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201104017
      Tapponnier, P., Lacassin, R., Leloup, P.H., et al., 1990.The Ailao Shan/Red River Metamorphic Belt:Tertiary Left-Lateral Shear between Indochina and South China.Nature, 343:431-437. https://doi.org/10.1038/343431a0
      Tatham, D.J., Lloyd, G.E., Butler, R.W.H., et al., 2008.Amphibole and Lower Crustal Seismic Properties.Earth and Planetary Science Letters, 267(1-2):118-128. https://doi.org/10.1016/j.epsl.2007.11.042
      Warren, J.M., Hirth, G., 2006.Grain Size Sensitive Deformation Mechanisms in Naturally Deformed Peridotites.Earth and Planetary Science Letters, 248(1-2):438-450. https://doi.org/10.1016/j.epsl.2006.06.006
      Wheeler, J., Prior, D., Jiang, Z., et al., 2001.The Petrological Significance of Misorientations between Grains.Contributions to Mineralogy and Petrology, 141(1):109-124. https://doi.org/10.1007/s004100000225
      Xu, H.J., Jin, S.Y., Zheng, B.R., 2007.New Technique of Petrofabric:Electron Backscatter Diffraction (EBSD).Geoscience, 21(2):213-225(in Chinese with English abstract).
      Zhang, J.F., Wang, Y.F., Jin, Z.M., 2007.Seismic Anisotropy of Ultrahigh Pressure Eclogite Induced by Deformation Fabric.Science in China (Series D:Earth Sciences), 37(11):1433-1443(in Chinese).
      蔡周荣, 向俊洋, 黄强太, 等, 2018.红河断裂韧性剪切带内纳米颗粒的形态及其构造意义.地球科学, 43(5):1524-1531. http://earth-science.net/WebPage/Article.aspx?id=3812
      曹淑云, 刘俊来, 2006.岩石显微构造分析现代技术——EBSD技术及应用.地球科学进展, 21(10):1091-1096. doi: 10.3321/j.issn:1001-8166.2006.10.014
      曹淑云, 刘俊来, 胡玲, 2007.角闪石高温脆-韧性转变变形的显微与亚微构造证据——以滇西点苍山深变质剪切糜棱岩为例.中国科学(D辑:地球科学), 37(8):1004-1013.
      宫伟, 姜效典, 2017.哀牢山-红河断裂带哀牢山-大象山段渐新世-早中新世热史演化及成因.地球科学, 42(2):223-239.
      金振民, Ji, S.C., 金淑燕, 1994.橄榄石晶格优选方位和上地幔地震波速各向异性.地球物理学报, 37(4):469-477. doi: 10.3321/j.issn:0001-5733.1994.04.007
      孙圣思, 嵇少丞, 2011.大洋板块俯冲带地震波各向异性及剪切波分裂的成因机制.大地构造与成矿学, 35(4):628-647. doi: 10.3969/j.issn.1001-1552.2011.04.017
      徐海军, 金淑燕, 郑伯让, 2007.岩石组构学研究的最新技术——电子背散射衍射(EBSD).现代地质, 21(2):213-225. doi: 10.3969/j.issn.1000-8527.2007.02.005
      章军锋, 王永锋, 金振民, 2007.变形组构引起的超高压榴辉岩地震波速各向异性.中国科学(D辑:地球科学), 37(11):1433-1443. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200711002
    • 加载中
    图(10)
    计量
    • 文章访问数:  4627
    • HTML全文浏览量:  1822
    • PDF下载量:  59
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-02-06
    • 刊出日期:  2019-05-15

    目录

      /

      返回文章
      返回