• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    源-汇系统级次划分方法及应用

    陆威延 朱红涛 徐长贵 张向涛 杜晓峰 杜家元 李森

    陆威延, 朱红涛, 徐长贵, 张向涛, 杜晓峰, 杜家元, 李森, 2020. 源-汇系统级次划分方法及应用. 地球科学, 45(4): 1327-1336. doi: 10.3799/dqkx.2019.123
    引用本文: 陆威延, 朱红涛, 徐长贵, 张向涛, 杜晓峰, 杜家元, 李森, 2020. 源-汇系统级次划分方法及应用. 地球科学, 45(4): 1327-1336. doi: 10.3799/dqkx.2019.123
    Lu Weiyan, Zhu Hongtao, Xu Changgui, Zhang Xiangtao, Du Xiaofeng, Du Jiayuan, Li Sen, 2020. Methods and Applications of Level Subdivision of Source-to-Sink System. Earth Science, 45(4): 1327-1336. doi: 10.3799/dqkx.2019.123
    Citation: Lu Weiyan, Zhu Hongtao, Xu Changgui, Zhang Xiangtao, Du Xiaofeng, Du Jiayuan, Li Sen, 2020. Methods and Applications of Level Subdivision of Source-to-Sink System. Earth Science, 45(4): 1327-1336. doi: 10.3799/dqkx.2019.123

    源-汇系统级次划分方法及应用

    doi: 10.3799/dqkx.2019.123
    基金项目: 

    国家自然科学基金项目 41872149

    国家自然科学基金项目 41572084

    国家科技重大专项"渤海南部古近系优质储层成因机理、综合评价技术与有利勘探方向研究" 2016ZX05024-003-007

    详细信息
      作者简介:

      陆威延(1995-), 男, 硕士研究生, 层序地层学与沉积学

      通讯作者:

      朱红涛, E-mail:htzhu@cug.edu.cn

    • 中图分类号: P56;P618.13

    Methods and Applications of Level Subdivision of Source-to-Sink System

    • 摘要: 源-汇系统研究是当今世界范围内地球科学领域颇为关注的重要课题.源-汇系统划分是源-汇系统定量化研究和精细解剖的基础,但是国内外关于源-汇系统级次划分的报道比较少见,更多是集中在源-汇系统源-渠-汇单元耦合、参数拟合、预测及其控制因素分析等研究.以分水岭、分水线和脊线分别作为划分一级、二级和三级源-汇系统级次划分的界线和依据,总结、归纳出三级源-汇系统级次划分方法、流程,并选取云南洱海现代湖盆源-汇和珠江口盆地珠一坳陷西江凹陷XJ23洼南部低凸起古代湖盆源-汇实例解剖,开展三级源-汇系统级次划分方法的应用分析.云南洱海"点苍山-洱海"现代源-汇系统可以划分为东、西侧两个一级源-汇系统,东侧一级源-汇系统划分为19个二级源-汇系统,15号二级源-汇系统进一步划分为AB两个三级源-汇系统.珠江口盆地珠一坳陷西江凹陷XJ23洼南部低凸起古代源-汇系统可以划分为ABC三个一级源-汇系统,一级源-汇系统A划分为A1A2A3A4四个二级源-汇系统,二级源-汇系统A3进一步划分为Ⅰ、Ⅱ两个三级源-汇系统.三级源-汇系统级次划分方法对源-汇系统定量化研究和精细解剖方面具一定的参考价值.

       

    • 图  1  三级源-汇系统级次划分示意图

      Fig.  1.  Level division model of three level source-to-sink system

      图  2  “点苍山-洱海”源-汇系统构造位置及其水系

      Fig.  2.  Structure and water system map of Diancangshan-Erhai source-to-sink system

      图  3  洱海西岸“点苍山-洱海”源-汇系统级次划分

      a.分水岭将“点苍山-洱海”源-汇系统划分为Ⅰ、Ⅱ两个一级源-汇系统;b.分水线将一级源-汇系统Ⅰ划分为19个二级源-汇系统;c.脊线将15号源-汇系统划分为AB两个三级源-汇系统

      Fig.  3.  Source-to-sink system level division of Diancangshan-Erhai, Erhai western bank

      图  4  珠江口盆地珠一坳陷西江凹陷XJ23洼南部低凸起源-汇系统构造位置

      Fig.  4.  Southern uplift structure map of XJ23 sub-sag of Xijiang sag, Zhuyi depression, Pearl River Mouth basin

      图  5  珠江口盆地珠一坳陷XJ23洼南部低凸起古近系文昌组古代源-汇系统级次划分结果

      Fig.  5.  Source-to-sink system level division of XJ23 sub-sag of Xijiang sag, Zhuyi depression, Pearl River Mouth basin

      图  6  珠江口盆地珠一坳陷XJ23洼南部低凸起一级源-汇系统A典型剖面

      Fig.  6.  Typical Section of first level source-to-sink system A of XJ23 sub-sag of Xijiang sag, Zhuyi depression, Pearl River Mouth basin

    • Allen, P., 2005. Striking a Chord. Nature, 434(7036):961-961. https://doi.org/10.1038/434961a
      Allen, P. A., 2008a. From Landscapes into Geological History. Nature, 451(7176):274-276. https://doi.org/10.1038/nature06586 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0215096832/
      Allen, P.A., 2008b. Time Scales of Tectonic Landscapes and Their Sediment Routing Systems. Geological Society, London, Special Publications, 296(1):7-28. https://doi.org/10.1144/sp296.2 doi: 10.1144/SP296.2
      Allen, P.A., Densmore, A.L., 2000. Sediment Flux from an Uplifting Fault Block. Basin Research, 12(3-4):367-380. https://doi.org/10.1111/j.1365-2117.2000.00135.x doi: 10.1046/j.1365-2117.2000.00135.x
      Allen, P.A., Hovius, N., 1998. Sediment Supply from Landslide-Dominated Catchments:Implications for Basin-Margin Fans. Basin Research, 10(1):19-35. https://doi.org/10.1046/j.1365-2117.1998.00060.x
      Cheng, Y., 2018. Study on Semi-Quantitative Prediction Model on Sensitive Parameters of "Source to Sink" System in Continental Basin (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Dai, C.Q., Du, J.Y., Wei, X.W., et al., 2014.Prediction and Identification of the Lithologic Trap in Huizhou Sag of Pearl River Mouth Basin. Sino-Global Energy, 19(4):41-44(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zwny201404008
      Dearing, J.A., Jones, R.T., Shen, J., et al., 2007. Using Multiple Archives to Understand Past and Present Climate-Human-Environment Interactions:The Lake Erhai Catchment, Yunnan Province, China. Journal of Paleolimnology, 40(1):3-31. https://doi.org/10.1007/s10933-007-9182-2 http://cn.bing.com/academic/profile?id=817540325e606bff71eca299bc5d71c1&encoded=0&v=paper_preview&mkt=zh-cn
      Du, X.F., Wang, Q.B., Pang, X.J., et al., 2018.Quantitative Characterization of Source-Sink System of Ed3 in Shinan Steep Slope Zone, Bozhong Depression. Lithologic Reservoirs, 30(5):1-10(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/yxyqc201805001
      Galloway, W.E., 2000. Cenozoic Depositional History of the Gulf of Mexico Basin. AAPG Bulletin, 84:1743-1774. https://doi.org/10.1306/8626c37f-173b-11d7-8645000102c1865d http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=69ede78b8fc2682eb933f6b0102d52ba
      Galloway, W.E., 2001. Cenozoic Evolution of Sediment Accumulation in Deltaic and Shore-Zone Depositional Systems, Northern Gulf of Mexico Basin. Marine and Petroleum Geology, 18(10):1031-1040. https://doi.org/10.1016/s0264-8172(01)00045-9 doi: 10.1016/S0264-8172(01)00045-9
      Geng, W, 2009.Characteristics of Reservoir Sedimentology of Paleogene in Huizhou Depression, Zhujiangkou Basin(Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Hao, B.F., Han, X.J., Ma, M.G., et al., 2018. Research Progress on the Application of Google Earth Engine in Geoscience and Environmental Sciences. Remote Sensing Technology and Application, 33(1):600-611(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ygjsyyy201804004
      Helland-Hansen, W., Sømme, T.O., Martinsen, O.J., et al., 2016. Deciphering Earth's Natural Hourglasses:Perspectives on Source-to-Sink Analysis. Journal of Sedimentary Research, 86(9):1008-1033. https://doi.org/10.2110/jsr.2016.56
      Leloup, P.H., Harrison, T.M., Ryerson, F.J., et al., 1993. Structural, Petrological and Thermal Evolution of a Tertiary Ductile Strike-Slip Shear Zone, Diancang Shan, Yunnan. Journal of Geophysical Research:Solid Earth, 98(B4):6715-6743. https://doi.org/10.1029/92jb02791 doi: 10.1029/92JB02791
      Li, J.L., Xiao, Y.J., Wang, D.H., et al., 2016.Jurassic Prototype Basin Reconstruction in East Part of Qaidam Basin. Earth Science Frontiers, 23(5):11-22(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201605003
      Li, S.L., Zhu, X.M., Li, H.Y., et al., 2017.Quantitative Characterization of Elements and Coupling Mode in Source-to-Sink System:A Case Study of the Shahejie Formation between the Shaleitian Uplift and Shanan Sag, Bohai Sea. China Offshore Oil and Gas, 29(4):39-50(in Chinese with English abstract).
      Lin, C.S., Xia, Q.L., Shi, H.S., et al., 2015.Geomorphological Evolution, Source to Sink System and Basin Analysis. Earth Science Frontiers, 22(1):9-20(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201501002
      Liu, Q.H., Zhu, X.M., Li, S.L., et al., 2017.Source-to-Sink System of the Steep Slope Fault in the Western Shaleitian Uplift. Earth Science, 42(11):1883-1896(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201711003
      Meng, W., Li, R.K., Duan, Z., et al., 2018.Digital Elevation Model Fusion by Landform Characteristics. Journal of Geo-Information Science, 20(7):895-905(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201807004
      Nyberg, B., Helland-Hansen, W., Gawthorpe, R.L., et al., 2018. Revisiting Morphological Relationships of Modern Source-to-Sink Segments as a First-Order Approach to Scale Ancient Sedimentary Systems. Sedimentary Geology, 373:111-133. https://doi.org/10.1016/j.sedgeo.2018.06.007
      Socquet, A., Pubellier, M., 2005. Cenozoic Deformation in Western Yunnan (China-Myanmar Border). Journal of Asian Earth Sciences, 24(4):495-515. https://doi.org/10.1016/j.jseaes.2004.03.006
      Sømme, T.O., Helland-Hansen, W., Martinsen, O.J., et al., 2009a. Relationships between Morphological and Sedimentological Parameters in Source-to-Sink Systems:A Basis for Predicting Semi-Quantitative Characteristics in Subsurface Systems. Basin Research, 21(4):361-387. https://doi.org/10.1111/j.1365-2117.2009.00397.x
      Sømme, T.O., Jackson, C.A.L., 2013. Source-to-Sink Analysis of Ancient Sedimentary Systems Using a Subsurface Case Study from the Møre-Trøndelag Area of Southern Norway:Part 2-Sediment Dispersal and Forcing Mechanisms. Basin Research, 25(5):512-531. https://doi.org/10.1111/bre.12014
      Sømme, T.O., Jackson, C.A.L., Vaksdal, M., 2013. Source-to-Sink Analysis of Ancient Sedimentary Systems Using a Subsurface Case Study from the Møre-Trøndelag Area of Southern Norway:Part 1-Depositional Setting and Fan Evolution. Basin Research, 25(5):489-511. https://doi.org/10.1111/bre.12013
      Sømme, T.O., Martinsen, O.J., Thurmond, J.B., 2009b. Reconstructing Morphological and Depositional Characteristics in Subsurface Sedimentary Systems:An Example from the Maastrichtian-Danian Ormen Lange System, Møre Basin, Norwegian Sea. AAPG Bulletin, 93(10):1347-1377. https://doi.org/10.1306/06010909038
      Wang, X., Yu, S., Huang, G.H., 2004. Land Allocation Based on Integrated GIS-Optimization Modeling at a Watershed Level. Landscape & Urban Planning, 66:61-74. doi: 10.1016-S0169-2046(03)00095-1/
      Wu, J., Ye, J.R., Shi, H.S., et al., 2012.Reservoir-Forming Pattern of Typical Hydrocarbon Accumulation Zone in Huizhou Sag. Journal of Southwest Petroleum University(Science & Technology Edition), 34(6):17-26(in Chinese with English abstract). doi: 10.3863/j.issn.1674-5086.2012.06.003
      Xian, B.Z., Wang, Z., Ma, L.C., et al., 2017.Paleo-Drainage System and Integrated Paleo-Geomorphology Restoration in Depositional and Erosional Areas:Guantao Formation in East Liaodong Area, Bohai Bay Basin, China. Earth Science, 42(11):1922-1935(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQKX201711006.htm
      Xiao, F., 2017.Characteristics of Transport Pathways in Component Units of Source to Sink Systems and Quantitative Prediction on Sedimentary Bodies under Its Control(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Xu, L., Li, J.H., Liu, C.H., et al., 2017. Research on Geomorphological Morphology and Regionalization of Hoh Xil Based on Digital Elevation Model (DEM). Acta Scientiarum Naturalium Univereitatie Pekinensis, 53(5):833-842(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjdxxb201705006
      Xu, C.G., Du, X.F., 2017.Industrial Application of Source-to-Sink Theory in Continental Rift Basin:A Case Study of Bohai Sea Area. China Offshore Oil and Gas, 29(4):9-18(in Chinese with English abstract). doi: 10.11935/j.issn.1673-1506.2017.04.002
      Xu, H.L., Fan, C.Y., Gao, X., et al., 2013.Early Cretaceous Prototype Restoration of the Basin Group in Eastern Jilin. Global Geology, 32(2):263-272(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjdz201302009
      Zha, Z.Z., 2007.The Extraction of Topographic Patterns Based on Digital Elevation Model(Dissertation). Tongji University, Shanghai (in Chinese with English abstract).
      Zhao, C.Q., Zhao, L., Cao, S.Y., et al., 2014.Cenozoic Deformation-Metamorphic Evolution of the Diancang Shan Metamorphic Complex and Regional Tectonic Implications. Acta Petrologica Sinica, 30(3):851-866(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201403023
      Zhao, Y.G., Wang, D.X., Feng, Q.H., et al., 2017.Review on Palaeomorphologic Reconstruction Methods in Oil and Gas Fields. Journal of Earth Sciences and Environment, 39(4):516-529(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201704004
      Zhu, H.T., Xu, C.G., Zhu, X.M., et al., 2017.Advances of the Source-to-Sink Units and Coupling Model Research in Continental Basin. Earth Science, 42(11):1851-1870(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201711001
      Zhu, X., Zhu, H.T., Zeng, H.L., et al., 2017.Subdivision, Characteristics, and Varieties of the Source-to-Sink Systems of the Modern Lake Erhai Basin, Yunnan Province. Earth Science, 42(11):2010-2024(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201711012
      程园, 2018.陆相湖盆"源-汇"系统敏感参数半定量预测模型研究(硕士学位论文).武汉: 中国地质大学.
      戴朝强, 杜家元, 魏旭旺, 等, 2014.珠江口盆地惠州凹陷岩性圈闭预测及识别.中外能源, 19(4):41-44. http://d.old.wanfangdata.com.cn/Thesis/Y1282509
      杜晓峰, 王清斌, 庞小军, 等, 2018.渤中凹陷石南陡坡带东三段源汇体系定量表征.岩性油气藏, 30(5):1-10. http://d.old.wanfangdata.com.cn/Periodical/yxyqc201805001
      耿威, 2009.珠江口盆地惠州凹陷古近系储层沉积学特征(硕士学位论文).成都: 成都理工大学.
      郝斌飞, 韩旭军, 马明国, 等, 2018. Google Earth Engine在地球科学与环境科学中的应用研究进展.遥感技术与应用, 33(4):600-611. http://d.old.wanfangdata.com.cn/Periodical/ygjsyyy201804004
      李军亮, 肖永军, 王大华, 等, 2016.柴达木盆地东部侏罗纪原型盆地恢复.地学前缘, 23(5):11-22. http://d.old.wanfangdata.com.cn/Periodical/dxqy201605003
      李顺利, 朱筱敏, 李慧勇, 等, 2017.源-汇系统要素定量表征及耦合模式——以沙垒田凸起与沙南凹陷沙河街组为例.中国海上油气, 29(4):39-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201704005
      林畅松, 夏庆龙, 施和生, 等, 2015.地貌演化、源-汇过程与盆地分析.地学前缘, 22(1):9-20. http://d.old.wanfangdata.com.cn/Periodical/dxqy201501002
      刘强虎, 朱筱敏, 李顺利, 等, 2017.沙垒田凸起西部断裂陡坡型源-汇系统.地球科学, 42(11):1883-1896. doi: 10.3799/dqkx.2017.119
      孟伟, 李润奎, 段峥, 等, 2018.基于地貌特征的数字高程模型融合方法.地球信息科学学报, 20(7):895-905. http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201807004
      吴娟, 叶加仁, 施和生, 等, 2012.惠州凹陷典型油气聚集带成藏模式.西南石油大学学报(自然科学版), 34(6):17-26. http://d.old.wanfangdata.com.cn/Periodical/xnsyxyxb201206004
      鲜本忠, 王震, 马立驰, 等, 2017.沉积区-剥蚀区古地貌一体化恢复及古水系研究:以渤海湾盆地辽东东地区馆陶组为例.地球科学, 42(11):1922-1935. doi: 10.3799/dqkx.2017.122
      肖凡, 2017.源-汇系统组成单元搬运通道特征及其控制下的沉积体定量预测(硕士学位论文).武汉: 中国地质大学.
      徐汉梁, 范超颖, 高璇, 等, 2013.吉林东部盆地群早白垩世原型盆地恢复.世界地质, 32(2):263-272. doi: 10.3969/j.issn.1004-5589.2013.02.009
      徐长贵, 杜晓峰, 2017.陆相断陷盆地源-汇理论工业化应用初探——以渤海海域为例.中国海上油气, 29(4):9-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201704002
      许丽, 李江海, 刘持恒, 等, 2017.基于数字高程模型(DEM)的可可西里地貌及区划研究.北京大学学报(自然科学版), 53(5):833-842. http://d.old.wanfangdata.com.cn/Periodical/bjdxxb201705006
      查正军, 2007.基于数字高程模型(DEM)的地形特征提取(硕士学位论文).上海: 同济大学.
      赵春强, 赵利, 曹淑云, 等, 2014.点苍山变质杂岩新生代变质-变形演化及其区域构造内涵.岩石学报, 30(3):851-866. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201403023
      赵永刚, 王东旭, 冯强汉, 等, 2017.油气田古地貌恢复方法研究进展.地球科学与环境学报, 39(4):516-529. doi: 10.3969/j.issn.1672-6561.2017.04.004
      朱红涛, 徐长贵, 朱筱敏, 等, 2017.陆相盆地源-汇系统要素耦合研究进展.地球科学, 42(11):1851-1870. doi: 10.3799/dqkx.2017.117
      朱秀, 朱红涛, 曾洪流, 等, 2017.云南洱海现代湖盆源-汇系统划分、特征及差异.地球科学, 42(11):2010-2024. doi: 10.3799/dqkx.2017.128
    • 加载中
    图(6)
    计量
    • 文章访问数:  2869
    • HTML全文浏览量:  1709
    • PDF下载量:  198
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-05-25
    • 刊出日期:  2020-04-15

    目录

      /

      返回文章
      返回