• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大别山金河桥超高压榴辉岩石榴石中的水

    蒋素会 王志民 陈仁旭 郑永飞 朱琳

    蒋素会, 王志民, 陈仁旭, 郑永飞, 朱琳, 2020. 大别山金河桥超高压榴辉岩石榴石中的水. 地球科学, 45(4): 1168-1186. doi: 10.3799/dqkx.2019.132
    引用本文: 蒋素会, 王志民, 陈仁旭, 郑永飞, 朱琳, 2020. 大别山金河桥超高压榴辉岩石榴石中的水. 地球科学, 45(4): 1168-1186. doi: 10.3799/dqkx.2019.132
    Jiang Suhui, Wang Zhimin, Chen Renxu, Zheng Yongfei, Zhu Lin, 2020. Water of Garnet in Eclogite from Jinheqiao Area in the Dabie Orogen. Earth Science, 45(4): 1168-1186. doi: 10.3799/dqkx.2019.132
    Citation: Jiang Suhui, Wang Zhimin, Chen Renxu, Zheng Yongfei, Zhu Lin, 2020. Water of Garnet in Eclogite from Jinheqiao Area in the Dabie Orogen. Earth Science, 45(4): 1168-1186. doi: 10.3799/dqkx.2019.132

    大别山金河桥超高压榴辉岩石榴石中的水

    doi: 10.3799/dqkx.2019.132
    基金项目: 

    中科院先导项目 XDB18020303

    国家自然科学基金项目 41590624

    国家自然科学基金项目 41873033

    详细信息
      作者简介:

      蒋素会(1993-), 女, 硕士研究生, 主要研究名义上无水矿物中水.E-mail:jshsx@mail.ustc.edu.cn

      通讯作者:

      陈仁旭(1981-)

    • 中图分类号: P595

    Water of Garnet in Eclogite from Jinheqiao Area in the Dabie Orogen

    • 摘要: 名义上无水矿物的水含量研究对于认识俯冲带流体活动和地球动力学具有重要意义.对大别山金河桥榴辉岩中石榴石进行了傅里叶变换红外光谱分析和主微量元素分析,结果表明石榴石含有分子水和结构羟基,分别为 < 1×10-6~1 946×10-6和< 1×10-6~1 347×10-6.石榴石羟基含量与Ca、Na、Ti、Zr和Pr正相关,而与Si负相关,表明羟基结合机制以水榴石替代为主并伴有其他机制.分子水主要为初始水或折返过程中羟基转化形成.石榴石总水含量为 < 1×10-6~3 293×10-6,最大值对应于峰期超高压石榴石水储存能力.水在峰期石榴石中可达到饱和.石榴石变化的水含量受原岩性质、流体可获得性、压力和温度等多种因素控制,但主要由折返过程中降压脱水导致.石榴石平均总水含量为749×10-6~1 164×10-6,是俯冲板片向地幔水传输的重要介质.

       

    • 图  1  大别山地质简图及采样位置

      Lin et al. (2009)Wei et al. (2013)修改

      Fig.  1.  Geological maps of Dabie orogen (a, b) and study area (c) with sample location

      图  2  金河桥榴辉岩野外露头照片

      a.块状榴辉岩;b.条带状榴辉岩

      Fig.  2.  Photos of Jinheqiao eclogite in the field

      图  3  金河桥榴辉岩岩相学照片

      a.样品16DB20;b.样品16DB25;c.样品16DB27-1;d.样品16DB27-4;e.样品16DB27-2;f.样品16DB27-7.Grt.石榴石;Omp.绿辉石;Qtz.石英;Ms.白云母;Zo.黝帘石;Rt.金红石;Amp.角闪石

      Fig.  3.  Petrographic photos of Jinheqiao eclogite

      图  4  金河桥榴辉岩中石榴石端员组分的三元图解

      Alm.铁铝榴石;Grs.钙铝榴石;Pyr.镁铝榴石;Sps.锰铝榴石;And.钙铁榴石

      Fig.  4.  End member components of garnet in Jinheqiao eclogite

      图  5  金河桥榴辉岩中石榴石稀土元素配分图解

      球粒陨石标准化值来自Sun and McDonough (1989)

      Fig.  5.  Chondrite-normalized REE patterns of garnets for Jinheqiao eclogite

      图  6  金河桥榴辉岩中石榴石代表性红外吸收光谱

      吸收度标准化到1 cm厚度

      Fig.  6.  Representative FTIR spectra of garnet in Jinheqiao eclogite

      图  7  金河桥榴辉岩石榴石M型水含量与I型羟基水含量相关性图解

      Fig.  7.  Relationship between contents of M-type H2O and I-type OH in garnet from Jinheqiao eclogite

      图  8  金河桥榴辉岩石榴石M型水含量与III型羟基水含量相关性图解

      Fig.  8.  Relationship between contents of M-type H2O and III-type OH in garnet from Jinheqiao eclogite

      图  9  金河桥榴辉岩石榴石M型水含量与羟基水含量相关性图解

      Fig.  9.  Contents of structural hydroxyl due to band type I, II and III, respectively, plotted against the amount of molecular water (M-type) in garnet from Jinheqiao eclogite

      图  10  金河桥榴辉岩石榴石不同种型水含量统计

      Fig.  10.  Histograms illustrating distribution and contents of different types of water in garnet from Jinheqiao eclogite

      图  11  石榴石水含量剖面

      Fig.  11.  The distribution of water content in the same garnet grains

      图  12  金河桥榴辉岩石榴石组成与水含量之间关系图解

      Fig.  12.  Relationship between composition and water content of garnet from Jinheqiao eclogite

      表  1  金河桥榴辉岩矿物含量(%)

      Table  1.   Contents of minerals in Jinheqiao eclogite(%)

      样品编号 构造 绿辉石 石榴石 白云母 石英 角闪石 金红石 帘石 锆石 磷灰石 后成合晶
      16DB20-1 块状 50 35 4 2 1 1 1 < 1 < 1 4
      16DB25-2 块状 58 27 2 5 1 1 0 < 1 < 1 4
      16DB27-1 块状 56 37 1 1 1 1 0 < 1 < 1 1
      16DB27-4 块状 50 37 1 2 3 1 0 < 1 < 1 4
      16DB27-2 条带状 35 54 2 3 2 1 0 < 1 < 1 1
      16DB27-7 条带状 20 54 1 20 1 1 0 < 1 < 1 1
      下载: 导出CSV

      表  2  金河桥榴辉岩石榴石代表性主量元素组成

      Table  2.   Representative garnet major element compositions for Jinheqiao eclogite

      Sample 16DB27-4 16DB27-2 16DB27-7
      Spot Grt3 Grt8 Grt19 Grt22 Grt26 Grt1 Grt13 Grt18 Grt22 Grt29 Grt1 Grt18 Grt24 Grt27 Grt39
      SiO2 39.30 38.94 40.05 38.68 38.17 39.02 38.77 38.67 38.87 39.36 40.04 38.74 39.55 39.40 38.98
      TiO2 0.01 0.00 0.00 0.02 0.01 0.01 0.00 0.03 0.05 0.00 0.03 0.04 0.00 0.02 0.00
      Al2O3 22.21 22.42 21.80 22.49 23.85 22.30 22.47 22.44 22.23 22.53 22.33 24.22 22.63 22.26 22.37
      Cr2O3 0.07 0.00 0.01 0.02 0.06 0.07 0.08 0.06 0.03 0.05 0.05 0.03 0.04 0.05 0.09
      FeO 19.23 18.93 19.56 18.59 17.54 20.13 18.97 19.88 18.75 19.45 18.99 18.95 19.91 18.91 20.79
      MnO 0.42 0.40 0.38 0.37 0.37 0.44 0.32 0.42 0.41 0.35 0.42 0.41 0.35 0.39 0.39
      MgO 7.93 8.81 9.41 9.20 8.95 9.18 8.27 8.52 9.15 9.56 9.56 9.73 10.21 10.73 9.46
      CaO 10.46 9.93 8.64 10.13 9.86 8.29 10.09 9.46 9.86 8.60 8.49 7.66 7.01 7.48 7.62
      Total 99.63 99.43 99.85 99.50 98.81 99.43 98.98 99.47 99.33 99.90 99.92 99.77 99.71 99.22 99.71
      Atom per 12 O
      Si 3.00 2.96 3.03 2.94 2.90 2.97 2.97 2.95 2.96 2.98 3.02 2.90 2.99 2.98 2.97
      Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
      Al iv 0.00 0.04 0.00 0.06 0.10 0.03 0.03 0.05 0.04 0.02 0.00 0.10 0.01 0.02 0.03
      Al vi 1.99 1.98 1.94 1.96 2.04 1.98 2.00 1.98 1.96 1.99 1.98 2.05 2.00 1.97 1.97
      Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
      Fe2+ 1.22 1.19 1.21 1.15 1.17 1.27 1.22 1.25 1.16 1.22 1.20 1.26 1.26 1.17 1.30
      Fe3+ 0.00 0.02 0.03 0.03 0.00 0.01 0.00 0.02 0.03 0.01 0.00 0.00 0.00 0.02 0.02
      Mn 0.03 0.03 0.02 0.02 0.02 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.02
      Mg 0.90 1.00 1.06 1.04 1.01 1.04 0.94 0.97 1.04 1.08 1.07 1.09 1.15 1.21 1.07
      Ca 0.85 0.81 0.70 0.83 0.80 0.68 0.83 0.77 0.80 0.70 0.68 0.61 0.57 0.61 0.62
      Total 8.00 8.02 7.99 8.04 8.05 8.02 8.01 8.02 8.02 8.01 7.99 8.04 8.01 8.01 8.02
      Almandine 40.5 38.1 39.6 35.7 36.6 41.2 39.6 40.0 36.9 39.7 40.1 40.5 41.8 38.2 42.0
      Andradite 0.20 0.95 1.30 1.73 0.00 0.75 0.00 0.82 1.69 0.54 0.00 0.00 0.00 1.16 1.0
      Grossular 28.1 26.4 22.4 26.3 27.5 21.8 27.7 25.2 25.4 22.7 22.8 21.1 18.9 19.0 19.7
      Pyrope 30.1 33.7 35.9 35.5 35.0 35.1 31.8 32.9 35.1 36.2 36.0 37.4 38.5 40.6 36.2
      Spessartine 0.91 0.86 0.82 0.80 0.82 0.96 0.71 0.92 0.89 0.75 0.91 0.89 0.75 0.84 0.8
      Uvarovite 0.22 0.00 0.02 0.07 0.19 0.21 0.24 0.18 0.09 0.15 0.15 0.10 0.13 0.14 0.3
      Sample 16DB27-4 16DB27-2 16DB27-7
      Spot Grt3 Grt8 Grt19 Grt22 Grt26 Grt1 Grt13 Grt18 Grt22 Grt29 Grt1 Grt18 Grt24 Grt27 Grt39
      SiO2 38.99 39.72 39.45 39.93 39.41 39.41 39.37 39.33 39.09 38.77 39.35 38.87 39.20 39.35 39.04
      TiO2 0.00 0.00 0.00 0.04 0.00 0.00 0.02 0.00 0.00 0.01 0.02 0.04 0.02 0.00 0.03
      Al2O3 22.52 22.70 22.52 22.53 22.63 22.72 22.62 22.34 22.51 22.33 21.98 22.36 21.54 21.90 21.94
      Cr2O3 0.03 0.07 0.06 0.08 0.01 0.04 0.06 0.07 0.04 0.05 0.05 0.03 0.03 0.00 0.06
      FeO 18.00 17.72 19.81 18.17 19.66 19.34 18.83 19.24 21.48 21.84 21.34 21.60 23.56 22.04 21.65
      MnO 0.39 0.39 0.38 0.37 0.39 0.35 0.39 0.39 0.46 0.53 0.42 0.37 0.44 0.41 0.38
      MgO 9.55 10.10 9.18 10.13 9.60 10.38 11.04 10.03 9.68 8.79 7.70 7.75 6.23 7.29 7.77
      CaO 9.61 8.57 8.24 8.66 7.56 7.44 6.80 8.10 6.31 7.50 8.68 8.25 9.03 9.20 8.76
      Total 99.07 99.27 99.65 99.90 99.25 99.69 99.13 99.49 99.58 99.81 99.54 99.27 100.04 100.19 99.63
      Atom per 12 O
      Si 2.96 2.99 2.99 3.00 2.99 2.97 2.98 2.98 2.98 2.96 3.01 2.98 3.02 3.01 2.99
      Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
      Al iv 0.04 0.01 0.01 0.00 0.01 0.03 0.02 0.02 0.02 0.04 0.00 0.02 0.00 0.00 0.01
      Al vi 1.98 2.01 2.00 1.99 2.01 2.00 1.99 1.98 2.00 1.98 1.98 2.01 1.96 1.97 1.98
      Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
      Fe2+ 1.13 1.14 1.27 1.14 1.27 1.22 1.19 1.20 1.37 1.38 1.37 1.40 1.50 1.39 1.37
      Fe3+ 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.02 0.02 0.01
      Mn 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.02
      Mg 1.08 1.13 1.04 1.13 1.08 1.17 1.24 1.13 1.10 1.00 0.88 0.89 0.72 0.83 0.89
      Ca 0.78 0.69 0.67 0.70 0.61 0.60 0.55 0.66 0.52 0.61 0.71 0.68 0.75 0.75 0.72
      Total 8.02 8.00 8.00 8.00 8.00 8.01 8.01 8.01 8.01 8.02 7.99 8.01 7.99 8.00 8.00
      Almandine 36.3 38.0 42.1 38.1 42.3 39.7 38.8 39.1 44.8 44.3 45.7 46.7 49.7 46.0 45.5
      Andradite 0.63 0.00 0.00 0.00 0.00 0.04 0.05 0.90 0.00 0.97 0.00 0.00 0.78 0.86 0.71
      Grossular 25.7 23.0 22.2 23.0 20.5 20.1 18.3 21.0 17.2 19.6 23.7 22.6 24.3 24.4 23.1
      Pyrope 36.5 38.0 34.7 37.8 36.3 39.3 41.8 38.0 36.9 33.8 29.5 29.7 24.2 27.8 29.7
      Spessartine 0.84 0.83 0.82 0.79 0.83 0.75 0.83 0.84 0.99 1.16 0.91 0.80 0.96 0.90 0.82
      Uvarovite 0.10 0.20 0.19 0.23 0.03 0.13 0.18 0.20 0.13 0.14 0.16 0.09 0.09 0.00 0.19
      下载: 导出CSV
    • An, S.C., Li, S.G., Liu, Z., et al., 2018. Modification of the Sm-Nd Isotopic System in Garnet Induced by Retrogressive Fluids. Journal of Metamorphic Geology, 36(8): 1039-1048.https://doi.org/10.1111/jmg.12426
      Bell, D.R., Ihinger, P.D., Rossman, G.R., 1995. Quantitative Analysis of Trace OH in Garnet and Pyroxenes. American Mineralogist, 80(5-6): 465-474.https://doi.org/10.2138/am-1995-5-607
      Bell, D.R., Rossman, G.R., 1992a. The Distribution of Hydroxyl in Garnets from the Subcontinental Mantle of Southern Africa. Contributions to Mineralogy and Petrology, 111(2): 161-178.https://doi.org/10.1007/bf00348949
      Bell, D.R., Rossman, G.R., 1992b. Water in Earth's Mantle: The Role of Nominally Anhydrous Minerals. Science, 255(5050): 1391-1397.https://doi.org/10.1126/science.255.5050.1391
      Chen, R.X., Zheng, Y.F., Gong, B., 2011. Mineral Hydrogen Isotopes and Water Contents in Ultrahigh-Pressure Metabasite and Metagranite: Constraints on Fluid Flow during Continental Subduction-Zone Metamorphism. Chemical Geology, 281(1-2): 103-124.https://doi.org/10.1016/j.gca.2007.02.012
      Chen, Y.X., Zhou, K., Zheng, Y.F., et al., 2015. Garnet Geochemistry Records the Action of Metamorphic Fluids in Ultrahigh-Pressure Dioritic Gneiss from the Sulu Orogen. Chemical Geology, 398: 46-60. https://doi.org/10.1016/j.chemgeo.2015.01.021
      Demouchy, S., Bolfan-Casanova, N., 2016. Distribution and Transport of Hydrogen in the Lithospheric Mantle: A Review. Lithos, 240-243: 402-425.https://doi.org/10.1016/j.lithos.2015.11.012
      Gao, X.Y., Zheng, Y.F., Chen, Y.X., 2011. U-Pb Ages and Trace Elements in Metamorphic Zircon and Titanite from UHP Eclogite in the Dabie Orogen: Constraints on P-T-t Path. Journal of Metamorphic Geology, 29(7): 721-740.https://doi.org/10.1111/j.1525-1314.2011.00938.x
      Geiger, C.A., Stahl, A., Rossman, G.R., 2000. Single-Crystal IR- and UV/VIS-Spectroscopic Measurements on Transition-Metal-Bearing Pyrope: The Incorporation of Hydroxide in Garnet. European Journal of Mineralogy, 12(2): 259-271. https://doi.org/10.1127/0935-1221/2000/0012-0259
      Gose, J., Schmädicke, E., 2018. Water Incorporation in Garnet: Coesite versus Quartz Eclogite from Erzgebirge and Fichtelgebirge. Journal of Petrology, 59(2): 207-232.https://doi.org/10.1093/petrology/egy022
      Katayama, I., Nakashima, S., Yurimoto, H., 2006. Water Content in Natural Eclogite and Implication for Water Transport into the Deep Upper Mantle. Lithos, 86(3-4): 245-259.https://doi.org/10.1016/j.lithos.2005.06.006
      Koch-Müller, M., Matsyuk, S.S., Wirth, R., 2004. Hydroxyl in Omphacites and Omphacitic Clinopyroxenes of Upper Mantle to Lower Crustal Origin beneath the Siberian Platform. American Mineralogist, 89(7): 921-931. https://doi.org/10.2138/am-2004-0701
      Li, Q. L., Li, S. G., Zheng, Y.F., et al., 2003. A High Precision U-Pb Age of Metamorphic Rutile in Coesite-Bearing Eclogite from the Dabie Mountains in Central China: A New Constraint on the Cooling History. Chemical Geology, 200(3-4): 255-265. https://doi.org/10.1016/s0009-2541(03)00194-3
      Li, Q. L., Li, S. G., Zheng, Y. F., et al., 2003. O-Nd-Pb Isotopic Systems in Eclogite Minerals at Jinheqiao in Dabieshan and Constraints on Their Relative Diffusivity. Geological Journal of China Universities, 9(2):218-226 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200302007
      Li, Z.H., Yang, S.T., Liu, M.Q., et al., 2019. Aqueous Fluid Activity and Its Effects in the Subduction Zones:A Systematic Numerical Modelling Study. Earth Science, 44(12):3984-3992(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0264370711000664
      Lin, W., Shi, Y. H., Wang, Q. C., 2009. Exhumation Tectonics of the HP-UHP Orogenic Belt in Eastern China: New Structural-Petrological Insights from the Tongcheng Massif, Eastern Dabieshan. Lithos, 109(3-4): 285-303. https://doi.org/10.1016/j.lithos.2008.10.007
      Liu, F.L., Xu, Z.Q., Liou, J.G., 2004. Tracing the Boundary between UHP and HP Metamorphic Belts in the Southwestern Sulu Terrane, Eastern China: Evidence from Mineral Inclusions in Zircons from Metamorphic Rocks. International Geology Review, 46(5): 409-425. https://doi.org/10.2747/0020-6814.46.5.409
      Liu, X.W., Xie, Z.J., Wang, L., et al., 2016. Water Incorporation in Garnets from Ultrahigh Pressure Eclogites at Shuanghe, Dabieshan. Mineralogical Magazine, 80(6): 959-975.https://doi.org/10.1180/minmag.2016.080.034
      Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43.https://doi.org/10.1016/j.chemgeo.2008.08.004
      Lu, R., Keppler, H., 1997. Water Solubility in Pyrope to 100 kbar. Contributions to Mineralogy and Petrology, 129(1): 35-42.https://doi.org/10.1007/s004100050321
      Maldener, J., Hosch, A., Langer, K., et al., 2003. Hydrogen in Some Natural Garnets Studied by Nuclear Reaction Analysis and Vibrational Spectroscopy. Physics and Chemistry of Minerals, 30(6): 337-344.https://doi.org/10.1007/s00269-003-0321-7
      Matsyuk, S. S., Langer, K., Hösch, A., 1998. Hydroxyl Defects in Garnets from Mantle Xenoliths in Kimberlites of the Siberian Platform. Contributions to Mineralogy and Petrology, 132(2): 163-179. https://doi.org/10.1007/s004100050414
      Mookherjee, M., Karato, S. I., 2010. Solubility of Water in Pyrope-Rich Garnet at High Pressures and Temperature. Geophysical Research Letters, 37(3): L03310. https://doi.org/10.1029/2009gl041289
      Schmädicke, E., Gose, J., 2017. Water Transport by Subduction: Clues from Garnet of Erzgebirge UHP Eclogite. American Mineralogist, 102(5): 975-986. https://doi.org/10.2138/am-2017-5920
      Sheng, Y.M., Xia, Q.K., Dallai, L., et al., 2007. H2O Contents and D/H Ratios of Nominally Anhydrous Minerals from Ultrahigh-Pressure Eclogites of the Dabie Orogen, Eastern China. Geochimica et Cosmochimica Acta, 71(8): 2079-2103.https://doi.org/10.1016/j.gca.2007.01.018
      Shi, Y.H., Wang, Q.C., 2006. Variation in Peak P-T Conditions across the Upper Contact of the UHP Terrane, Dabieshan, China: Gradational or Abrupt?. Journal of Metamorphic Geology, 24(9): 803-822. https://doi.org/10.1111/j.1525-1314.2006.00670.x
      Su, W., You, Z. D., Cong, B. L., et al., 2002. Cluster of Water Molecules in Garnet from Ultrahigh-Pressure Eclogite. Geology, 30(7): 611-614. https://doi.org/10.1130/0091-7613(2002)030<0611:cowmig>2.0.co;2
      Sun, S. S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Wang, L.P., Zhang, Y.X., Essene, E.J., 1996. Diffusion of the Hydrous Component in Pyrope. American Mineralogist, 81(5-6): 706-718. https://doi.org/10.2138/am-1996-5-618
      Wang, L., Wang, S.J., Brown, M., et al., 2017. On the Survival of Intergranular Coesite in UHP Eclogite. Journal of Metamorphic Geology, 36(2): 173-194.https://doi.org/10.1111/jmg.12288
      Wei, C.J., Qian, J.H., Tian, Z.L., 2013. Metamorphic Evolution of Medium-Temperature Ultra-High Pressure (MT-UHP) Eclogites from the South Dabie Orogen, Central China: An Insight from Phase Equilibria Modeling. Journal of Metamorphic Geology, 31(7): 755-774.https://doi.org/10.1111/jmg.12043
      Withers, A.C., Wood, B.J., Carroll, M.R., 1998. The OH Content of Pyrope at High Pressure. Chemical Geology, 147(1), 161-171.https://doi.org/10.1016/S0009-2541(97)00179-4
      Wu, Y.N., Wang, Y.F., 2018. An FTIR Study of Kyanite in the Maobei Kyanite-Bearing Eclogites from the Sulu Orogenic Belt, Eastern China. Journal of Earth Science, 29(1): 21-29.https://doi.org/10.1007/s12583-017-0774-0
      Xia, Q.K., Cheng, H., Liu, J., et al., 2017.The Distribution of the Early Cretaceous Hydrous Lithospheric Mantle in the North China Craton:Constraints from Water Content in Peridotites of Tietonggou.Earth Science, 42(6):853-861(in Chinese with English abstract). https://www.nature.com/articles/ncomms8700
      Xia, Q.K., Liu, J., Kovács, I., et al., 2019. Water in the Upper Mantle and Deep Crust of Eastern China:Concentration, Distribution and Implications. National Science Review, 6(1):125-144. doi: 10.1093/nsr/nwx016
      Xia, Q.K., Sheng, Y.M., Yang, X.Z., et al., 2005. Heterogeneity of Water in Garnets from UHP Eclogites, Eastern Dabieshan, China. Chemical Geology, 224(4): 237-246. https://doi.org/10.1016/j.chemgeo.2005.08.003
      Xiao, Y. L., Hoefs, J., van den Kerkhof, A.M., et al., 2000. Fluid History of UHP Metamorphism in Dabie Shan, China: A Fluid Inclusion and Oxygen Isotope Study on the Coesite-Bearing Eclogite from Bixiling. Contributions to Mineralogy and Petrology, 139(1): 1-16.https://doi.org/10.1007/s004100050570
      Zheng, Y.F., 2009. Fluid Regime in Continental Subduction Zones: Petrological Insights from Ultrahigh-Pressure Metamorphic Rocks. Journal of the Geological Society, 166(4): 763-782.https://doi.org/10.1144/0016-76492008-016r
      Zheng, Y.F., Chen, R.X., Xu, Z., et al., 2016. The Transport of Water in Subduction Zones. Science China:Earth Sciences, 46(3):253-286(in Chinese). http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3637742
      Zheng, Y.F., Chen, R. X., Zhao, Z. F., 2009. Chemical Geodynamics of Continental Subduction-Zone Metamorphism: Insights from Studies of the Chinese Continental Scientific Drilling (CCSD) Core Samples. Tectonophysics, 475(2): 327-358.https://doi.org/10.1016/j.tecto.2008.09.014
      Zheng, Y.F., Chen, Y.X., 2019. Crust-Mantle Interaction in Continental Subduction Zones. Earth Science, 44(12):3961-3983 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201912001
      Zheng, Y.F., Fu, B., Gong, B., et al., 2003. Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China: Implications for Geodynamics and Fluid Regime. Earth-Science Reviews, 62(1-2): 105-161.https://doi.org/10.1016/s0012-8252(02)00133-2
      Zheng, Y.F., Hermann, J., 2014. Geochemistry of Continental Subduction-Zone Fluids. Earth, Planets and Space, 66(1): 93.https://doi.org/10.1186/1880-5981-66-93
      李秋立, 李曙光, 郑永飞, 等, 2003.大别山金河桥榴辉岩矿物O-Nd-Pb同位素体系及其对扩散速率的制约.高校地质学报, 9(2):218-226. doi: 10.3969/j.issn.1006-7493.2003.02.007
      李忠海, 杨舒婷, 刘明启, 等, 2019.板块俯冲水流体活动及其效应的定量化数值模拟.地球科学, 44(12):3984-3992. doi: 10.3799/dqkx.2019.232?viewType=HTML
      夏群科, 程徽, 刘佳, 等, 2017.山东铁铜沟橄榄岩的水含量:华北克拉通早白垩世富水岩石圈的分布.地球科学, 42(6):853-861. http://d.old.wanfangdata.com.cn/Periodical/dqkx201706001
      郑永飞, 陈仁旭, 徐峥, 等, 2016.俯冲带中的水迁移.中国科学:地球科学, 46(3):253-286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201603001
      郑永飞, 陈伊翔, 2019.大陆俯冲带壳幔相互作用.地球科学, 44(12):3961-3983. http://d.old.wanfangdata.com.cn/Periodical/dqkx201912001
    • dqkx-45-4-1168-Table1-2.pdf
    • 加载中
    图(12) / 表(2)
    计量
    • 文章访问数:  2317
    • HTML全文浏览量:  825
    • PDF下载量:  63
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-06-03
    • 刊出日期:  2020-04-15

    目录

      /

      返回文章
      返回