Geochronology, Geochemistry and Geological Significance of Volcanic Rocks of the Dianzhong Formation, Shiquanhe Area, Western Lhasa Block
-
摘要: 广泛分布于拉萨地块南部的林子宗群火山岩被认为是新特提斯洋北向俯冲消减到陆陆碰撞构造背景转化过程中的岩浆作用产物,记录了从新特提斯洋俯冲到印度-欧亚板块碰撞、后碰撞的丰富信息.对狮泉河地区的林子宗群典中组火山岩样品进行了详细的年代学、元素及同位素地球化学研究.结果显示典中组火山岩样品LA-ICP-MS锆石U-Pb年龄集中在67.1±1.7 Ma至70.8±1.1 Ma,表明其形成于白垩纪晚期.火山岩岩性主要包括玄武安山岩、安山岩、流纹岩等,其中,中基性火山岩为一套低钾拉斑-钙碱性系列岩石,具有低TiO2(平均值< 1%),高Al2O3(平均值>15%),均富集K、Rb、Th、U等大离子亲石元素(LILE),亏损Nb、Ta、Zr、Ti等高场强元素(HFSE),具有弧岩浆岩的地球化学特征.两件中基性岩样品(87Sr/86Sr)i比值分别为0.707 437、0.707 672,εNd(t)值分别为-5.06和-4.31.酸性火山岩为一套高钾钙碱性岩石,具有高的SiO2(76.01%~76.77%)、高K2O(4.93%~4.98%)、高K2O/Na2O(1.41%~1.45%)以及相对高的Mg#(平均值为45.38),富集K、Rb、Th、U等大离子亲石元素(LILE),亏损Nb、Ta、Zr、Ti等高场强元素(HFSE),具有明显的Eu和Sr负异常.以上特征暗示典中组中基性火山岩可能是新特提斯洋北向俯冲消减过程中板片流体引起上覆地幔楔部分熔融的产物,且在上升过程中受到地壳混染的影响,酸性岩则可能来源于上覆地壳的部分熔融,且受到少量幔源物质的影响.此外,年代学及地球化学特征均表明本研究样品不属于前人认为的则弄群火山岩,而应重新厘定为林子宗群典中组火山岩.Abstract: Volcanic rocks of the Linzizong Group are widely distributed in the southern part of the Lhasa Block, and are considered to related with tectonic settings during the transition from the northward subduction of Neo-Tethys to continent-continent collision.In this paper, we present detailed chronology, elemental geochemistry and isotope geochemistry of volcanic rock samples from the Linzizong Group, Shiquanhe area. The results show that LA-ICP-MS U-Pb zircon ages from volcanic rock samples of the Dianzhong Formation are mostly between 67.1±1.7 Ma and 70.8±1.1 Ma, establishing a Late Cretaceous age.The Dianzhong Formation in the study area comprises basaltic andesite, andesite and rhyolite. Medium-basic volcanic rocks belong to the potassium calcium-alkaline series, with low TiO2 (average < 1%) and high Al2O3 (average > 15%) contents, and are enriched in large ion lithophile elements (LILE), such as K, Rb, Th, and U, and depleted in high field strength elements (HFSE) such as Nb, Ta, Zr and Ti, thereby showing obvious island-arc volcanic affinity.The isotope study yields (87Sr/86Sr)i ratios of 0.707 437, 0.707 672, and εNd(t) of -5.06 and -4.30. The acid volcanic rocks have high SiO2 (76.01%-76.77%), high K2O (4.93%-4.98%) and high K2O/Na2O (1.41%-1.45%), and belong to the high potassium calc-alkaline series, with a relatively high Mg# (average 45.38), enrichment of large ion lithophile elements (LILE) such as K, Rb, Th, U, depletion of high field strength elements (HFSE) such as Nb, Ta, Zr, Ti, and have significant negative Eu and Sr anomalies. The above characteristics suggest that the medium-basic volcanic rocks of the Dianzhong Formation were generated from partial melting of the overlying mantle wedge during northward subduction of Neo-Tethys, and were crustally contaminated during emplacement, whereas the acidic rocks may have been derived from partial melting of the overlying crust and the addition of a small amount of mantle material.In addition, both chronology and geochemical characteristics indicate that rock units sampled during this study are not part of the Zenong Group, as considered by the previous studies, but should be redefined as volcanic rocks of the Linzizong Group.
-
Key words:
- U-Pb zircon dating /
- volcanic rock /
- Dianzhong Formation /
- Linzizong Group /
- Lhasa Block /
- geochemistry
-
图 1 西藏拉萨地块林子宗群火山岩分布
Fig. 1. Simplified map of the Linzizong Group volcanic rocks in Lhasa Block, Tibet
图 7 典中组火山岩Zr/TiO2-Nb/Y图解(a)和SiO2-K2O图解(b)
a.据Winchester and Floyd(1976); b.据Miyashiro(1974); 林周、朱诺数据引自文献Mo et al.(2007, 2008); 梁银平等(2010); 则弄群火山岩数据1, 2分别引自文献康志强等(2008); 王力圆等(2016)
Fig. 7. Zr/TiO2-Nb/Y (a) and SiO2-K2O (b) diagrams of the Dianzhong Formation
图 8 典中组火山岩Na2O-K2O判别图解(a)和A/CNK-A/NK图解(b)
数据来源同图 6
Fig. 8. Na2O-K2O (a) and A/CNK-A/NK (b) diagrams of the Dianzhong Formation volcanic rocks
图 9 狮泉河地区典中组火山岩球粒陨石标准化稀土元素配分图(a, c)和原始地幔标准化微量元素蛛网图(b, d)
数据来源同图 6; 球粒陨石标准化值据Taylor and Mclennan (1985)和原始地幔标准化值据Sun and McDonough(1989)
Fig. 9. Chondrite-normalized rare earth elements distribution patterns (a, c) and primitive mantle-normalized incompatible elements of the Dianzhong Formation volcanic rocks in Shiquanhe area (b, d)
图 10 典中组火山岩εNd(t)-(87Sr/86Sr)i判别图
数据来源同图 6
Fig. 10. εNd(t)-(87Sr/86Sr)i discrimination diagram of the Dianzhong Formation volcanic rocks
图 11 典中组火山岩Ce-Ce/Pb图解(a)和Nb-Nb/Th图解(b)
据文献Boztug et al.(2007); 其中原始地幔据Hofman(1988), 大陆地壳、MORB+OIB和岛弧型火山岩区域据Schmidberger and Henger(1999)
Fig. 11. Ce-Ce/Pb (a) and Nb-Nb/Th (b) diagrams of the volcanic rocks in the Dianzhong Formation
图 12 大典中组火山岩La/Yb-Sm/Yb判别图解(a)和(Th/Nb)N-Nb/La图解(b)
a.据Johnson et al.(1990); b.据Kieffer et al.(2004); 标准化数值据Sun and McDonough(1989)
Fig. 12. La/Yb-Sm/Yb (a) and (Th/Nb)N-Nb/La (b) diagrams of the volcanic rocks in the Dianzhong Formation
图 13 典中组火山岩平衡部分熔融与分离结晶作用图解(a)和Ba/La-La/Yb图解(b)
数据来源同图 6; 沉积物和板片熔体成分区据Yogodzinski et al.(1995); 消减沉积物流体平均成分据Aizawa et al.(1999); 消减玄武质地壳流体平均成分据Kogiso et al.(1997); N-MORB值据Sun and Mcdonough(1989)
Fig. 13. Equilibrium partial and separation crystallization diagram (a) and Ba/La-La/Yb diagram (b) of the Dianzhong Formation volcanic rocks
图 14 狮泉河地区典中组火山岩Hf-Th-Ta图解(a)和Th/Yb-Ta/Yb图解(b)
a.据Wood(1980); b.据Pearce and Peate(1995); 数据来源同图 6
Fig. 14. Hf-Th-Ta (a) and Th/Yb-Ta/Yb (b) diagrams of the Dianzhong Formation volcanic rocks from Shiquanhe area
表 1 狮泉河地区林子宗群典中组火山岩样品概况
Table 1. Petrography of studied samples from the Dianzhong Formation, Lizizong Group, in Shiquanhe area, western Lhasa Block
样品号 岩石名称 组 采样位置 岩性描述 15DA-01 安山岩 多爱组 32°16'54"N 80°05'03"E 斑晶为斜长石(~35%)、黑云母(~30%)及石英(~2%), 粒径为0.01~2.1 mm; 基质主要由微晶斜长石及暗色矿物蚀变后的绢云母化和绿帘石, 少量辉石蚀变后的绿泥石矿物, 含量约为32%;副矿物为磁铁矿和少量赤铁矿, 含量约为1%(图 3). 15DA-02 安山岩 多爱组 32°16'42"N 80°04'49"E 斑晶为斜长石(~30%)、石英(~10%), 粒径为0.96~1.9 mm; 基质由斜长石微晶及火山玻璃质矿物组成, 斜长石微晶普遍绢云母化, 呈现交织结构, 含量约为60%(图 4). 15DA-05 安山岩 多爱组 32°10'40"N 80°21'07"N 斑晶主要为斜长石(~55%)、黑云母(~5%), 粒径为0.19~2.0 mm; 基质主要成分为微晶斜长石、微晶黑云母、石英及暗色铁质矿物, 呈显微-粒状隐晶质结构, 含量约为40%(图 4). 15DA-06 闪长玢岩 多爱组 32°11'04"N 80°21'55"E 斑晶主要为斜长石(~50%)、角闪石(~20%), 暗色矿物为磁铁矿(~5%), 粒径为0.1~1.2 mm; 基质主要为黑云母化后的斜长石, 以及暗色矿物的黑云母和次角闪石化, 约占~25%(图 4). 15DA-07 玄武安山岩 多爱组 32°11'51"N 80°23'27"E 斑晶主要为斜长石(~60%)发育聚片双晶, 半自形结构, 角闪石(~10%)发生绿泥石化, 粒径为0.25~1.2 mm; 基质约占(30%), 主要成分为微斜长石、磁铁矿和玻璃质, 呈交织结构(图 4). 15DA-09 安山岩 多爱组 32°12'20"N 80°25'07"E 斑晶主要为斜长石(~45%)发育聚片双晶, 自形-半自形结构, 有轻微的绢云母化, 暗色矿物黑云母(~15%)发育一组完全解理, 其他暗色矿物(~5%)外形保留, 原生矿物发生完全蚀变, 被绿泥石, 绿帘石取代, 并析出磁铁矿, 粒径为0.2~1.5 mm; 基质含量约为35%, 主要由斜长石微晶和玻璃质组成(图 4). 15TC-01 流纹岩 拖称组 32°06'02"N 80°53'03"E 斑晶为碱性长石(~30%)、石英(~25%)、斜长石(~10%)及少量黑云母(~5%), 粒径为0.02~1.7 mm, 除石英外, 多数矿物经历了一定程度的蚀变; 基质含量约为30%, 主要为微晶石英和隐晶质的钾长石、斜长石组成, 其中的石英主要来自二次结晶, 充填于斑晶长石周围(图 4). 15TC-02 流纹岩 拖称组 32°06'23"N 80°52'35"E 斑晶为钾长石(~20%)、石英(~25%)、斜长石(~10%)及黑云母(~2%), 粒径为0.02~1.1 mm.基质含量约为43%, 主要由细粒长石类矿物和石英颗粒组成(图 4). 表 2 狮泉河地区林子宗群典中组火山岩(15TC-01、15TC-02、15DA-05)锆石U-Th-Pb同位素测定结果
Table 2. U-Th-Pb isotope composition of zircons from volcanic rocks (15TC-01, 15TC-02, 15DA-05) of the Dianzhong Formation, Linzizong Group, in Shiquanhe area
分析点号 Th(10-6) U(10-6) Th/U 同位素比值及误差 年龄及误差(Ma) 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ 15TC-01-01 2 111 1 616 1.31 0.071 0 0.004 0.011 1 0.000 2 69.7 4.0 70.9 1.2 15TC-01-02 612 490 1.25 0.115 6 0.007 0.011 1 0.000 3 111.0 6.6 70.9 2.0 15TC-01-03 562 477 1.18 0.150 2 0.009 0.011 1 0.000 3 142.1 7.8 71.4 2.0 15TC-01-04 2 748 1 368 2.01 0.081 7 0.005 0.010 9 0.000 2 79.7 4.5 70.1 1.4 15TC-01-05 2 470 1 837 1.34 0.080 2 0.005 0.010 9 0.000 2 78.4 4.3 69.6 1.2 15TC-01-06 2 212 1 969 1.12 0.070 4 0.004 0.010 7 0.000 2 69.0 4.2 68.5 1.2 15TC-01-07 8 308 2 480 3.35 0.131 3 0.012 0.010 9 0.000 2 125.3 10.3 70.0 1.2 15TC-01-09 2 361 1 720 1.37 0.083 0 0.005 0.010 9 0.000 2 81.0 4.8 69.6 1.4 15TC-01-10 3 472 1 626 2.13 0.081 5 0.005 0.010 9 0.000 2 79.6 4.4 70.0 1.1 15TC-01-12 2 984 1 765 1.69 0.087 9 0.005 0.011 1 0.000 2 85.5 5.0 71.0 1.3 15TC-01-15 3 655 2 318 1.58 0.115 7 0.008 0.011 1 0.000 2 111.2 7.5 70.9 1.4 15TC-01-17 2 691 1 871 1.44 0.080 5 0.005 0.010 9 0.000 2 78.6 4.6 69.8 1.0 15TC-01-18 5 527 2 017 2.74 0.081 3 0.005 0.010 9 0.000 2 79.4 4.3 70.0 1.1 15TC-01-19 2 494 1 871 1.33 0.116 0 0.010 0.011 1 0.000 2 111.5 8.9 71.3 1.3 15TC-01-20 1 038 715 1.45 0.100 9 0.007 0.011 1 0.000 3 97.6 6.5 71.0 1.7 15TC-01-21 3 765 3 380 1.11 0.072 3 0.003 0.011 1 0.000 2 70.9 3.1 71.0 1.2 15TC-01-22 2 594 1 823 1.42 0.085 5 0.004 0.011 1 0.000 2 83.3 4.1 71.3 1.2 15TC-01-23 2 314 1 772 1.31 0.075 0 0.005 0.010 9 0.000 2 73.4 4.4 70.1 1.2 15TC-01-24 2 585 1 596 1.62 0.085 1 0.004 0.011 2 0.000 2 82.9 4.1 71.5 1.0 15TC-01-25 2 868 1 977 1.45 0.084 6 0.005 0.010 7 0.000 2 82.5 4.8 68.5 1.3 15TC-02-01 861 704 1.22 0.083 0 0.005 0.011 1 0.000 4 80.9 4.8 71.1 2.5 15TC-02-04 1 667 1 299 1.28 0.080 1 0.005 0.011 0 0.000 4 78.3 4.5 70.7 2.4 15TC-02-05 1 263 647 1.95 0.096 6 0.007 0.011 5 0.000 4 93.7 6.0 73.7 2.7 15TC-02-07 503 392 1.28 0.144 0 0.011 0.011 5 0.000 4 136.6 9.9 73.5 2.8 15TC-02-08 1 814 929 1.95 0.079 2 0.005 0.011 1 0.000 4 77.4 4.8 71.4 2.5 15TC-02-09 4 876 1 504 3.24 0.071 6 0.004 0.010 8 0.000 4 70.2 3.8 69.5 2.4 15TC-02-11 5 013 1 477 3.39 0.073 5 0.004 0.011 1 0.000 4 72.0 4.0 71.0 2.4 15TC-02-12 1 536 1 395 1.10 0.078 5 0.004 0.011 1 0.000 4 76.7 4.2 71.1 2.5 15TC-02-13 3 152 2 149 1.47 0.072 5 0.004 0.010 9 0.000 4 71.0 3.7 69.9 2.4 15TC-02-14 4 417 1 470 3.00 0.071 90 0.005 0.011 5 0.000 4 70.5 4.3 73.5 2.6 15TC-02-15 1 815 759 2.39 0.090 20 0.007 0.011 3 0.000 4 87.7 6.3 72.4 2.7 15TC-02-16 1 073 864 1.24 0.085 30 0.005 0.011 3 0.000 4 83.1 4.8 72.5 2.6 15TC-02-17 3 377 2 001 1.69 0.072 40 0.004 0.010 5 0.000 4 70.9 3.6 67.1 2.3 15TC-02-19 739 529 1.40 0.096 60 0.006 0.010 9 0.000 4 93.6 5.9 70.1 2.6 15TC-02-20 3 891 1 584 2.46 0.091 00 0.006 0.010 8 0.000 4 88.5 5.6 69.3 2.4 15TC-02-21 3 774 1 238 3.05 0.084 60 0.005 0.010 9 0.000 4 82.5 4.9 70.0 2.4 15TC-02-22 2 057 1 577 1.30 0.109 30 0.008 0.010 9 0.000 4 105.3 7.1 70.0 2.4 15TC-02-23 2 111 1 499 1.41 0.077 90 0.005 0.011 2 0.000 4 76.1 4.3 72.1 2.5 15TC-02-25 2 592 1 847 1.40 0.081 80 0.005 0.010 8 0.000 4 79.8 4.2 69.1 2.3 15DA-05-1 253 362 0.70 0.251 41 0.016 0.029 9 0.000 6 227.7 13.0 190.0 4.0 15DA-05-2 613 996 0.62 0.091 60 0.007 0.010 3 0.000 2 89.0 6.5 66.0 1.5 15DA-05-3 124 257 0.48 1.322 19 0.053 0.151 0 0.002 3 855.5 23.2 906.6 12.7 15DA-05-4 368 441 0.83 0.413 82 0.039 0.013 2 0.000 5 351.6 27.7 84.8 2.9 15DA-05-5 498 628 0.79 0.203 66 0.014 0.013 0 0.000 4 188.2 11.6 83.3 2.4 15DA-05-6 433 540 0.80 0.156 80 0.013 0.010 4 0.000 3 147.9 11.6 66.9 1.9 15DA-05-7 228 363 0.63 0.181 00 0.012 0.011 2 0.000 4 168.9 10.2 71.7 2.2 15DA-05-8 453 607 0.75 0.105 20 0.007 0.010 3 0.000 3 101.5 6.1 66.0 1.8 15DA-05-9 413 512 0.81 0.455 18 0.035 0.013 4 0.000 6 380.9 24.3 85.8 3.7 15DA-05-10 304 415 0.73 0.500 79 0.048 0.012 3 0.000 5 412.2 32.2 79.0 3.4 15DA-05-11 397 441 0.90 0.383 45 0.063 0.012 4 0.000 6 329.6 46.2 79.2 3.9 15DA-05-12 365 524 0.70 0.141 20 0.009 0.009 8 0.000 3 134.2 7.9 63.0 1.7 15DA-05-13 568 505 1.13 0.276 40 0.028 0.010 7 0.000 4 247.8 22.4 68.8 2.5 15DA-05-14 249 378 0.66 0.245 10 0.020 0.010 3 0.000 3 222.6 16.1 65.8 2.0 15DA-05-15 531 870 0.61 7.852 68 0.278 0.218 5 0.005 3 2 214.3 31.9 1 274.1 28.3 15DA-05-16 1 402 1 041 1.35 0.272 10 0.026 0.013 7 0.000 4 244.4 20.4 87.5 2.6 15DA-05-17 390 541 0.72 0.440 27 0.026 0.026 2 0.000 7 370.4 18.5 166.5 4.2 15DA-05-18 407 508 0.80 0.467 28 0.058 0.016 8 0.000 7 389.3 40.2 107.6 4.6 15DA-05-19 389 2 184 0.18 0.512 15 0.045 0.023 2 0.001 8 419.9 30.2 148.1 11.2 15DA-05-20 736 712 1.03 0.167 70 0.028 0.010 6 0.000 6 157.4 24.5 68.1 3.8 15DA-05-21 309 385 0.80 0.230 90 0.018 0.011 4 0.000 4 210.9 14.5 72.8 2.4 15DA-05-22 217 1 236 0.18 0.351 13 0.015 0.038 7 0.001 2 305.6 11.3 244.6 7.2 15DA-05-23 408 513 0.79 0.182 30 0.015 0.010 8 0.000 3 170.1 13.2 69.5 2.2 15DA-05-24 376 484 0.78 0.218 80 0.017 0.010 4 0.000 3 200.9 14.3 66.5 1.8 15DA-05-25 3 264 2 124 1.54 0.321 50 0.059 0.010 8 0.000 5 283.1 45.5 69.1 3.2 15DA-05-26 2 841 1 572 1.81 0.390 84 0.061 0.014 6 0.001 3 335.0 44.3 93.5 8.0 表 3 狮泉河地区典中组火山岩主量、微量和稀土元素测试结果
Table 3. Whole-rock geochemical data of the Dianzhong Formation volcanic rocks from Shiquanhe area
样品编号 15DA-01 15DA-02 15DA-05 15DA-06 15DA-07 15DA-09 15TC-01 15TC-02 SiO2 61.65 58.98 55.51 57.62 50.55 58.88 76.34 75.57 Al2O3 16.37 19.47 20.54 19.68 16.76 15.96 13.37 13.85 TFe2O3 4.91 5.33 5.90 6.08 10.82 7.53 0.71 0.76 MgO 2.71 0.80 2.03 2.06 6.91 5.01 0.19 0.36 CaO 6.12 5.01 8.09 8.88 9.34 2.77 0.30 0.34 Na2O 3.79 5.36 5.01 3.22 2.55 5.66 3.41 3.47 K2O 1.48 2.60 1.03 0.98 0.23 0.53 4.95 4.90 MnO 0.07 0.17 0.13 0.11 0.15 0.04 0.03 0.02 TiO2 0.87 1.02 0.68 0.68 0.97 0.86 0.11 0.10 P2O5 0.14 0.30 0.16 0.17 0.12 0.18 0.03 0.03 LOI 2.18 1.06 1.31 0.92 2.20 2.95 0.54 0.58 Total 100.29 100.09 100.40 100.41 100.60 100.38 99.98 99.99 Mg# 56.81 26.21 44.84 44.42 60.44 61.58 38.13 52.62 K2O/Na2O 0.39 0.48 0.21 0.30 0.09 0.09 1.45 1.41 A/CNK 0.86 0.94 0.85 0.87 0.78 1.07 1.16 1.19 V 146.69 97.30 101.68 105.00 258.30 197.87 2.72 4.00 Cr 58.97 1.52 1.24 2.19 54.86 1.79 0.00 1.32 Co 21.45 9.77 12.55 12.67 37.51 25.97 0.22 0.24 Ni 42.03 2.89 2.19 2.80 23.90 10.32 0.72 0.13 Ga 23.66 20.09 10.85 12.43 8.01 9.90 8.01 7.36 Rb 35.80 92.39 59.64 70.07 3.84 20.18 222.33 201.54 Sr 320.10 498.81 320.07 314.31 293.53 431.96 8.15 6.75 Y 15.68 35.53 22.24 24.78 15.61 38.91 24.72 21.34 Zr 170.98 251.11 92.38 106.43 50.68 134.14 107.28 93.45 Nb 8.99 12.86 3.24 3.60 2.08 5.00 21.98 19.84 Cs 0.75 3.80 8.39 7.28 3.45 3.57 2.24 2.33 Ba 520.12 431.86 135.78 192.00 60.85 104.40 82.69 67.26 La 21.93 35.96 10.86 12.43 5.92 13.66 24.83 22.70 Ce 44.60 74.45 22.76 25.71 12.82 35.11 57.20 45.61 Pr 5.79 9.97 3.58 4.04 2.28 5.25 6.34 5.77 Nd 22.44 39.90 15.72 17.64 10.03 22.71 21.64 19.36 Sm 4.20 7.77 3.77 4.07 2.63 5.46 4.43 3.94 Eu 1.22 1.91 1.02 1.11 0.89 1.21 0.38 0.37 Gd 3.56 6.74 3.42 3.84 2.52 5.22 3.82 3.25 Tb 0.57 1.15 0.68 0.75 0.60 1.13 0.70 0.64 Dy 3.11 6.40 4.10 4.56 3.02 6.88 4.23 3.73 Ho 0.60 1.29 0.88 0.96 0.73 1.53 0.87 0.78 Er 1.55 3.32 2.26 2.48 1.64 3.91 2.57 2.29 Tm 0.28 0.61 0.42 0.47 0.43 0.82 0.49 0.44 Yb 1.65 3.88 2.57 2.89 1.91 4.55 3.26 2.83 Lu 0.24 0.57 0.39 0.43 0.39 0.73 0.46 0.42 Hf 4.87 7.42 2.93 3.33 1.69 4.07 4.62 4.16 Ta 0.69 1.00 0.25 0.29 0.14 0.35 1.92 1.73 Pb 13.19 16.30 7.99 5.73 6.10 11.01 23.96 21.51 Th 9.00 14.89 4.48 4.66 2.27 3.85 27.75 25.83 U 1.38 3.48 0.72 0.82 0.15 0.66 2.47 2.16 Eu/Eu* 0.94 0.79 0.85 0.84 1.05 0.68 0.28 0.31 Ce/Ce* 0.95 0.95 0.89 0.88 0.85 1.02 1.09 0.95 Nb/Ta 13.07 12.88 12.93 12.52 15.05 14.18 11.46 11.46 (La/Yb)N 9.56 6.64 3.03 3.08 2.23 2.15 5.47 5.76 (La/Sm)N 3.37 2.99 1.86 1.97 1.45 1.62 3.62 3.72 注:Mg#=100×Mg2+/(Mg2++TFe2+); TFeO=0.899 8×TFe2O3; Eu/Eu*=2EuN/(Sm+Gd) N; Ce/Ce*=2CeN/(La+Pr)N. 表 4 狮泉河地区典中组火山岩Sr、Nd同位素组成结果
Table 4. Sr and Nd isotope data for the Dianzhong Formation volcanic rocks in the Shiquanhe area
样品编号 Rb(10-6) Sr (10-6) 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)i Sm Nd 147Sm/144Nd 143Nd/144Nd εNd(t) 地区 资料来源 15DA-05 59.64 320.7 0.539 0.708 172 0.707 672 3.77 15.72 0.144 9 0.512 356 -5.06 狮泉河 本文 15DA-07 3.84 293.5 0.038 0.707 472 0.707 437 2.63 10.03 0.158 4 0.512 401 -4.31 注:t=65.4 Ma, TDM值采用 Depaolo et al.(1990) 两阶段模式年龄; Sm、Rb、Sr和Nd单位为μg/g. -
Aizawa, Y., Tatsumi, Y., Yamada, H., 1999. Element Transport by Dehydration of Subducted Sediments:Implication for Arc and Ocean Island Magmatism. Island Arc, 8(1):38-46. https://doi.org/10.1046/j.1440-1738.1999.00217.x Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That Do not Report 204Pb. Chemical Geology, 192(1-2):59-79. doi: 10.1016/S0009-2541(02)00195-X Bacon, C.R., Druitt, T.H., 1988.Compositional Evolution of the Zoned Calcalkaline Magma Chamber of Mount Mazama, Crater Lake, Oregon.Contributions to Mineralogy & Petrology, 98(2):224-256. https://doi.org/10.1007/BF00402114 Bonin, B., 2004.Do Coeval Mafic and Felsic Magmas in Post-Collisional to within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review. Lithos, 78(1-2):1-24. doi: 10.1016/j.lithos.2004.04.042 Boztug, D., Harlavan, Y., Arehart, G.B., et al., 2007. K-Ar Age, Whole-Rock and Isotope Geochemistry of A-Type Granitoids in the Diverigi-Sivas Region, Eastern-Central Anatolia, Turkey. Lithos, 97(1):193-218. Brenan, J.M., Shaw, H.F., Ryerson, F.J., et al., 1995. Mineral-Aqueous Fluid Partitioning of Trace Elements at 900℃ and 2.0 GPa:Constraints on the Trace Element Chemistry of Mantle and Deep Crustal Fluids. Geochimica et Cosmochimica Acta, 59(16):3331-3350. https://doi.org/10.1016/0016-7037(95)00215-L Castillo, P.R., Newhall, C.G., 2004. Geochemical Constraints on Possible Subduction Components in Lavas of Mayon and Taal Volcanoes, Southern Luzon, Philippines. Journal of Petrology, 45(6):1089-1108. doi: 10.1093/petrology/egh005 Chen, B.B., Ding, L., Xu, Q., et al., 2016. U-Pb Age Framework of the Linzizong Volcanic Roks from the Linzhou Basin, Tibet. Quaternary Science, 36(5):1037-1054 (in Chinese with English abstract). Chen, J., Huang, B., Sun, L., 2010. New Constraints to the Onset of the India-Asia Collision:Paleomagnetic Reconnaissance on the Linzizong Group in The Lhasa Block, China. Tectonophysics, 489(1-4):189-209. doi: 10.1016/j.tecto.2010.04.024 Chen, J., Huang, B., Yi, Z., et al., 2014. Paleomagnetic and 40Ar/39Ar Geochronological Results from the Linzizong Group, Linzhou Basin, Lhasa Terrane, Tibet:Implications to Paleogene Paleolatitude and Onset of the India-Asia Collision. Journal of Asian Earth Sciences, 96(57):162-177. https://doi.org/10.1016/j.jseaes.2014.09.007 Defant, M.J., Drummond, M.S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294):662-665. doi: 10.1038/347662a0 Depaolo, D.J., 1988. Neodymium Isotope Geochemistry. Minerals & Rocks, 20(3):159-174. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0212803504/ Depaolo, D.J., Linn, A.M., Schubert, G., 1990. The Continental Crustal Age Distribution:Methods of Determining Mantle Separation Ages from Sm-Nd Isotopic Data and Application to the Southwestern United States. Journal of Geophysical Research, 96:2071-2088. http://cn.bing.com/academic/profile?id=6453837abbe952b8cefa75675fa3baec&encoded=0&v=paper_preview&mkt=zh-cn Fu, W.C., Kang, Z.Q., Pan, W.B., 2014. Geochemistry, Zircon U-Pb Age and Implications of the Linzizong Group Volcanic Rocks in Shiquan River Area, Western Gangdise Belt, Tibet. Geological Bulletin of China, 33(6):850-859 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201406008 Green, D.H., 1976. Experimental Testing of Equilibrium Partial Melting of Peridotite under Water-Saturated, High-Pressure Conditions. The Canadian Mineralogist, 14(3):255-268. http://cn.bing.com/academic/profile?id=8d9bedceaf436c8a9e53de62ff27c0b9&encoded=0&v=paper_preview&mkt=zh-cn Guffanti, M., Clynne, M.A., Muffler, L.J.P., 1996. Thermal and Mass Implications of Magmatic Evolution in the Lassen Volcanic Region, California, and Minimum Constraints on Basalt Influx to the Lower Crust. Journal of Geophysical Research Atmospheres, 101(B2):3003-3013. doi: 10.1029/95JB03463 He, S., Kapp, P., DeCelles, P.G., et al., 2007. Cretaceous-Tertiary Geology of the Gangdese Arc in the Linzhou Area, Southern Tibet. Tectonophysics, 433(1-4):15-37. https://doi.org/10.16/j.tecto.2007.01.005 Hofmann, A.W., 1988. Chemical Differentiation of the Earth:The Relationship between Mantle, Continental Crust and Oceanic Crust. Earth and Planetary Science Letters, 90:297-314. doi: 10.1016/0012-821X(88)90132-X Hoskin, P.W., Black, L.P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4):423-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=20f7cb4f6d72be021ecb081c5fa74229 Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110:1541-1575. https://doi.org/10.2113/econgeo.110.6.1541 Huang, W., Dupont, N.G., Lippert, P.C., et al. 2015. What was the Paleogene Latitude of the Lhasa Terrane? A Reassessment of the Geochronology and Paleomagnetism of Linzizong Volcanic Rocks (Linzhou Basin, Tibet). Tectonic, 34(3):594-622. https://doi.org/10.1002/2014tc003787 Huang, Y., Hawkesworth, C., Smith, I., 2000. Geochemistry of Late Cenozoic Basaltic Volcanism in Northland and Coromandel, New Zealand:Implications for Mantle Enrichment Processes. Chemical Geology, 164(3):219-238. Jiang, Y.H., Jiang, S.Y., Dai, B.Z., et al., 2009. Middle to Late Jurassic Felsic and Mafic Magmatism in Southern Hunan Province, Southeast China:Implications for a Continental arc to Rifting. Lithos, 107(3-4):185-204. doi: 10.1016/j.lithos.2008.10.006 Johnson, K.T.M., Dick, H.J.B., Shimizu, N., 1990. Melting in the Oceanic Upper Mantle:An Ion Microprobe Study of Diopsides in Abyssal Peridotites. Journal of Geophysical Research:Solid Earth, 95(B3):2661- 2678. doi: 10.1029/JB095iB03p02661 Kang, Z.Q., Xu, J.F., Chen, J.L., 2010. The Geochronology of Sangri Group Volcanic Rocks in Tibet:Constraints from Later Mamen Intrusions. Geochimica, 39(6):520-530. http://cn.bing.com/academic/profile?id=ed89a5e3d5b9fbb4f9f3d09e5655bdbb&encoded=0&v=paper_preview&mkt=zh-cn Kang, Z.Q., Xu, J.F., Dong, Y.H., et al., 2008. Cretaceous Volcanic Rocks of Zenong Group in North-Middle Lhasa Block:Products of Southward Subducting of the Slainajap Ocean. Acta Petrologica Sinica, 24(2):303-314(in Chinese with English abstract). Kieffer, B., Arndt, N., Lapierre, H., et al., 2004. Flood and Shield Basalts from Ethiopia:Magmas from the African Superswell. Journal of Petrology, 45(4):793-834 doi: 10.1093/petrology/egg112 Kogiso, T., Tatsumi, Y., Nakano, S., 1997. Trace Element Transport during Dehydration Processes in the Subducted Oceanic Crust:1. Experiments and Implications for the Origin of Ocean Island Basalts. Earth and Planetary Science Letters, 148(1-2):193-205. doi: 10.1016/S0012-821X(97)00018-6 Lee, H.Y., Chung, S.L., Lo, C.H., et al., 2009. Eocene Neotethyan Slab Break off in Southern Tibet Inferred from the Linzizong Volcanic Record. Tectonophysics, 477(1-2):20-35. https://doi.org/10.1016/j.tecto.2009.02.031 Li, H.L., Li, G.M., Liu, H., et al., 2019. Petrogenesis of Paleocene Granite Porphyry of Daruo Area in Western Lhasa Block, Tibet:Constraints from Geochemistry, Zircon U-Pb Chronology and Sr-Nd-Pb-Hf Isotopes. Earth Science, 44(7):1-27. http://d.old.wanfangdata.com.cn/Periodical/dqkx201907007 Li, Y., Zhang, S.Z., Li, F.Q., et al., 2018. Zircon U-Pb Ages and Implications of the Dianzhong Formation in Chazi Area, Middle Lhasa Block, Tibet. Earth Science, 43(8):2755-2766. http://d.old.wanfangdata.com.cn/Periodical/dqkx201808016 Liang, X.R., Wei, G.J., Li, X.H., et al., 2003. Precise Measurement of 143Nd/144Nd and Sm/Nd Ratios Using Multiple-Collectors Inductively Coupled Plasma-Mass Spectrometer (MC-ICPMS). Geochimica, 32(1):91-96 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200301013 Liang, Y.P., Zhu, J., Ci, Q., et al., 2010. Zircon U-Pb Ages and Geochemistry of Volcanic Rocks from Linzizong Group in Zhunuo Area in Middle Gangdise Belt, Tibet Plateau. Earth Science, 35(2):211-223 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201002005 Liu, Y., Gao, S., Hu, Z., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. doi: 10.1093/petrology/egp082 Liu, Y., Liu, H.C., Li, X.H., 1996. Simultaneous and Precise Determination of 40 Trace Elements in Rock Samples Using ICP-MS. Geochimica, 25(6):552-558 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600048595 Ludwig, K.R., 2003. User's Manual for Isoplot 3.00. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4:25-32. doi: 10.1016-j.immuni.2011.10.010/ Meng, Y.K., Xu, Z.Q., Gao, C.S., et al., 2018. The Identification of the Eocene Magmatism and Tectonic Significance in the Middle Gangdese Magmatic Belt, Southern Tibet Acta Petrol. Sinica, 34(3):513-546. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201803001 Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4):321-355. doi: 10.2475/ajs.274.4.321 Mo, X.X., Deng, J.F., Dong, F.L., et al., 2001. Volcanic Petrotectonic Assemblages in Sanjiang Orogenic Belt, SW China and Implication for Tectonics. Geological Journal of China Universities, 7(2):121-138 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200102001 Mo, X.X., Hou, Z. Q., Niu, Y.L., et al., 2007. Mantle Contributions to Crustal Thickening during Continental Collision Evidence from Cenozoic Igneous Rocks in Southern Tibet. Lithos, 96(1-2):225-242. doi: 10.1016/j.lithos.2006.10.005 Mo, X.X., Niu, Y., Dong, G.C., et al., 2008. Contribution of Syn-Collisional Felsic Magma Time to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1-4):49-67. doi: 10.1016/j.chemgeo.2008.02.003 Mo, X.X., Pan, G.T., 2006. From the Tethys to the Formation of the Qinghai-Tibet Plateau:Constrained by Tectonic-Magmatic Events. Earth Science Frontiers, 13(6):43-51 (in Chinese with English abstract). Mo, X.X., Zhao, Z.D., Deng, J.F., et al., 2003. Response of Volcanism to the India-Asia Collision. Earth Sci. Front, 10(3):135-148 (in Chinese with English abstract). Pan, G.T., Mo, X.X., Hou. Z.Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrol Sinica, 22(3):521-533 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001 Pearce, J.A., Peate, D.W., 1995 Tectonic Implications of the Composition of Volcanic ARC Magmas. Annu. Rev. Earth Pl. Sc., 23(1):251-285. doi: 10.1146/annurev.ea.23.050195.001343 Pichavant, M., Montel, J.M., Richard, L.R., et al., 1992. Apatite Solubility in Peraluminous Liquids:Experimental Data and an Extension of the Harrison-Watson Model. Geochimica et Cosmochimica Acta, 56:3855-3861. https://doi.org/10.1016/0016-7037(92)90178-L Pin, C., Paquette, J.L., 1997. A Mantle-Derived Bimodal Suite in the Hercynian Belt:Nd Isotope and Trace Element Evidence for a Subduction-Related Rift Origin of the Late Devonian Brévenne Metavolcanics, Massif Central (France). Contributions to Mineralogy & Petrology, 129(2-3):222-238. Roberts, M.P., Clemens, J.D., 1993. Origin of High- Potassium, Talc-Alkaline, I-Type Granitoids. Geology, 21(9):825-828. doi: 10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2 Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R.L., ed., The Crust. ElsevierPergamon, Oxford, 1-64. https://doi.org/10.1016/0016-7037(95)00038-2 Schmidberger, S.S., Henger, E., 1999. Geochemistry and Isotope Systematic of Calc-Alkaline Volcanic Rocks from the Saar-Nahe Basin (SW Germany):Implications for Late-Variscan Orogenic Development. Contributions to Mineralogy and Petrology, 135:373-385. doi: 10.1007/s004100050518 Sun, S.S., Mcdonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society London Special Publications, 42(1):313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 Sun, W., Bennett, V.C., Kamenetsky, V.S., 2004. The Mechanism of Re Enrichment in arc Magmas:Evidence from Lau Basin Basaltic Glasses and Primitive Melt Inclusions. Earth & Planetary Science Letters, 222(1):101-114. Tatsumi, Y., Takahashi, T., 2006. Operation of Subduction Factory and Production of Andesite. Journal of Mineralogical and Petrological Sciences, 101(3):145-153. doi: 10.2465/jmps.101.145 Taylor, S.R., Mclennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford. Tischendorf, G., Paelchen, W., 1985. Zur Klassifikation von Granitoiden/Classification of Granitoids. Zeitschrift Fuer Geologische Wissenschaften, 13(5):615-627. Wang, L.Y., Zhen, Y.Y., Gao, S.B., et al., 2016. The Discovery of the Early Cretaceous Zenong Group Volcanic Rocks and Geological Significance in Jiwa Area in South of the Central Lhasa Subterrane. Acta Petrologica Sinica, 32(5):1543-1555. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201605019 Wang, Q.L., 2011. Geochemistry and Zircon U-Pb Chronology of Linzizong Group Volcanic Rocks in Western Gangdese, Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). Wen, D.R., Liu, D., Chung, S.L., et al., 2008. Zircon SHRIMP U-Pb Ages of the Gandese Batholith and Implications for Neotethyan Subduction in Southern Tibet. Chem. Geol., 252(3/4):191-201. Wilson, M., 1986. Igneous Petrogenesis: A Global Tectonic Approach.Unw. in Hyman, London, 1-466. Winchester, J.A., Floyd, P.A., 1976. Geochemical Magma Type Discrimination:Application to Altered and Metamorphosed Basic Igneous Rocks. Earth & Planetary Science Letters, 28(3):459-469. http://cn.bing.com/academic/profile?id=85e3562ed2fb67875b027901b867e039&encoded=0&v=paper_preview&mkt=zh-cn Wood, D.A., 1980. The Application of a Th, Hf, Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth & Planetary Science Letters, 50(1):11-30. doi: 10.1016-0012-821X(80)90116-8/ Xie, B.J., Zhou, S., Xie, G.G., et al., 2013. Zircon SHRIMP U-Pb Data and Regional Contrasts of Geochemical Characteristics of Linzizong Volcanic Rocks from Konglong and Dinrenle Region, Middle Gangdese belt. Acta Petrol Sinica, 29(11):3803-3814 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311013 Yao, P., Li, J.G., Wang, Q.H., et al., 2006. Discovery and Geological Significance of the Adakite in Gangise Island Arc Belt, Xizang (Tibet). Acta Petrol Sinica, 22(3):612-620 (in Chinese with English abstract). Yogodzinski, G.M., Kay, R.W., Volynets, O.N., et al. 1995. Magnesian Andesite in the Western Aleutian Komandorsky Region:Implications for Slab Melting and Processes in the Mantle Wedge. Geological Society of America Bulletin, 107:505-519. doi: 10.1130/0016-7606(1995)107<0505:MAITWA>2.3.CO;2 You, C.F., Spivack, A.J., Gieskes, J.M., et al., 1996. Boron Contents and Isotopic Compositions in Pore Waters:A New Approach to Determine Temperature Induced Artifacts-Geochemical Implications. Marine Geology, 129(3-4):351-361. doi: 10.1016/0025-3227(96)83353-6 Yu, F., Li, Z.G., Zhao, Z.D., et al., 2010. Geochemistry and Implication of the Linzizong Volcanic Succession in Cuomai Area Central-Western Gandese, Tibet. Acta Petrol Sinica, 26(7):2217-2225 (in Chinese with English abstract). Yuan, H., Gao, S., Liu, X., et al., 2010. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards & Geoanalytical Research, 28(3):353-370. http://cn.bing.com/academic/profile?id=4a8e7a7fca3d10ce694c49bdb9efd4b5&encoded=0&v=paper_preview&mkt=zh-cn Zeng, L.S., Gao, L.E., Xie, K.J., et al., 2011. Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes:Melting Thickened Lower Continental Crust. Earth & Planetary Science Letters, 303(3-4):251-266. https://doi.org/10.1016/j.epsl.2011.01.005 Zhao, Z.D., Mo, X.X., Nomand, S., et al., 2006. Post- Collisional Ultrapotassic Rocks in Lhasa Block, Tibetan Plateau:Spatial and Tem Poral Distribution and Its Implications. Acta Petralogica Sinica, 22(4):787-794 (in Chinese with English abstract). Zhao, Z.H., 2016. Trace Element Geochemistry. Science Press, Beijing (in Chinese). Zhou, S., Mo, X.X., Dong, G.C., et al., 2004. 40Ar/39Ar Geochronology of Genozoic Linzizong Volcanic Rocks from Linzhou Basin, Tibet. Chinese Science Bull., 49(20):2095-2103 (in Chinese with English abstract). doi: 10.1360/csb2004-49-20-2095 Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2008. Zircon U-Pb Geochronology of Zenong Group Volcanic Rocks in Coqen Area of the Gangdese, Tibet and Tectonic Significance. Acta Petrologica Sinica, 24(3):401-412 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200803001 Zhu, D.C., Pan, G.T., Chung, S.L., et al., 2008. SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet. International Geology Review, 50(5):442-471. doi: 10.2747/0020-6814.50.5.442 Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2007. Petrogenesis of Volcanic Rocks in the Sangxiu Formation, Central Segment of Tethyan Himalaya:A Probable Example of Plume-Lithosphere Interaction. Journal of Asian Earth Sciences, 29(2-3):320-335. doi: 10.1016/j.jseaes.2005.12.004 Zhu, D.C., Wang, Q., Zhao, Z.D., et al., 2015. Magmatic Record of India-Asia Collision. Scientific Reports, 5:14289. doi: 10.1038/srep14289 Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011. The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301:241-255. doi: 10.1016/j.epsl.2010.11.005 Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012. Cambrian Bimodal Volcanism in the Lhasa Terrane, Southern Tibet:Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan margin. Chemical Geology, 328(11):290-308. http://cn.bing.com/academic/profile?id=aafc0264bf3633bd3ed640019fd13753&encoded=0&v=paper_preview&mkt=zh-cn Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4):1429-1454. doi: 10.1016/j.gr.2012.02.002 陈贝贝, 丁林, 许强, 等, 2016.西藏林周盆地林子宗群火山岩的精细年代框架.第四纪研究, 36(5):1037-1054. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201605003 付文春, 康志强, 潘会彬, 2014.西藏冈底斯带西段狮泉河地区林子宗群火山岩地球化学特征、锆石U-Pb年龄及地质意义.地质通报, 33(6):850-859. doi: 10.3969/j.issn.1671-2552.2014.06.008 康志强, 许继峰, 陈建林, 等, 2010.西藏南部桑日群火山岩的时代:来自晚期马门侵入体的约束.地球化学, 39(6):520-530. http://d.old.wanfangdata.com.cn/Periodical/dqhx201006002 康志强, 许继峰, 董彦辉, 等, 2008.拉萨地块中北部白垩纪则弄群火山岩:Slainajap洋南向俯冲的产物.岩石学报, 24(2):303-314. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200802010 李洪梁, 李光明, 刘洪, 等, 2019.拉萨地体西段达若地区古新世花岗斑岩成因:锆石U-Pb年代学、岩石地球化学和Sr-Nd-Pb-Hf同位素的约束.地球科学, 44(7):1-27. http://d.old.wanfangdata.com.cn/Periodical/dqkx201907007 李勇, 张士贞, 李奋其, 等, 2018.拉萨地块中段查孜地区典中组火山岩锆石U-Pb年龄及地质意义.地球科学, 43(8):2755-2766. http://d.old.wanfangdata.com.cn/Periodical/dqkx201808016 梁细荣, 韦刚健, 李献华, 等, 2003.利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值.地球化学, 32(1):91-96. doi: 10.3321/j.issn:0379-1726.2003.01.013 梁银平, 朱杰, 次邛, 等, 2010.青藏高原冈底斯带中部朱诺地区林子宗群火山岩锆石U-Pb年龄和地球化学特征.地球科学, 35(2):211-223. doi: 10.3969/j.issn.1672-6561.2010.02.017 刘颖, 刘海臣, 李献华, 1996.用ICP-MS准确测定岩石样品中的40余种微量元素.地球化学, 25(6):552-558. doi: 10.3321/j.issn:0379-1726.1996.06.004 孟元库, 许志琴, 高存山, 等, 2018.藏南冈底斯带中段始新世岩浆作用的厘定及其大地构造意义.岩石学报, 34(3):513-546. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201803001 莫宣学, 邓晋福, 董方浏, 等, 2001.西南三江造山带火山岩-构造组合及其意义.高校地质学报, 7(2):121-138. doi: 10.3969/j.issn.1006-7493.2001.02.001 莫宣学, 潘桂棠, 2006.从特提斯到青藏高原形成:构造-岩浆事件的约束.地学前缘, 13(6):43-51 doi: 10.3321/j.issn:1005-2321.2006.06.007 莫宣学, 赵志丹, 邓晋福, 等, 2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘, 10(3):135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001 王力圆, 郑有业, 高顺宝, 等, 2016.中部拉萨地体南侧吉瓦地区早白垩世则弄群火山岩的发现及意义.岩石学报, 32(5):1543-1555. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201605019 王乔林, 2011.冈底斯西段林子宗群火山岩的地球化学特征及锆石年代学研究(硕士学位论文).北京: 中国地质大学. 谢冰晶, 周肃, 谢国刚, 等, 2013.西藏冈底斯中段孔隆至丁仁勒地区林子宗群火山岩锆石SHRIMP年龄和地球化学特征的区域对比.岩石学报, 29(11):3803-3814. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311013 姚鹏, 李金高, 王全海, 等, 2006.西藏冈底斯南缘火山-岩浆弧带中桑日群Adakite的发现及其意义.岩石学报, 22(3):612-620. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603010 于枫, 李志国, 赵志丹, 等, 2010.西藏冈底斯带中西部措麦地区林子宗群火山岩地球化学特征及意义.岩石学报, 26(7):2217-2225. 赵志丹, 莫宣学, Nomand, S., 等, 2006.青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义.岩石学报, 22(4):787-794. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604003 赵振华, 2016.微量元素地球化学原理.北京: 科学出版社. 周肃, 莫宣学, 董国臣, 等, 2004.西藏林周盆地林子宗火山岩40Ar/39Ar年代格架.科学通报, 49(20):2095-2103. doi: 10.3321/j.issn:0023-074X.2004.20.014 朱弟成, 莫宣学, 赵志丹, 等, 2008.西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义.岩石学报, 24(3):401-412. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200803001