Gas Generation from Marine and Terrestrial Shales by Semi-Closed Pyrolysis Experiments
-
摘要: 明确不同沉积环境下页岩气生成机理的差异性对于页岩气成因机理及页岩气地球化学特征研究具有重要意义.选择低演化阶段的海相(中元古界洪水庄组)和陆相(三叠统延长组长7段)泥页岩进行了半封闭热模拟实验,对其气体产物进行了组分和碳同位素分析.结果表明,洪水庄组页岩产气量要远远低于同温度条件下长7段泥岩的产气量.同时,长7段泥岩气体产物二次裂解程度比较高.洪水庄组页岩有机质母源以生油性为主,长7段泥岩沉积过程受到陆源混入,有机质母源以相对偏生气性为主.热模拟实验条件下黄铁矿转化成磁黄铁矿的过程也可能促进长7段泥岩烃类气的生成.热模拟实验中所用样品的状态,即柱状样或颗粒样,也可能会对气体的裂解行为产生影响.在这种情况下,南方地区页岩气高的甲烷产率以及碳同位素倒转可能与厚层页岩高的油气滞留率有关.Abstract: Understanding differences of shale gas generation in different sedimentary environments has great significance to fully elucidate genesis mechanisms and geochemical characteristics of shale gas. In this study,semi-closed pyrolysis experiments were conducted on two lower-mature shales,including a marine shale from Hongshuizhuang Formation of Mesoproterozoic and a terrestrial mudstone from the Chang 7 Member of Yanchang Formation of Upper Triassic. The pyrolyzed gas productions were performed for gas constituent and carbon isotope analysis,aiming to investigate influences on gas generation from the nature of organic matter,mineralogical characteristics and rock fabric. The results show the discrepancy of sources of organic matter exists in the two shales,causing the amount of gas generated from Hongshuizhuang shale was lower than that of the Chang 7 Member under the same pyrolysis temperature. Meanwhile,the secondary cracking content of gas productions in the Chang 7 Member mudstone was relatively high. Organic matter in Hongshuizhuang Formation is oil-prone,but organic matter in the Chang 7 Member mudstone is relatively gas-prone due to mixture of continental materials. Moreover,the transformation process from pyrite to pyrrhotine also can be conducive to advancing the generation of hydrocarbon gas in the Chang 7 Member mudstone. The rock fabrics used in the pyrolysis experiments would lead to different cracking behaviors of gas. In this scenario,the characteristics of high methane composition and rollover of carbon isotope of shale gas in the South China may be associated with higher retention of oil and gas in those thick shales.
-
表 1 原始样品的有机地球化学信息
Table 1. Organic geochemical characteristics of original samples
样品名 岩性 TOC (%) Ro* (%) S1 (mg HC/g) S2 (mg HC/g) S3 (mg CO2/g) Tmax (℃) HI (mg HC/g TOC) OI (mg CO2/g TOC) F14 泥岩 4.49 0.77 1.41 11.58 0.12 442 216.04 2.24 KC 页岩 5.18 0.76* 0.5 15.62 0.93 440 268.00 16.00 注:Ro依据公式“Ro=0.018×Tmax-7.16”计算得到( Jarvie et al., 2007 ).“*” Ro估计依据见补充材料.表 2 原始样品的矿物组成信息
Table 2. Mineralogical characteristics of original samples
样品名 石英(%) 钠长石(%) 钾长石(%) 黄铁矿(%) 粘土矿物(%) 伊蒙混层 高岭石 F14 40 15 11 4 21 9 KC 70 nd 14 nd 16 nd 注:“nd”代表未检测到. 表 3 模拟气的气体组分特征
Table 3. Gas compositions of pyrolysis experiments
温度(℃) 估计Ro* (%) 样品 非烃类气 烃类气 干燥系数(%) 总气 烃类气 非烃气 N2 CO2 H2S C1 C2 C3 C4+ C2+ mL/g TOC mL/g TOC 250 KC 29.41 13.99 0.00 0.24 0.03 0.02 0.04 0.11 71.86 44.00 0.35 43.75 300 49.04 27.41 0.00 0.71 0.19 0.12 0.10 0.44 62.83 78.16 1.15 77.01 350 0.9~1.2 200.10 15.41 0.00 2.84 1.08 0.66 0.54 2.29 55.49 222.89 5.13 217.77 400 245.29 5.46 0.00 8.08 2.58 1.50 1.25 5.36 60.28 266.98 13.44 253.34 450 1.5~2.0 336.33 9.67 0.00 27.32 5.94 2.53 0.98 17.32 74.31 386.77 44.64 361.52 500 197.86 37.71 0.00 157.87 17.18 3.02 1.97 22.90 87.68 418.59 180.77 237.82 550 2.5~3.0 113.81 109.20 0.00 330.70 23.94 4.03 2.96 34.09 91.45 589.19 364.79 224.40 250 F14 90.17 20.82 0.00 0.46 1.38 6.68 6.67 14.73 3.06 127.22 15.20 112.02 300 127.95 52.42 0.00 0.85 0.63 3.54 5.77 9.94 7.86 192.57 10.79 181.78 350 0.9~1.2 155.33 71.16 0.00 8.42 3.53 4.11 5.25 12.90 39.50 249.44 21.33 228.11 400 78.25 103.57 0.02 76.77 29.04 21.41 20.47 70.91 51.98 330.21 148.14 182.07 450 1.5~2.0 74.84 109.92 0.46 164.16 54.05 31.43 16.50 101.98 61.68 453.46 267.60 185.86 500 123.69 118.15 0.02 246.64 39.53 10.66 6.50 56.69 81.31 548.09 304.83 243.26 550 2.5~3.0 66.37 250.27 0.06 509.66 37.85 6.70 3.51 48.06 91.38 880.38 562.66 317.72 注:“*” Ro估计依据见补充材料. 表 4 模拟气的碳同位素
Table 4. Carbon isotope of pyrolysis gas productions
温度(℃) KC (‰ PDB) F14 (‰ PDB) δ13C1 δ13C2 δ13C3 δ13CCO2 δ13C1 δ13C2 δ13C3 δ13CCO2 250 -41.9 -34.5 -32.6 -27.4 nd -36.3 -36.1 -4.0 300 -44.7 -40.2 -40.0 -32.2 nd -39.0 -37.7 -4.3 350 -51.0 -42.2 -40.7 -31.0 -48.5 -39.2 -38.2 -5.1 400 -47.8 -38.4 -37.3 -28.3 -47.4 -38.0 -36.6 -8.4 450 -50.6 -37.3 -34.9 -35.0 -44.7 -37.4 -33.4 -13.8 500 -37.4 -34.5 -34.4 -33.3 -39.8 -32.5 -32.0 -16.2 550 -36.9 -28.5 -31.9 -33.3 -36.0 -28.7 -31.0 -22.3 注:“nd”代表未检测到. 表 5 模拟实验条件下2类泥页岩残留油产率
Table 5. Residual oil yields of the studied shales under pyrolysis experiments
温度(℃) KC残留油产率(mg/g TOC) F14残留油产率(mg/g TOC) 250 18.03 66.62 300 15.60 156.31 350 34.44 189.23 400 3.88 15.89 450 1.33 2.77 500 0.62 2.28 550 0.64 2.73 -
Bakr, M. Y., Yokono, T., Sanada, Y., et al., 1991. Role of Pyrite during the Thermal Degradation of Kerogen Using In-situ High-Temperature ESR Technique. Energy & Fuels, 5(3):441-444. https://doi.org/10.1021/ef00027a014 Bao, Z.D., Chen, J.F., Zhang, S.C., et al., 2004. Sedimentary Environment and Development Controls of the Hydrocarbon Source Beds:Middle and Upper Proterozoic in Northern North China. Science in China(Series D:Earth Sciences), 34(Suppl.1):114-119 (in Chinese). Behar, F., Kressmann, S., Rudkiewicz, J. L., et al., 1992. Experimental Simulation in a Confined System and Kinetic Modelling of Kerogen and Oil Cracking. Organic Geochemistry, 19(1/2/3):173-189. https://doi.org/10.1016/0146-6380(92)90035-v Boudou, J. P., Espitalié, J., 1995. Molecular Nitrogen from Coal Pyrolysis:Kinetic Modelling. Chemical Geology, 126(3/4):319-333. https://doi.org/10.1016/0009-2541(95)00125-5 Chen, X.Y., Tian, F.Q., Zou, H.Y., et al., 2018. Study on Hydrocarbon-Generation of Lacustrine Source Rocks Based on Hydrous Pyrolysis Experiments of Source Rocks from Jizhong Depression, Bohai Bay Basin. Natural Gas Geoscience, 29(1):103-113 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201801010 Curtis, J.B., 2002. Fractured Shale-Gas Systems. AAPG Bulletin, 86(11):1921-1938. http://d.old.wanfangdata.com.cn/Periodical/dkyqt201704025 Dai, J. X., Zou, C. N., Dong, D. Z., et al., 2016. Geochemical Characteristics of Marine and Terrestrial Shale Gas in China. Marine and Petroleum Geology, 76:444-463. https://doi.org/10.1016/j.marpetgeo.2016.04.027 Dong, D.Z., Wang, Y.M., Li, X.J., et al., 2016. Breakthrough and Prospect of Shale Gas Exploration and Development in China. Natural Gas Industry, 36(1):19-32 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201601003 Gai, H. F., Tian, H., Cheng, P., et al., 2019. Influence of Retained Bitumen in Oil-Prone Shales on the Chemical and Carbon Isotopic Compositions of Natural Gases:Implications from Pyrolysis Experiments. Marine and Petroleum Geology, 101:148-161. https://doi.org/10.1016/j.marpetgeo.2018.11.048 Gai, R. H., Jin, L. J., Zhang, J. B., et al., 2014. Effect of Inherent and Additional Pyrite on the Pyrolysis Behavior of Oil Shale. Journal of Analytical and Applied Pyrolysis, 105(5):342-347. https://doi.org/10.1016/j.jaap.2013.11.022 Han, Y. J., Mahlstedt, N., Horsfield, B., 2015. The Barnett Shale:Compositional Fractionation Associated with Intraformational Petroleum Migration, Retention, and Expulsion. AAPG Bulletin, 99(12):2173-2202. https://doi.org/10.1306/06231514113 Hill, R. J., Zhang, E. T., Katz, B. J., et al., 2007. Modeling of Gas Generation from the Barnett Shale, Fort Worth Basin, Texas. AAPG Bulletin, 91(4):501-521. https://doi.org/10.1306/12060606063 İnan, S., 2000. Gaseous Hydrocarbons Generated during Pyrolysis of Petroleum Source Rocks Using Unconventional Grain-Size:Implications for Natural Gas Composition. Organic Geochemistry, 31(12):1409-1418. https://doi.org/10.1016/s0146-6380(00)00070-x Inan, S., Yalçin, M. N., Mann, U., 1998. Expulsion of Oil from Petroleum Source Rocks:Inferences from Pyrolysis of Samples of Unconventional Grain Size. Organic Geochemistry, 29(1/2/3):45-61. https://doi.org/10.1016/s0146-6380(98)00091-6 Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4):475-499. https://doi.org/10.1306/12190606068 Li, W., Zhu, Y. M., Liu, Y., 2018. Gas Evolution and Isotopic Fractionations during Pyrolysis on Coals of Different Ranks. International Journal of Coal Geology, 188:136-144. https://doi.org/10.1016/j.coal.2018.02.009 Liu, Q., Yuan, X.J., Lin, S.H., et al., 2018. Depositional Environment and Characteristic Comparison between Lacustrine Mudstone and Shale:A Case Study from the Chang 7 Member of the Yanchang Formation, Ordos Basin. Oil & Gas Geology, 39(3):531-540 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201803010 Liu, Q.Y., Liu, W.H., Chen, J.F., et al., 2003. Thermal Simulation Experiment of Jurassic Coals in Talimu Basin-Geochemical Characteristics and Significance of Nitrogen. Natural Gas Industry, 23(1):26-29, 10 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200301007 Luo, Q. Y., George, S. C., Xu, Y. H., et al., 2016. Organic Geochemical Characteristics of the Mesoproterozoic Hongshuizhuang Formation from Northern China:Implications for Thermal Maturity and Biological Sources. Organic Geochemistry, 99:23-37. https://doi.org/10.1016/j.orggeochem.2016.05.004 Ma, X. X., Zheng, J. J., Zheng, G. D., et al., 2016. Influence of Pyrite on Hydrocarbon Generation during Pyrolysis of Type-Ⅲ Kerogen. Fuel, 167:329-336. https://doi.org/10.1016/j.fuel.2015.11.069 Pan, C. C., Jiang, L. L., Liu, J. Z., et al., 2012. The Effects of Pyrobitumen on Oil Cracking in Confined Pyrolysis Experiments. Organic Geochemistry, 45(2):29-47. https://doi.org/10.1016/j.orggeochem.2012.01.008 Qin, J., Zhong, N.N., Qi, W., et al., 2010. Organic Petrology of the Hongshuizhuang Formation in Northern North China. Oil & Gas Geology, 31(3):367-374 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201003015 Shao, D. Y., Ellis, G. S., Li, Y. F., et al., 2018. Experimental Investigation of the Role of Rock Fabric in Gas Generation and Expulsion during Thermal Maturation:Anhydrous Closed-System Pyrolysis of a Bitumen-Rich Eagle Ford Shale. Organic Geochemistry, 119:22-35. https://doi.org/10.1016/j.orggeochem.2018.01.012 Smith, J. W., Rigby, D., Gould, K. W., et al., 1985. An Isotopic Study of Hydrocarbon Generation Processes. Organic Geochemistry, 8(5):341-347. https://doi.org/10.1016/0146-6380(85)90013-0 Song, D. J., Tuo, J. C., Zhang, M. F., et al., 2019. Hydrocarbon Generation Potential and Evolution of Pore Characteristics of Mesoproterozoic Shales in North China:Results from Semi-Closed Pyrolysis Experiments. Journal of Natural Gas Science and Engineering, 62:171-183. https://doi.org/10.1016/j.jngse.2018.12.011 Song, Y., Xu, Y.C., 2005. Origin and Identification of Natural Gases. Petroleum Exploration and Development, 32(4):24-29 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf200504004 Tang, Q.Y., Zhang, M.J., Yu, M., et al., 2013. Pyrolysis Constraints on the Generation Mechanism of Shale Gas. Journal of China Coal Society, 38(5):742-747 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/mtxb201305004 Tang, Y., Perry, J. K., Jenden, P. D., et al., 2000. Mathematical Modeling of Stable Carbon Isotope Ratios in Natural Gases. Geochimica et Cosmochimica Acta, 64(15):2673-2687. https://doi.org/10.1016/s0016-7037(00)00377-x Tian, H., Xiao, X. M., Wilkins, R. W. T., et al., 2012. An Experimental Comparison of Gas Generation from Three Oil Fractions:Implications for the Chemical and Stable Carbon Isotopic Signatures of Oil Cracking Gas. Organic Geochemistry, 46:96-112. https://doi.org/10.1016/j.orggeochem.2012.01.013 Tuo, J. C., Wu, C. J., Zhang, M. F., 2016. Organic Matter Properties and Shale Gas Potential of Paleozoic Shales in Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 28(57):434-446. https://doi.org/10.1016/j.jngse.2015.12.003 Xia, X. Y., Chen, J., Braun, R., et al., 2013. Isotopic Reversals with Respect to Maturity Trends Due to Mixing of Primary and Secondary Products in Source Rocks. Chemical Geology, 339(2):205-212. https://doi.org/10.1016/j.chemgeo.2012.07.025 Xie, L. J., Sun, Y. G., Yang, Z. W., et al., 2013. Evaluation of Hydrocarbon Generation of the Xiamaling Formation Shale in Zhangjiakou and Its Significance to the Petroleum Geology in North China. Science in China(Series D:Earth Sciences), 43(9):1436-1444 (in Chinese). https://doi.org/10.1007/s11430-012-4538-5 Xu, S.L, Bao, S.J., 2009. Preliminary Analysis of Shale Gas Resource Potential and Favorable Areas in Ordos Basin. Natural Gas Geoscience, 20(3):460-465 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx200903024 Yuan, X.J., Lin, S.H., Liu, Q., et al., 2015. Lacustrine Fine-Grained Sedimentary Features and Organic-Rich Shale Distribution Pattern:A Case Study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petroleum Exploration and Development, 42(1):34-43 (in Chinese with English abstract). Zhai, G.Y., Wang, Y.F., Bao, S.J., et al., 2017. Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China. Earth Science, 42(7):1057-1068 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.085 Zhang, G.T., Chen, X.H., Zhang, B.M., et al., 2019. Gas-Bearing Characteristics and Origin Analysis of Shale Gas in Longtan Formation, Permian, Shaoyang Sag, Central Hunan. Earth Science, 44(2):539-550 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.182 Zhang, J.C., Xu, B., Nie, H.K., et al., 2008. Exploration Potential of Shale Gas Resources in China. Natural Gas Industry, 28(6):136-140, 159-160 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb-e201804008 Zhang, M., Huang, G. H., Hu, G. Y., et al., 2008. Geochemical Study on Oil-Cracked Gases and Kerogen-Cracked Gases (Ⅰ):Experimental Simulation and Products Analysis. Science in China (Series D:Earth Sciences), 38(Suppl.2):1-8 (in Chinese). Zhang, M.Z., Ji, L.M., Du, B.X., et al., 2017. New Understanding to the Cutinite from Source Rocks of Triassic Yanchang Formation and Its Hydrocarbon-Generation Contribution. Acta Petrolei Sinica, 38(5):525-532, 606(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201705005 Zou, C.N., Dong, D.Z., Wang, S.J., et al., 2010. Geological Characteristics, Formation Mechanism and Resource Potential of Shale Gas in China. Petroleum Exploration and Development, 37(6):641-653 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60001-3 鲍志东, 陈践发, 张水昌, 等, 2004.北华北中上元古界烃源岩发育环境及其控制因素.中国科学(D辑:地球科学), 34(S1):114-119. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd2004z1013 陈晓艳, 田福清, 邹华耀, 等, 2018.湖相烃源岩热演化生烃研究:基于冀中坳陷烃源岩加水热模拟实验.天然气地球科学, 29(1):103-113. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201801010 董大忠, 王玉满, 李新景, 等, 2016.中国页岩气勘探开发新突破及发展前景思考.天然气工业, 36(1):19-32. http://d.old.wanfangdata.com.cn/Periodical/trqgy201601003 耳闯, 罗安湘, 赵靖舟, 等, 2016.鄂尔多斯盆地华池地区三叠系延长组长7段富有机质页岩岩相特征.地学前缘, 23(2):108-117. http://d.old.wanfangdata.com.cn/Periodical/dxqy201602011 刘群, 袁选俊, 林森虎, 等, 2018.湖相泥岩、页岩的沉积环境和特征对比:以鄂尔多斯盆地延长组7段为例.石油与天然气地质, 39(3):531-540. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201803010 刘全有, 刘文汇, 陈践发, 等, 2003.塔里木盆地侏罗系煤热模拟实验:氮的地化特征与意义.天然气工业, 23(1):26-29, 10. doi: 10.3321/j.issn:1000-0976.2003.01.007 秦婧, 钟宁宁, 齐雯, 等, 2010.华北北部洪水庄组有机岩石学.石油与天然气地质, 31(3):367-374. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201003015 宋岩, 徐永昌, 2005.天然气成因类型及其鉴别.石油勘探与开发, 32(4):24-29. doi: 10.3321/j.issn:1000-0747.2005.04.004 汤庆艳, 张铭杰, 余明, 等, 2013.页岩气形成机制的生烃模拟研究.煤炭学报, 38(5):742-747. http://d.old.wanfangdata.com.cn/Periodical/mtxb201305004 谢柳娟, 孙永革, 杨中威, 等, 2013.华北张家口地区中元古界下马岭组页岩生烃演化特征及其油气地质意义.中国科学(D辑:地球科学), 43(9):1436-1444. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201309005 徐士林, 包书景, 2009.鄂尔多斯盆地三叠系延长组页岩气形成条件及有利发育区预测.天然气地球科学, 20(3):460-465. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx200903024 袁选俊, 林森虎, 刘群, 等, 2015.湖盆细粒沉积特征与富有机质页岩分布模式:以鄂尔多斯盆地延长组长7油层组为例.石油勘探与开发, 42(1):34-43. http://d.old.wanfangdata.com.cn/Periodical/syktykf201501004 翟刚毅, 王玉芳, 包书景, 等, 2017.我国南方海相页岩气富集高产主控因素及前景预测.地球科学, 42(7):1057-1058. doi: 10.3799/dqkx.2017.085 张国涛, 陈孝红, 张保民, 等, 2019.湘中邵阳凹陷二叠系龙潭组页岩含气性特征与气体成因.地球科学, 44(2):539-550. doi: 10.3799/dqkx.2018.182 张金川, 徐波, 聂海宽, 等, 2008.中国页岩气资源勘探潜力.天然气工业, 28(6):136-140, 159-160. doi: 10.3787/j.issn.1000-0976.2008.06.040 张敏, 黄光辉, 胡国艺, 等, 2008.原油裂解气和干酪根裂解气的地球化学研究(Ⅰ):模拟实验和产物分析.中国科学(D辑:地球科学), 38(S2):1-8. 张明震, 吉利明, 杜宝霞, 等, 2017.鄂尔多斯盆地三叠系延长组陆相烃源岩中角质体组分新认识及生烃贡献.石油学报, 38(5):525-532, 606. http://d.old.wanfangdata.com.cn/Periodical/syxb201705005 邹才能, 董大忠, 王社教, 等, 2010.中国页岩气形成机理、地质特征及资源潜力.石油勘探与开发, 37(6):641-653. http://d.old.wanfangdata.com.cn/Periodical/syktykf201006001