• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    超高压变质岩中柯石英的产出和保存机制

    刘鹏雷 章军锋 金振民

    刘鹏雷, 章军锋, 金振民, 2019. 超高压变质岩中柯石英的产出和保存机制. 地球科学, 44(12): 4028-4033. doi: 10.3799/dqkx.2019.231
    引用本文: 刘鹏雷, 章军锋, 金振民, 2019. 超高压变质岩中柯石英的产出和保存机制. 地球科学, 44(12): 4028-4033. doi: 10.3799/dqkx.2019.231
    Liu Penglei, Zhang Junfeng, Jin Zhenmin, 2019. Occurrences and Preservation Mechanisms of Coesite in Ultrahigh-Pressure Metamorphic Rocks. Earth Science, 44(12): 4028-4033. doi: 10.3799/dqkx.2019.231
    Citation: Liu Penglei, Zhang Junfeng, Jin Zhenmin, 2019. Occurrences and Preservation Mechanisms of Coesite in Ultrahigh-Pressure Metamorphic Rocks. Earth Science, 44(12): 4028-4033. doi: 10.3799/dqkx.2019.231

    超高压变质岩中柯石英的产出和保存机制

    doi: 10.3799/dqkx.2019.231
    基金项目: 

    国家重点基础研究发展计划项目 2015CB856101

    详细信息
      作者简介:

      刘鹏雷(1988-), 男, 特聘副教授, 主要从事高压-超高压变质岩石学研究

    • 中图分类号: P581

    Occurrences and Preservation Mechanisms of Coesite in Ultrahigh-Pressure Metamorphic Rocks

    • 摘要: 了解柯石英的产出并制约其保存机制对于深入认识超高压变质岩的形成和演化具有重要的启示意义.早期的研究发现超高压变质岩中的柯石英主要以包裹体的形式产在刚性寄主矿物中,而粒间柯石英之前仅在苏鲁仰口的超高压双矿物榴辉岩中有过发现.目前提出的柯石英保存机制主要包括以下两种:涉及"构造超压"的"高压釜"模型和较干的变质演化环境.新近报道的大别山甘家岭超高压变沉积岩中的粒间柯石英和白云石中的大量柯石英包裹体肯定了较干的变质演化环境而削弱了传统的"高压釜"模型在保存柯石英方面所起的作用.

       

    • 图  1  大别山甘家岭富碳酸盐变沉积岩中的柯石英包裹体

      a.石榴子石中的柯石英包裹体,周围发育发射状裂纹;b~f.白云石中的柯石英包裹体,周围缺失放射状裂纹;所有的柯石英包裹体沿颗粒边界和/或裂隙均不同程度地被细粒石英集合体取代;a~d.单偏光;e、f.正交光;Amp.角闪石;Coe.柯石英;Dol.白云石;Grt.石榴子石;Q.石英;Ru.金红石;Zr.锆石;据Liu et al.(2017)

      Fig.  1.  Coesite inclusions in the Ganjialing carbonate-rich metasedimentary rock from Dabieshan

      图  2  大别山甘家岭富碳酸盐变沉积岩中的粒间柯石英

      a.两粒白云石和磷灰石之间的粒间柯石英;b.两粒白云石之间的粒间柯石英;c、d.四粒白云石之间的粒间柯石英;a~c.正交光;d.单偏光;Ap.磷灰石;修改自Liu et al.(2017)

      Fig.  2.  Interstitial coesite in the Ganjialing carbonate-rich metasedimentary rock from Dabieshan

    • Bohlen, S.R., Boettcher, A.L., 1982.The Quartz-Coesite Transformation:A Pressure Determination and the Effects of Other Components.Journal of Geophysical Research, 87(B8):7073-7078. doi: 10.1029/JB087iB08p07073
      Chao, E.T.C., Shoemaker, E.M., Madsen, B.M., 1960.First Natural Occurrence of Coesite.Science, 132(3421):220-222. https://doi.org/10.1126/science.132.3421.220
      Chopin, C., 1984.Coesite and Pure Pyrope in High-Grade Blueschists of the Western Alps:A First Record and Some Consequences.Contributions to Mineralogy and Petrology, 86(2):107-118. doi: 10.1007/BF00381838
      Coes, L., 1953.A New Dense Crystalline Silica.Science, 118(3057):131-132. doi: 10.1126/science.118.3057.131
      Gillet, P., Ingrin, J., Chopin, C., 1984.Coesite in Subducted Continental Crust:P-T History Deduced from an Elastic Model.Earth and Planetary Science Letters, 70(2):426-436. doi: 10.1016/0012-821X(84)90026-8
      Green, H.W., 1972.Metastable Growth of Coesite in Highly Strained Quartz.Journal of Geophysical Research, 77(14):2478-2482. doi: 10.1029/JB077i014p02478
      Guiraud, M., Powell, R., 2006.P-V-T Relationships and Mineral Equilibria in Inclusions in Minerals.Earth and Planetary Science Letters, 244(3-4):683-694. https://doi.org/10.1016/j.epsl.2006.02.021
      Hermann, J., Rubatto, D., 2014.Subduction of Continental Crust to Mantle Depth:Geochemistry of Ultrahigh-Pressure Rocks.Treatise on Geochemistry, 4:309-340. http://d.old.wanfangdata.com.cn/Conference/9122445
      Hirth, G., Tullis, J., 1994.The Brittle-Plastic Transition in Experimentally Deformed Quartz Aggregates.Journal of Geophysical Research, 99(B6):11731-11747. doi: 10.1029/93JB02873
      Katayama, I., Nakashima, S., Yurimoto, H., 2006.Water Content in Natural Eclogite and Implication for Water Transport into the Deep Upper Mantle.Lithos, 86(3-4):245-259. doi: 10.1016/j.lithos.2005.06.006
      Lathe, C., Koch-Müller, M., Wirth, R., et al., 2005.The Influence of OH in Coesite on the Kinetics of the Coesite-Quartz Phase Transition.American Mineralogist, 90(1):36-43. https://doi.org/10.2138/am.2005.1662
      Liou, J.G., Zhang, R.Y., 1996.Occurrences of Intergranular Coesite in Ultrahigh-P Rocks from the Sulu Region, Eastern China:Implications for Lack of Fluid during Exhumation.American Mineralogist, 81(9-10):1217-1221. doi: 10.2138/am-1996-9-1020
      Liou, J.G., Zhang, R.Y., Liu, F.L., et al., 2012.Mineralogy, Petrology, U-Pb Geochronology, and Geologic Evolution of the Dabie-Sulu Classic Ultrahigh-Pressure Metamorphic Terrane, East-Central China.American Mineralogist, 97(10):1533-1543. https://doi.org/10.2138/am.2012.4169
      Liu, F.L., Liou, J.G., 2011.Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism:A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks.Journal of Asian Earth Sciences, 40(1):1-39. doi: 10.1016/j.jseaes.2010.08.007
      Liu, P.L., Massonne, H.J., Zhang, J.F., et al., 2017.Intergranular Coesite and Coesite Inclusions in Dolomite from the Dabie Shan:Constraints on the Preservation of Coesite in UHP Rocks.Terra Nova, 29(3):154-161. doi: 10.1111/ter.12258
      Liu, P.L., Wu, Y., Chen, Y., et al., 2015.UHP Impure Marbles from the Dabie Mountains:Metamorphic Evolution and Carbon Cycling in Continental Subduction Zones.Lithos, 212-215:280-297. doi: 10.1016/j.lithos.2014.11.018
      Liu, W.P., Wu, X.L., Zhang, X.L., et al., 2018.Micro-FTIR Analysis and First-Principle Calculation of Structural Water in Coesite from NAMs.Earth Science, 43(5):1474-1480(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201805008
      Lu, R., Keppler, H., 1997.Water Solubility in Pyrope to 100 kbar.Contributions to Mineralogy and Petrology, 129(1):35-42. doi: 10.1007/s004100050321
      Lü, Z., Zhang, L.F., Chen, Z.Y., 2014.Jadeite- and Dolomite-Bearing Coesite Eclogite from Western Tianshan, NW China.European Journal of Mineralogy, 26(2):245-256. doi: 10.1127/0935-1221/2014/0026-2373
      Mosenfelder, J.L., Bohlen, S.R., 1997.Kinetics of the Coesite to Quartz Transformation.Earth and Planetary Science Letters, 153(1-2):133-147. doi: 10.1016/S0012-821X(97)00159-3
      Mosenfelder, J.L., Schertl, H.P., Smyth, J.R., et al., 2005.Factors in the Preservation of Coesite:The Importance of Fluid Infiltration.American Mineralogist, 90(5-6):779-789. doi: 10.2138/am.2005.1687
      Perrillat, J.P., Daniel, I., Lardeaux, J.M., et al., 2003.Kinetics of the Coesite-Quartz Transition:Application to the Exhumation of Ultrahigh-Pressure Rocks.Journal of Petrology, 44(4):773-788. https://doi.org/10.1093/petrology/44.4.773
      Richter, B., Stünitz, H., Heilbronner, R., 2016.Stresses and Pressures at the Quartz-to-Coesite Phase Transformation in Shear Deformation Experiments.Journal of Geophysical Research:Solid Earth, 121(11):8015-8033. doi: 10.1002/2016JB013084
      Schertl, H.P., Okay, A.I., 1994.A Coesite Inclusion in Dolomite in Dabie Shan, China:Petrological and Rheological Significance.European Journal of Mineralogy, 6(6):995-1000. doi: 10.1127/ejm/6/6/0995
      Schönig, J., von Eynatten, H., Meinhold, G., et al., 2019.Diamond and Coesite Inclusions in Detrital Garnet of the Saxonian Erzgebirge, Germany.Geology, 47(8):715-718. doi: 10.1130/G46253.1
      Sheng, Y.M., Xia, Q.K., Hao, Y.D., et al., 2005.Water in UHP Eclogites at Shuanghe, Dabieshan:Micro-FTIR Analysis.Earth Science, 30(6):673-684(in Chinese with English abstract).
      Smyth, J.R., 1977.Quartz Pseudomorphs after Coesite.American Mineralogist, 62:828-830.
      van der Molen, I., van Roermund, H.L.M., 1986.The Pressure Path of Solid Inclusions in Minerals:The Retention of Coesite Inclusions during Uplift.Lithos, 19(3-4):317-324. doi: 10.1016/0024-4937(86)90030-7
      Wang, L., Wang, S.J., Brown, M., et al., 2018.On the Survival of Intergranular Coesite in UHP Eclogite.Journal of Metamorphic Geology, 36:173-194. doi: 10.1111/jmg.12288
      Withers, A.C., Wood, B.J., Carrol, M.R., 1998.The OH Content of Pyrope at High Pressure.Chemical Geology, 147(1-2):161-171. doi: 10.1016/S0009-2541(97)00179-4
      Yang, J.J., Fan, Z.F., Yu, C., et al., 2014a.Coseismic Formation of Eclogite Facies Cataclasite Dykes at Yangkou in the Chinese Su-Lu UHP Metamorphic Belt.Journal of Metamorphic Geology, 32:937-960. doi: 10.1111/jmg.12101
      Yang, J.J., Huang, M.X., Wu, Q.Y., et al., 2014b.Coesite-Bearing Eclogite Breccia:Implication for Coseismic Ultrahigh-Pressure Metamorphism and the Rate of the Process.Contributions to Mineralogy and Petrology, 167(6):1013-1030. doi: 10.1007/s00410-014-1013-7
      Yang, J.J., Zhang, H.R., Chen, A.P., et al., 2016.Petrological Evidence for Shock-Induced High-P Metamorphism in a Gabbro.Journal of Metamorphic Geology, 35(2):121-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=75949299ab8643147eef7eac2ca1cc86
      Ye, K., Hirajima, T., Ishiwatari, A., et al., 1996.Significance of Interstitial Coesite in Eclogite from Yangkou, Qingdao City, Eastern Shandong Province.Chinese Science Bulletin, 41(15):1047-1048(in Chinese).
      Zhang, R.Y., Liou, J.G., 1996.Coesite Inclusions in Dolomite from Eclogite in the Southern Dabie Mountains, China:The Significance of Carbonate Minerals in UHPM Rocks.American Mineralogist, 81(1-2):181-186. doi: 10.2138/am-1996-1-222
      Zhou, Y.S., He, C.R., Song, J., et al., 2005.An Experiment Study of Quartz-Coesite Transition at Differential Stress.Chinese Science Bulletin, 50(5):446-451. doi: 10.1007/BF02897461
      刘卫平, 吴秀玲, 张晓玲, 等, 2018.NAMs柯石英中结构水的红外光谱和第一性原理计算.地球科学, 43(5):1474-1480. doi: 10.3799/dqkx.2018.406
      盛英明, 夏群科, 郝艳东, 等, 2005.大别山双河超高压榴辉岩中的水:微区红外光谱分析.地球科学, 30(6):673-684. doi: 10.3321/j.issn:1000-2383.2005.06.004
      叶凯, 平岛崇男, 石渡明, 等, 1996.青岛仰口榴辉岩中粒间柯石英的发现及其意义.科学通报, 41(15):1047-1048. http://d.old.wanfangdata.com.cn/Conference/200310
    • 加载中
    图(2)
    计量
    • 文章访问数:  4885
    • HTML全文浏览量:  1702
    • PDF下载量:  145
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-08-19
    • 刊出日期:  2019-12-15

    目录

      /

      返回文章
      返回